gtsam-develop 4.3a0.dev202505190336__cp312-cp312-macosx_11_0_arm64.whl → 4.3a0.dev202505261904__cp312-cp312-macosx_11_0_arm64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of gtsam-develop might be problematic. Click here for more details.

@@ -66,25 +66,29 @@ class Constrained(Diagonal):
66
66
  ...
67
67
  def unit(self) -> Constrained:
68
68
  """
69
- Returns a Unit version of a constrained noisemodel in which constrained sigmas remain constrained and the rest are unit scaled.
69
+ Returns aUnitversion of a constrained noisemodel in which constrained sigmas remain constrained and the rest are unit scaled.
70
70
  """
71
71
  class Diagonal(Gaussian):
72
72
  @staticmethod
73
73
  def Precisions(precisions: numpy.ndarray[tuple[M, typing.Literal[1]], numpy.dtype[numpy.float64]], smart: bool = True) -> Diagonal:
74
74
  """
75
- A diagonal noise model created by specifying a Vector of precisions, i.e.
75
+ A diagonal noise model created by specifying a Vector of precisions, i.e.
76
+
76
77
  i.e. the diagonal of the information matrix, i.e., weights
77
78
  """
78
79
  @staticmethod
79
80
  def Sigmas(sigmas: numpy.ndarray[tuple[M, typing.Literal[1]], numpy.dtype[numpy.float64]], smart: bool = True) -> Diagonal:
80
81
  """
81
- A diagonal noise model created by specifying a Vector of sigmas, i.e.
82
+ A diagonal noise model created by specifying a Vector of sigmas, i.e.
83
+
82
84
  standard deviations, the diagonal of the square root covariance matrix.
83
85
  """
84
86
  @staticmethod
85
87
  def Variances(variances: numpy.ndarray[tuple[M, typing.Literal[1]], numpy.dtype[numpy.float64]], smart: bool = True) -> Diagonal:
86
88
  """
87
- A diagonal noise model created by specifying a Vector of variances, i.e.
89
+ A diagonal noise model created by specifying a Vector of variances, i.e.
90
+
91
+ Args:
88
92
  variances: A vector containing the variances of this noise model
89
93
  smart: check if can be simplified to derived class
90
94
  """
@@ -122,7 +126,9 @@ class Gaussian(Base):
122
126
  @staticmethod
123
127
  def SqrtInformation(R: numpy.ndarray[tuple[M, N], numpy.dtype[numpy.float64]], smart: bool = True) -> Gaussian:
124
128
  """
125
- A Gaussian noise model created by specifying a square root information matrix.
129
+ AGaussiannoise model created by specifying a square root information matrix.
130
+
131
+ Args:
126
132
  R: The (upper-triangular) square root information matrix
127
133
  smart: check if can be simplified to derived class
128
134
  """
@@ -152,8 +158,9 @@ class Gaussian(Base):
152
158
  """
153
159
  def negLogConstant(self) -> float:
154
160
  """
155
- Compute the negative log of the normalization constant for a Gaussian noise model k = 1/\\sqrt(|2πΣ|).
156
- double Returns: double
161
+ Compute the negative log of the normalization constant for aGaussiannoise model k = 1/\\sqrt(|2πΣ|).
162
+
163
+ Returns: double
157
164
  """
158
165
  def serialize(self) -> str:
159
166
  ...
@@ -27,7 +27,9 @@ class AsymmetricCauchy(Base):
27
27
  def serialize(self) -> str:
28
28
  ...
29
29
  def weight(self, error: float) -> float:
30
- ...
30
+ """
31
+ produce a weight vector according to an error vector and the implemented robust function
32
+ """
31
33
  class AsymmetricTukey(Base):
32
34
  @staticmethod
33
35
  def Create(k: float) -> AsymmetricTukey:
@@ -49,7 +51,9 @@ class AsymmetricTukey(Base):
49
51
  def serialize(self) -> str:
50
52
  ...
51
53
  def weight(self, error: float) -> float:
52
- ...
54
+ """
55
+ produce a weight vector according to an error vector and the implemented robust function
56
+ """
53
57
  class Base:
54
58
  class ReweightScheme:
55
59
  """
@@ -135,7 +139,9 @@ class Cauchy(Base):
135
139
  def serialize(self) -> str:
136
140
  ...
137
141
  def weight(self, error: float) -> float:
138
- ...
142
+ """
143
+ produce a weight vector according to an error vector and the implemented robust function
144
+ """
139
145
  class Custom(Base):
140
146
  @staticmethod
141
147
  def Create(weight: typing.Callable[[float], float], loss: typing.Callable[[float], float], reweight: Base.ReweightScheme, name: str) -> Custom:
@@ -153,7 +159,9 @@ class Custom(Base):
153
159
  def serialize(self) -> str:
154
160
  ...
155
161
  def weight(self, error: float) -> float:
156
- ...
162
+ """
163
+ produce a weight vector according to an error vector and the implemented robust function
164
+ """
157
165
  class DCS(Base):
158
166
  @staticmethod
159
167
  def Create(c: float) -> DCS:
@@ -175,7 +183,9 @@ class DCS(Base):
175
183
  def serialize(self) -> str:
176
184
  ...
177
185
  def weight(self, error: float) -> float:
178
- ...
186
+ """
187
+ produce a weight vector according to an error vector and the implemented robust function
188
+ """
179
189
  class Fair(Base):
180
190
  @staticmethod
181
191
  def Create(c: float) -> Fair:
@@ -193,7 +203,9 @@ class Fair(Base):
193
203
  def serialize(self) -> str:
194
204
  ...
195
205
  def weight(self, error: float) -> float:
196
- ...
206
+ """
207
+ produce a weight vector according to an error vector and the implemented robust function
208
+ """
197
209
  class GemanMcClure(Base):
198
210
  @staticmethod
199
211
  def Create(c: float) -> GemanMcClure:
@@ -215,7 +227,9 @@ class GemanMcClure(Base):
215
227
  def serialize(self) -> str:
216
228
  ...
217
229
  def weight(self, error: float) -> float:
218
- ...
230
+ """
231
+ produce a weight vector according to an error vector and the implemented robust function
232
+ """
219
233
  class Huber(Base):
220
234
  @staticmethod
221
235
  def Create(k: float) -> Huber:
@@ -233,7 +247,9 @@ class Huber(Base):
233
247
  def serialize(self) -> str:
234
248
  ...
235
249
  def weight(self, error: float) -> float:
236
- ...
250
+ """
251
+ produce a weight vector according to an error vector and the implemented robust function
252
+ """
237
253
  class L2WithDeadZone(Base):
238
254
  @staticmethod
239
255
  def Create(k: float) -> L2WithDeadZone:
@@ -255,7 +271,9 @@ class L2WithDeadZone(Base):
255
271
  def serialize(self) -> str:
256
272
  ...
257
273
  def weight(self, error: float) -> float:
258
- ...
274
+ """
275
+ produce a weight vector according to an error vector and the implemented robust function
276
+ """
259
277
  class Null(Base):
260
278
  @staticmethod
261
279
  def Create() -> Null:
@@ -273,7 +291,9 @@ class Null(Base):
273
291
  def serialize(self) -> str:
274
292
  ...
275
293
  def weight(self, error: float) -> float:
276
- ...
294
+ """
295
+ produce a weight vector according to an error vector and the implemented robust function
296
+ """
277
297
  class Tukey(Base):
278
298
  @staticmethod
279
299
  def Create(k: float) -> Tukey:
@@ -295,7 +315,9 @@ class Tukey(Base):
295
315
  def serialize(self) -> str:
296
316
  ...
297
317
  def weight(self, error: float) -> float:
298
- ...
318
+ """
319
+ produce a weight vector according to an error vector and the implemented robust function
320
+ """
299
321
  class Welsch(Base):
300
322
  @staticmethod
301
323
  def Create(k: float) -> Welsch:
@@ -317,4 +339,6 @@ class Welsch(Base):
317
339
  def serialize(self) -> str:
318
340
  ...
319
341
  def weight(self, error: float) -> float:
320
- ...
342
+ """
343
+ produce a weight vector according to an error vector and the implemented robust function
344
+ """
gtsam/gtsam/so3.pyi CHANGED
@@ -18,7 +18,7 @@ class DexpFunctor(ExpmapFunctor):
18
18
  """
19
19
  def applyLeftJacobianInverse(self, v: numpy.ndarray[tuple[typing.Literal[3], typing.Literal[1]], numpy.dtype[numpy.float64]]) -> numpy.ndarray[tuple[typing.Literal[3], typing.Literal[1]], numpy.dtype[numpy.float64]]:
20
20
  """
21
- Multiplies with leftJacobianInverse(), with optional derivatives.
21
+ Multiplies withleftJacobianInverse(), with optional derivatives.
22
22
  """
23
23
  def applyRightJacobian(self, v: numpy.ndarray[tuple[typing.Literal[3], typing.Literal[1]], numpy.dtype[numpy.float64]]) -> numpy.ndarray[tuple[typing.Literal[3], typing.Literal[1]], numpy.dtype[numpy.float64]]:
24
24
  """
Binary file
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: gtsam-develop
3
- Version: 4.3a0.dev202505190336
3
+ Version: 4.3a0.dev202505261904
4
4
  Summary: Georgia Tech Smoothing And Mapping library
5
5
  Home-page: https://gtsam.org/
6
6
  Author: Frank Dellaert et. al.
@@ -1,19 +1,19 @@
1
1
  gtsam/symbol_shorthand.py,sha256=HlTV-Z5aB5cXWT5AsbKOeWZIHoXQsH2W1S90ET-tidA,236
2
- gtsam/__init__.pyi,sha256=k_8uetLrYLo7FR7L_5pX3wGuSNmyd_ePrJ88FNb2CD4,42970
2
+ gtsam/__init__.pyi,sha256=3YSIFPA_ZEL6_rzKze02gF_ZlNClCnDBBtZIUYxSNAQ,42970
3
3
  gtsam/gtsfm.py,sha256=Udlkb6o5iUk69uxBkb88-W1GLfu1g8iSuZlLu-RRU0o,202
4
- gtsam/gtsam.cpython-312-darwin.so,sha256=1oK4Y4Y2FsceCFtF0TlahPg8ymUpby6Bgjz9Ej6Og5I,17888432
4
+ gtsam/gtsam.cpython-312-darwin.so,sha256=AgJGziLP2LC73xVAnFrAcT0AfRwqnXIw0mz7fDC9QkU,17888432
5
5
  gtsam/__init__.py,sha256=6G-WPnb_FMQEJXNDDAmrKrQPau7evtd5svhTmMqhYSI,2011
6
6
  gtsam/noiseModel.py,sha256=ybfIHa4sLXe78_k-Dib8nTaw34BRXqEDVtS2B9dzSO0,217
7
7
  gtsam/imuBias.py,sha256=tz3bOCFl29iMycbGFoF-ud6kRsJYjA7DJ2RJoKPFRU8,209
8
8
  gtsam/gtsam/utilities.pyi,sha256=-yn7_jeJbTa_3KJGgqcr_NDD70UhDZ8tYX2M2lPLmSQ,3384
9
9
  gtsam/gtsam/gtsfm.pyi,sha256=Onoh4CRaSYIQ0FID0vBkZeV7ESIhc2fh4rJGgaPY-ug,702
10
- gtsam/gtsam/__init__.pyi,sha256=lEWM2PVRx7w-U5ANjUkrjNA38QGU_ZlRRTAZ18k0tLw,676473
11
- gtsam/gtsam/so3.pyi,sha256=J21P4oVnuN3iTlJIuoWCLo5-77Hl6BMMq01-pGtcSv4,3940
10
+ gtsam/gtsam/__init__.pyi,sha256=-ZUwjDciJ5hxqozDaw8Zz0uaI2vJaWsI_y3M8VEw7j4,711275
11
+ gtsam/gtsam/so3.pyi,sha256=UoDGISMgcStVTAtc_y6CmHXCtPJrJ7ju70z3ZH1OLR4,3939
12
12
  gtsam/gtsam/imuBias.pyi,sha256=gD6w5kd9xpO4uBEpfNym_3LjW67MV7HPQRYOOoDPysQ,2478
13
13
  gtsam/gtsam/symbol_shorthand.pyi,sha256=iaQLf_-hch_4YTYbSWTLINKtIL9Mg7W7HKOMuCXp8Ok,991
14
14
  gtsam/gtsam/lago.pyi,sha256=-VzJaQ1ho25n7S4VjbugWmPNUtKeMsoESifX9K8l2Yo,551
15
- gtsam/gtsam/noiseModel/__init__.pyi,sha256=2CyuNitNMgpxK2DuxfR8J0YQ2ACzDBrcbLnFdJ24LqE,8733
16
- gtsam/gtsam/noiseModel/mEstimator.pyi,sha256=LEVhJxHmP4wd6EvzfXZXIwSQDGrqCMKMPFmhxP7Pp0E,9299
15
+ gtsam/gtsam/noiseModel/__init__.pyi,sha256=hmp6DnyP7wwhjNN_Xoh2dX0E89yJ_YMBrlbjxu-1Kr0,8787
16
+ gtsam/gtsam/noiseModel/mEstimator.pyi,sha256=DCClE_67kH2L-6wsiIEExB3xzkwi-dprZM27QkqILc4,10607
17
17
  gtsam/tests/simulation.py,sha256=VAopcCosvdtXRy6xe547EDz73lXhLiYbPnFQZWjo2wU,5405
18
18
  gtsam/tests/test_OdometryExample.py,sha256=aO-ciYNbKo8ru0bxexEtlj4xN9WGiSBlLOQnRkCCAx0,2094
19
19
  gtsam/tests/test_KarcherMeanFactor.py,sha256=L3_VAOljyRDmyOjOlZqnW-5apqufsDd8UnLIZ-d-_VE,2369
@@ -128,12 +128,12 @@ gtsam/utils/__init__.py,sha256=_ID7pb13SDZedga5KdBqpPug4PW3eU3THdVF_3jrakQ,678
128
128
  gtsam/utils/test_case.py,sha256=3wIqAW5_smes95XUJgUjD4v3FXACYSVzQ1l6MMdwSkA,1848
129
129
  gtsam/utils/logging_optimizer.py,sha256=tRnzQKV4eT5djS0Ojy5J7OGu7oVRjZw7Jhjrx_VQVTU,4417
130
130
  gtsam/.dylibs/libboost_thread.dylib,sha256=aT1DCt1Kvw1A2w2mRHIJhZRFrYmoDaI5xYM6wEt86L8,137200
131
- gtsam/.dylibs/libgtsam.4.3a0.dev202505190336.dylib,sha256=_s0YI8v64z3N4ZJ5tZ0ryJhQQH2la4hdM4AnB6tBsjA,5634720
131
+ gtsam/.dylibs/libgtsam_unstable.4.3a0.dev202505261904.dylib,sha256=AVvpTyZ8fGtocCqOnKYcvbVM577QpbTpdJEILziG7kM,1623104
132
132
  gtsam/.dylibs/libboost_regex.dylib,sha256=XWw3H3ehJjFuFVSSDGo2lyKOIsoTQ-0Aaf1ekhsQJfY,356464
133
133
  gtsam/.dylibs/libboost_serialization.dylib,sha256=7OW78djID14u2YB_F_TuXomOIsEpt8I7RnCAGuGmwCc,418288
134
134
  gtsam/.dylibs/libboost_timer.dylib,sha256=leVXIyCdydip4vwIm-Ghrt6UGy_Q-yhL2f8ITyfRku0,81520
135
135
  gtsam/.dylibs/libboost_filesystem.dylib,sha256=WUuuO1JZADriLciFi63Ky4dmqt1KA7_V6DcNdzCANSo,197328
136
- gtsam/.dylibs/libgtsam_unstable.4.3a0.dev202505190336.dylib,sha256=h5J38c2THRR7Br0SEFCOduaXRyfTehtG_juFl-8oyR8,1623104
136
+ gtsam/.dylibs/libgtsam.4.3a0.dev202505261904.dylib,sha256=5rjifuHybkNQPtyyxmcpntcKYWLa-JgzK0AsvcamaL4,5634720
137
137
  gtsam/.dylibs/libcephes-gtsam.1.0.0.dylib,sha256=pNZtgCIaV7_dC0WPXobOc8sNvd_0WQo1AdYxUsqZ1D0,176352
138
138
  gtsam/.dylibs/libmetis-gtsam.dylib,sha256=Od5V_NOZKhxu5cEw1wMfGxk3l0_2LEhV-GkEwnqyx4Q,449504
139
139
  gtsam/.dylibs/libboost_atomic.dylib,sha256=AbG9FmLd7biQVvDL9F7_sLOEgmhgj5bwxX98c5jnVVc,104160
@@ -249,14 +249,14 @@ gtsam/Data/Balbianello/BalbianelloMedium-4.key.gz,sha256=P6tu3JmA0NKlcFYdgYczTOH
249
249
  gtsam/Data/Balbianello/BalbianelloMedium-1.key.gz,sha256=RgT7tVXXOwvDug20TW-9xtoeO3dSSPMF1n9DaKxdrIw,332878
250
250
  gtsam/Data/Balbianello/BalbianelloMedium-3.key.gz,sha256=yNMcyqwZCOj9FG-6qXQ9xhJjpM135cTBJYlOUBG0rnQ,296236
251
251
  gtsam/Data/Balbianello/BalbianelloMedium-5.key.gz,sha256=4veDrxRdLH8k1DIhgj1984MitZ7nAWoXDWTWyXuu7Lg,241361
252
- gtsam_develop-4.3a0.dev202505190336.dist-info/RECORD,,
253
- gtsam_develop-4.3a0.dev202505190336.dist-info/WHEEL,sha256=tCpHVpIZLNw3nEpZsB0tKTN6qo2uHdiO-a2hkt8dPlY,136
254
- gtsam_develop-4.3a0.dev202505190336.dist-info/top_level.txt,sha256=DOnqfd8DN2HpG5-V5t32TjFOB_vcYuyOWyRsgeoANEo,30
255
- gtsam_develop-4.3a0.dev202505190336.dist-info/METADATA,sha256=EzwXmqv8CGPMe4DlXAWE9HJ4AMXkaxphWwTYl9DmU9U,7767
256
252
  gtsam_unstable/__init__.py,sha256=FPc_oO5PFQZbrfpgugzQuI6LJfP1fzq82UQf_nuyGtk,30
257
- gtsam_unstable/gtsam_unstable.cpython-312-darwin.so,sha256=S3xM0gaPROaB-qm_ac8F-R04hFHXZQzschBo9DxBg2k,2049968
253
+ gtsam_unstable/gtsam_unstable.cpython-312-darwin.so,sha256=OTaD0MRmOyrhiAGjy6fy7ukA6tJyXPcZrTDCc8FmoMA,2049968
258
254
  gtsam_unstable/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
259
255
  gtsam_unstable/tests/test_ProjectionFactorRollingShutter.py,sha256=t2l62uWoXfjrM8oH6ogV7M20WjTYKZ4CSferdurMIY0,2156
260
256
  gtsam_unstable/examples/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
261
257
  gtsam_unstable/examples/LocalizationExample.py,sha256=na47I1PQ_5Tenj8Wg2LBg3GaqP32O4yEb8jtRWKu0P8,2882
262
258
  gtsam_unstable/examples/TimeOfArrivalExample.py,sha256=uky5ps4Ng83C0Q_s2EAc64Af6iztQjXXdj3ahifRXoI,3737
259
+ gtsam_develop-4.3a0.dev202505261904.dist-info/RECORD,,
260
+ gtsam_develop-4.3a0.dev202505261904.dist-info/WHEEL,sha256=dMo0Aea1J_cdUvY_QTSIdHfxvMnhl_BpZ4tMYTGbqgI,136
261
+ gtsam_develop-4.3a0.dev202505261904.dist-info/top_level.txt,sha256=DOnqfd8DN2HpG5-V5t32TjFOB_vcYuyOWyRsgeoANEo,30
262
+ gtsam_develop-4.3a0.dev202505261904.dist-info/METADATA,sha256=hFwSlpdH7P2BNadJ36Xx9Dk6QM3xpYCm8FDl6JSV8zQ,7767
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (80.7.1)
2
+ Generator: setuptools (80.8.0)
3
3
  Root-Is-Purelib: false
4
4
  Tag: cp312-cp312-macosx_11_0_arm64
5
5
  Generator: delocate 0.13.0