gsMap 1.73.3__py3-none-any.whl → 1.73.4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
gsMap/__init__.py CHANGED
@@ -2,4 +2,4 @@
2
2
  Genetics-informed pathogenic spatial mapping
3
3
  """
4
4
 
5
- __version__ = "1.73.3"
5
+ __version__ = "1.73.4"
gsMap/config.py CHANGED
@@ -972,10 +972,7 @@ class GenerateLDScoreConfig(ConfigWithAutoPaths):
972
972
  ld_wind: int = 1
973
973
  ld_unit: str = "CM"
974
974
 
975
- # zarr config
976
- ldscore_save_format: Literal["feather", "zarr", "quick_mode"] = "feather"
977
-
978
- zarr_chunk_size: tuple[int, int] = None
975
+ ldscore_save_format: Literal["feather", "quick_mode"] = "feather"
979
976
 
980
977
  # for pre calculating the SNP Gene ldscore Weight
981
978
  save_pre_calculate_snp_gene_weight_matrix: bool = False
@@ -1059,10 +1056,6 @@ class GenerateLDScoreConfig(ConfigWithAutoPaths):
1059
1056
  f"baseline.{self.chrom}.annot.gz is not found in {self.additional_baseline_annotation}."
1060
1057
  )
1061
1058
 
1062
- # set the default zarr chunk size
1063
- if self.ldscore_save_format == "zarr" and self.zarr_chunk_size is None:
1064
- self.zarr_chunk_size = (10_000, self.spots_per_chunk)
1065
-
1066
1059
 
1067
1060
  @dataclass
1068
1061
  class SpatialLDSCConfig(ConfigWithAutoPaths):
@@ -1079,7 +1072,7 @@ class SpatialLDSCConfig(ConfigWithAutoPaths):
1079
1072
  all_chunk: int | None = None
1080
1073
  chunk_range: tuple[int, int] | None = None
1081
1074
 
1082
- ldscore_save_format: Literal["feather", "zarr", "quick_mode"] = "feather"
1075
+ ldscore_save_format: Literal["feather", "quick_mode"] = "feather"
1083
1076
 
1084
1077
  spots_per_chunk_quick_mode: int = 1_000
1085
1078
  snp_gene_weight_adata_path: str | None = None
gsMap/diagnosis.py CHANGED
@@ -9,6 +9,7 @@ from scipy.stats import norm
9
9
 
10
10
  from gsMap.config import DiagnosisConfig
11
11
  from gsMap.utils.manhattan_plot import ManhattanPlot
12
+ from gsMap.utils.regression_read import _read_chr_files
12
13
  from gsMap.visualize import draw_scatter, estimate_point_size_for_plot, load_ldsc, load_st_coord
13
14
 
14
15
  warnings.filterwarnings("ignore", category=FutureWarning)
@@ -100,10 +101,11 @@ def load_gwas_data(config: DiagnosisConfig):
100
101
  def load_snp_gene_pairs(config: DiagnosisConfig):
101
102
  """Load SNP-gene pairs from multiple chromosomes."""
102
103
  ldscore_save_dir = Path(config.ldscore_save_dir)
104
+ snp_gene_pair_file_prefix = ldscore_save_dir / "SNP_gene_pair/SNP_gene_pair_chr"
103
105
  return pd.concat(
104
106
  [
105
- pd.read_feather(ldscore_save_dir / f"SNP_gene_pair/SNP_gene_pair_chr{chrom}.feather")
106
- for chrom in range(1, 23)
107
+ pd.read_feather(file)
108
+ for file in _read_chr_files(snp_gene_pair_file_prefix.as_posix(), suffix=".feather")
107
109
  ]
108
110
  )
109
111
 
@@ -168,7 +170,6 @@ def generate_manhattan_plot(config: DiagnosisConfig):
168
170
 
169
171
  # Log some diagnostic information
170
172
  logger.info(f"Creating Manhattan plot with {len(gwas_data_to_plot)} SNPs")
171
- logger.info(f"Columns available: {list(gwas_data_to_plot.columns)}")
172
173
  logger.info(f"Chromosome column values: {gwas_data_to_plot['CHR'].unique()}")
173
174
 
174
175
  fig = ManhattanPlot(