gsMap 1.73.0__py3-none-any.whl → 1.73.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
gsMap/latent_to_gene.py CHANGED
@@ -104,6 +104,7 @@ def compute_regional_mkscore(
104
104
  ranks,
105
105
  frac_whole,
106
106
  adata_X_bool,
107
+ pearson_residuals,
107
108
  ):
108
109
  """
109
110
  Compute gmean ranks of a region.
@@ -129,7 +130,8 @@ def compute_regional_mkscore(
129
130
  # Simultaneously consider the ratio of expression fractions and ranks
130
131
  gene_ranks_region = gene_ranks_region * frac_region
131
132
 
132
- mkscore = np.exp(gene_ranks_region**1.5) - 1
133
+ mkscore = np.exp(gene_ranks_region) - 1 if not pearson_residuals else gene_ranks_region
134
+
133
135
  return mkscore.astype(np.float16, copy=False)
134
136
 
135
137
 
@@ -246,11 +248,18 @@ def run_latent_to_gene(config: LatentToGeneConfig):
246
248
  # Create mappings
247
249
  n_cells = adata.n_obs
248
250
  n_genes = adata.n_vars
249
-
251
+ pearson_residuals = True if "pearson_residuals" in adata.layers else False
250
252
  ranks = np.zeros((n_cells, adata.n_vars), dtype=np.float16)
251
- for i in tqdm(range(n_cells), desc="Computing ranks per cell"):
252
- data = adata_X[i, :].toarray().flatten()
253
- ranks[i, :] = rankdata(data, method="average")
253
+
254
+ if pearson_residuals:
255
+ logger.info("Using pearson residuals for ranking.")
256
+ data = adata.layers["pearson_residuals"]
257
+ for i in tqdm(range(n_cells), desc="Computing ranks per cell"):
258
+ ranks[i, :] = rankdata(data[i, :], method="average")
259
+ else:
260
+ for i in tqdm(range(n_cells), desc="Computing ranks per cell"):
261
+ data = adata_X[i, :].toarray().flatten()
262
+ ranks[i, :] = rankdata(data, method="average")
254
263
 
255
264
  if gM is None:
256
265
  gM = gmean(ranks, axis=0)
@@ -280,6 +289,7 @@ def run_latent_to_gene(config: LatentToGeneConfig):
280
289
  ranks,
281
290
  frac_whole,
282
291
  adata_X_bool,
292
+ pearson_residuals,
283
293
  )
284
294
 
285
295
  logger.info("------Computing marker scores...")
gsMap/run_all_mode.py CHANGED
@@ -68,6 +68,7 @@ def run_pipeline(config: RunAllModeConfig):
68
68
  annotation=config.annotation,
69
69
  data_layer=config.data_layer,
70
70
  n_comps=config.n_comps,
71
+ pearson_residuals=config.pearson_residuals,
71
72
  )
72
73
 
73
74
  # Step 1: Find latent representations
@@ -465,7 +465,7 @@ class PlinkBEDFile(GenotypeArrayInMemory):
465
465
  return Y
466
466
 
467
467
 
468
- def load_bfile(bfile_chr_prefix):
468
+ def load_bfile(bfile_chr_prefix, keep_snps=None, keep_indivs=None, mafMin=None):
469
469
  PlinkBIMFile = ID_List_Factory(
470
470
  ["CHR", "SNP", "CM", "BP", "A1", "A2"], 1, ".bim", usecols=[0, 1, 2, 3, 4, 5]
471
471
  )
@@ -483,7 +483,7 @@ def load_bfile(bfile_chr_prefix):
483
483
  # Load genotype array
484
484
  array_file = bfile_chr_prefix + ".bed"
485
485
  geno_array = PlinkBEDFile(
486
- array_file, n, array_snps, keep_snps=None, keep_indivs=None, mafMin=None
486
+ array_file, n, array_snps, keep_snps=keep_snps, keep_indivs=keep_indivs, mafMin=mafMin
487
487
  )
488
488
 
489
489
  return array_snps, array_indivs, geno_array
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: gsMap
3
- Version: 1.73.0
3
+ Version: 1.73.1
4
4
  Summary: Genetics-informed pathogenic spatial mapping
5
5
  Author-email: liyang <songliyang@westlake.edu.cn>, wenhao <chenwenhao@westlake.edu.cn>
6
6
  Requires-Python: >=3.10
@@ -97,6 +97,14 @@ conda activate gsMap
97
97
  pip install gsMap
98
98
  ```
99
99
 
100
+ Install using conda:
101
+
102
+ ```bash
103
+ conda create -n gsMap python>=3.10
104
+ conda activate gsMap
105
+ conda install bioconda::gsmap
106
+ ```
107
+
100
108
  Install from source:
101
109
 
102
110
  ```bash
@@ -1,31 +1,31 @@
1
- gsMap/__init__.py,sha256=knR7dQ3TSoHO6p9wIF50N1FMi0Y-hqQLVLblUN0V3xE,77
1
+ gsMap/__init__.py,sha256=JH9MEzz0OCzOzCkWe26fsjrbx9Bstvsy68Pjx82trOA,77
2
2
  gsMap/__main__.py,sha256=Vdhw8YA1K3wPMlbJQYL5WqvRzAKVeZ16mZQFO9VRmCo,62
3
3
  gsMap/cauchy_combination_test.py,sha256=SiUyqJKr4ATFtRgsCEJ43joGcSagCOnnurkB1FlQiB4,5105
4
- gsMap/config.py,sha256=QaDM3Um6p3rcQO-HTMts8-mQ85RmPCJ2RK2kjC32Bgg,51246
5
- gsMap/create_slice_mean.py,sha256=bkobWq1kPSvVUZb5RUxYR6ckGGmsftVYCcHfU4xpT6w,5676
6
- gsMap/diagnosis.py,sha256=RcoIQoK2rtHpEqmSVwOG_amfKWuu1r5T8e2POPfIpOM,13362
7
- gsMap/find_latent_representation.py,sha256=ktC1nQ_dDqL0uwV6f-E2EwLKX7fwX8TRj9jWGpDrKJw,4745
4
+ gsMap/config.py,sha256=LmBVMb0eda6bfrKkQuh7eZnZdvgecjCnozRd_clqvlY,51584
5
+ gsMap/create_slice_mean.py,sha256=Nnmb7ACtS-9TurW5xQ4TqCinejPsYcvuT5Oxqa5Uges,5723
6
+ gsMap/diagnosis.py,sha256=rQIjtM5inqrLlNULC88JVEO1XA64XOQWEgaKLx2oA_g,12553
7
+ gsMap/find_latent_representation.py,sha256=aZ5fFY2RhAsNaDeoehd5lN28556d6GGHK9xEUTvo6G4,5365
8
8
  gsMap/format_sumstats.py,sha256=1c9OgbqDQWOgXeSrbAhbJfChv_2IwXIgLE6Pbw2sx0s,13778
9
- gsMap/generate_ldscore.py,sha256=lqw5KGegptZlNjXBoVDLT0UB9Rft-KaIPuEd9GkvEm4,27937
10
- gsMap/latent_to_gene.py,sha256=CqvlH2qriuzWTt-hjfzgMD1VEd4PNSSG4A4ODvSbUfA,12398
9
+ gsMap/generate_ldscore.py,sha256=xxzbaANl638bRvRAowrTPmFA4dEC0zDBv6i8KQTJvJ8,45094
10
+ gsMap/latent_to_gene.py,sha256=sDPvOU4iF-HkfQY0nnkIVXpjyTQ9-PjQflwEFWrPg-A,12869
11
11
  gsMap/main.py,sha256=SzfAXhrlr4LXnSD4gkvAtUUPYXyra6a_MzVCxDBZjr0,1170
12
12
  gsMap/report.py,sha256=_1FYkzGhVGMnvHgEQ8z51iMrVEVlh48a31jLqbV2o9w,6953
13
- gsMap/run_all_mode.py,sha256=0fJWV6TL7o2OAUXyhC0okHav6gydVUXOinP-HJ-DaAQ,9325
13
+ gsMap/run_all_mode.py,sha256=LhMTT85B6yoDG9MvKmclQWYdQyNIP0FFdHpYVGTCJTs,9381
14
14
  gsMap/setup.py,sha256=lsIQCChHwR0ojWZs7xay8rukRaLlueuLkc83bp-B2ZE,103
15
15
  gsMap/spatial_ldsc_multiple_sumstats.py,sha256=-mawOBjn8-Y5Irl8mv8ye83hfiEJ1mkLrRIQiI-XaMM,17973
16
16
  gsMap/visualize.py,sha256=N55s-xmzSd_DtIesrGewfDeoytYUcMd2acDsjEpChCA,7242
17
17
  gsMap/GNN/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
18
18
  gsMap/GNN/adjacency_matrix.py,sha256=MfkhgpAHJcC-3l_iZDQQYD30w4bpe29-8s6kkGxiwQw,3231
19
19
  gsMap/GNN/model.py,sha256=75In9sxBkaqqpCQSrQEUO-zsQQVQnkXVbKsAgyAZjiQ,2918
20
- gsMap/GNN/train.py,sha256=S6s-AufN9GJNcgC5Mqe6MjcJAsaNnbDlHUoYHcvxFmA,3069
20
+ gsMap/GNN/train.py,sha256=4qipaxaz3rQOtlRpTYCfl1Oz4kz_A6vNB1aw8_gGK_k,3076
21
21
  gsMap/templates/report_template.html,sha256=QODZEbVxpW1xsLz7lDrD_DyUfzYoi9E17o2tLJlf8OQ,8016
22
22
  gsMap/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
23
- gsMap/utils/generate_r2_matrix.py,sha256=Hwp70pQfMoWjvDa8LyrtZsvws3YHKj5oGYB_LB2CSqs,17293
23
+ gsMap/utils/generate_r2_matrix.py,sha256=0zyoJDWUVavlQtR6_XXb7Ah9UhPyT3n0t6XCqlI1HXQ,17354
24
24
  gsMap/utils/jackknife.py,sha256=w_qMj9GlqViouHuOw1U80N6doWuCTXuPoAVU4P-5mm8,17673
25
25
  gsMap/utils/manhattan_plot.py,sha256=N7jd0Cn-7JMsTBgv41k1w0174rqnPT-v7xLIV2cfY5U,25241
26
26
  gsMap/utils/regression_read.py,sha256=rKA0nkUpTJf6WuGddhKrsBCExchDNEyojOWu_qddZNw,5474
27
- gsmap-1.73.0.dist-info/entry_points.txt,sha256=s_P2Za22O077tc1FPLKMinbdRVXaN_HTcDBgWMYpqA4,41
28
- gsmap-1.73.0.dist-info/licenses/LICENSE,sha256=fb5WP6qQytSKO5rM0ZSqQXg_92Fdt0aAeFNwSi3Lpmc,1069
29
- gsmap-1.73.0.dist-info/WHEEL,sha256=_2ozNFCLWc93bK4WKHCO-eDUENDlo-dgc9cU3qokYO4,82
30
- gsmap-1.73.0.dist-info/METADATA,sha256=Z6rfdCCrlRN1_DRzoIhCwshs9b94LDJVwHNYRLF5bko,8075
31
- gsmap-1.73.0.dist-info/RECORD,,
27
+ gsmap-1.73.1.dist-info/entry_points.txt,sha256=s_P2Za22O077tc1FPLKMinbdRVXaN_HTcDBgWMYpqA4,41
28
+ gsmap-1.73.1.dist-info/licenses/LICENSE,sha256=fb5WP6qQytSKO5rM0ZSqQXg_92Fdt0aAeFNwSi3Lpmc,1069
29
+ gsmap-1.73.1.dist-info/WHEEL,sha256=G2gURzTEtmeR8nrdXUJfNiB3VYVxigPQ-bEQujpNiNs,82
30
+ gsmap-1.73.1.dist-info/METADATA,sha256=34Y4_egICgzOwwCJ2L3u8j9OvKsUBPPlLJfi-t-gm98,8196
31
+ gsmap-1.73.1.dist-info/RECORD,,
@@ -1,4 +1,4 @@
1
1
  Wheel-Version: 1.0
2
- Generator: flit 3.11.0
2
+ Generator: flit 3.12.0
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any