gsMap 1.67__py3-none-any.whl → 1.71__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- gsMap/{GNN_VAE → GNN}/__init__.py +0 -0
 - gsMap/{GNN_VAE → GNN}/adjacency_matrix.py +75 -75
 - gsMap/{GNN_VAE → GNN}/model.py +89 -89
 - gsMap/{GNN_VAE → GNN}/train.py +88 -86
 - gsMap/__init__.py +5 -5
 - gsMap/__main__.py +2 -2
 - gsMap/cauchy_combination_test.py +141 -141
 - gsMap/config.py +805 -803
 - gsMap/diagnosis.py +273 -273
 - gsMap/find_latent_representation.py +133 -145
 - gsMap/format_sumstats.py +407 -407
 - gsMap/generate_ldscore.py +618 -618
 - gsMap/latent_to_gene.py +234 -234
 - gsMap/main.py +31 -31
 - gsMap/report.py +160 -160
 - gsMap/run_all_mode.py +194 -194
 - gsMap/setup.py +0 -0
 - gsMap/spatial_ldsc_multiple_sumstats.py +380 -380
 - gsMap/templates/report_template.html +198 -198
 - gsMap/utils/__init__.py +0 -0
 - gsMap/utils/generate_r2_matrix.py +735 -735
 - gsMap/utils/jackknife.py +514 -514
 - gsMap/utils/make_annotations.py +518 -518
 - gsMap/utils/manhattan_plot.py +639 -639
 - gsMap/utils/regression_read.py +294 -294
 - gsMap/visualize.py +198 -198
 - {gsmap-1.67.dist-info → gsmap-1.71.dist-info}/LICENSE +21 -21
 - {gsmap-1.67.dist-info → gsmap-1.71.dist-info}/METADATA +28 -22
 - gsmap-1.71.dist-info/RECORD +31 -0
 - gsmap-1.67.dist-info/RECORD +0 -31
 - {gsmap-1.67.dist-info → gsmap-1.71.dist-info}/WHEEL +0 -0
 - {gsmap-1.67.dist-info → gsmap-1.71.dist-info}/entry_points.txt +0 -0
 
    
        gsMap/utils/make_annotations.py
    CHANGED
    
    | 
         @@ -1,518 +1,518 @@ 
     | 
|
| 
       1 
     | 
    
         
            -
            import argparse
         
     | 
| 
       2 
     | 
    
         
            -
            import logging
         
     | 
| 
       3 
     | 
    
         
            -
            import os
         
     | 
| 
       4 
     | 
    
         
            -
            import pprint
         
     | 
| 
       5 
     | 
    
         
            -
            import time
         
     | 
| 
       6 
     | 
    
         
            -
            from pathlib import Path
         
     | 
| 
       7 
     | 
    
         
            -
             
     | 
| 
       8 
     | 
    
         
            -
             
     | 
| 
       9 
     | 
    
         
            -
            import numpy as np
         
     | 
| 
       10 
     | 
    
         
            -
            import pandas as pd
         
     | 
| 
       11 
     | 
    
         
            -
            import pyranges as pr
         
     | 
| 
       12 
     | 
    
         
            -
            from progress.bar import IncrementalBar
         
     | 
| 
       13 
     | 
    
         
            -
             
     | 
| 
       14 
     | 
    
         
            -
            from gsMap.utils.generate_r2_matrix import PlinkBEDFileWithR2Cache, getBlockLefts, ID_List_Factory
         
     | 
| 
       15 
     | 
    
         
            -
             
     | 
| 
       16 
     | 
    
         
            -
             
     | 
| 
       17 
     | 
    
         
            -
            logger = logging.getLogger(__name__)
         
     | 
| 
       18 
     | 
    
         
            -
            logger.setLevel(logging.DEBUG)
         
     | 
| 
       19 
     | 
    
         
            -
            handler = logging.StreamHandler()
         
     | 
| 
       20 
     | 
    
         
            -
            handler.setFormatter(logging.Formatter(
         
     | 
| 
       21 
     | 
    
         
            -
                '[{asctime}] {levelname:8s} {filename} {message}', style='{'))
         
     | 
| 
       22 
     | 
    
         
            -
            logger.addHandler(handler)
         
     | 
| 
       23 
     | 
    
         
            -
            from dataclasses import dataclass, field
         
     | 
| 
       24 
     | 
    
         
            -
            from typing import Optional
         
     | 
| 
       25 
     | 
    
         
            -
            try:
         
     | 
| 
       26 
     | 
    
         
            -
                import cupy as cp
         
     | 
| 
       27 
     | 
    
         
            -
                pool = cp.cuda.MemoryPool(cp.cuda.malloc_async)
         
     | 
| 
       28 
     | 
    
         
            -
                cp.cuda.set_allocator(pool.malloc)
         
     | 
| 
       29 
     | 
    
         
            -
            except ImportError:
         
     | 
| 
       30 
     | 
    
         
            -
                logger.warning('Cupy not found, will not use GPU to compute LD score')
         
     | 
| 
       31 
     | 
    
         
            -
                cp = None
         
     | 
| 
       32 
     | 
    
         
            -
            @dataclass
         
     | 
| 
       33 
     | 
    
         
            -
            class MakeAnnotationConfig:
         
     | 
| 
       34 
     | 
    
         
            -
                input_feather_file: str
         
     | 
| 
       35 
     | 
    
         
            -
                output_dir: str
         
     | 
| 
       36 
     | 
    
         
            -
                sample_name: str
         
     | 
| 
       37 
     | 
    
         
            -
                gtf_file: Optional[str] = None
         
     | 
| 
       38 
     | 
    
         
            -
                bfile_root: Optional[str] = None
         
     | 
| 
       39 
     | 
    
         
            -
                baseline_annotation: Optional[str] = None
         
     | 
| 
       40 
     | 
    
         
            -
                keep_snp_root: Optional[str] = None
         
     | 
| 
       41 
     | 
    
         
            -
                chr: Optional[int] = None
         
     | 
| 
       42 
     | 
    
         
            -
                window_size: int = 50000
         
     | 
| 
       43 
     | 
    
         
            -
                cells_per_chunk: int = 500
         
     | 
| 
       44 
     | 
    
         
            -
                ld_wind: float = 1.0
         
     | 
| 
       45 
     | 
    
         
            -
                ld_wind_unit: str = field(default='CM', metadata={'choices': ['CM', 'BP', 'SNP']})
         
     | 
| 
       46 
     | 
    
         
            -
                r2_cache_dir: Optional[str] = None
         
     | 
| 
       47 
     | 
    
         
            -
                use_gpu: bool = False
         
     | 
| 
       48 
     | 
    
         
            -
                snps_per_chunk: int = 50_000
         
     | 
| 
       49 
     | 
    
         
            -
             
     | 
| 
       50 
     | 
    
         
            -
                def __post_init__(self):
         
     | 
| 
       51 
     | 
    
         
            -
                    if self.ld_wind_unit not in self.__dataclass_fields__['ld_wind_unit'].metadata['choices']:
         
     | 
| 
       52 
     | 
    
         
            -
                        raise ValueError(f"Invalid ld_wind_unit: {self.ld_wind_unit}. Choose from 'CM', 'BP', or 'SNP'.")
         
     | 
| 
       53 
     | 
    
         
            -
             
     | 
| 
       54 
     | 
    
         
            -
             
     | 
| 
       55 
     | 
    
         
            -
            class Snp_Annotator:
         
     | 
| 
       56 
     | 
    
         
            -
                """
         
     | 
| 
       57 
     | 
    
         
            -
                1. Annotate SNPs based on score of genes.
         
     | 
| 
       58 
     | 
    
         
            -
                2. Add baseline annotations.
         
     | 
| 
       59 
     | 
    
         
            -
                """
         
     | 
| 
       60 
     | 
    
         
            -
             
     | 
| 
       61 
     | 
    
         
            -
                def __init__(self, mk_score_file, gtf_file, bfile_root, annot_root, annot_name, chr=None, base_root=None,
         
     | 
| 
       62 
     | 
    
         
            -
                             window_size=50000, const_max_size=100):
         
     | 
| 
       63 
     | 
    
         
            -
                    #
         
     | 
| 
       64 
     | 
    
         
            -
                    # marker score
         
     | 
| 
       65 
     | 
    
         
            -
                    self.mk_score_file = mk_score_file
         
     | 
| 
       66 
     | 
    
         
            -
                    self.mk_score = self.load_marker_score()
         
     | 
| 
       67 
     | 
    
         
            -
                    #
         
     | 
| 
       68 
     | 
    
         
            -
                    # chunk cells
         
     | 
| 
       69 
     | 
    
         
            -
                    # self.const_max_size = const_max_size
         
     | 
| 
       70 
     | 
    
         
            -
                    self.n_cells = len(self.mk_score.columns)
         
     | 
| 
       71 
     | 
    
         
            -
                    self.max_chunk = const_max_size
         
     | 
| 
       72 
     | 
    
         
            -
                    # self.max_chunk = floor(self.n_cells / self.const_max_size)
         
     | 
| 
       73 
     | 
    
         
            -
                    #
         
     | 
| 
       74 
     | 
    
         
            -
                    # gtf data
         
     | 
| 
       75 
     | 
    
         
            -
                    self.gtf_file = gtf_file
         
     | 
| 
       76 
     | 
    
         
            -
                    self.window_size = window_size
         
     | 
| 
       77 
     | 
    
         
            -
                    self.gtf_pr = self.load_gtf(mk_score=self.mk_score)
         
     | 
| 
       78 
     | 
    
         
            -
                    #
         
     | 
| 
       79 
     | 
    
         
            -
                    self.bfile_root = bfile_root
         
     | 
| 
       80 
     | 
    
         
            -
                    self.annot_root = annot_root
         
     | 
| 
       81 
     | 
    
         
            -
                    self.base_root = base_root
         
     | 
| 
       82 
     | 
    
         
            -
                    self.chr = chr
         
     | 
| 
       83 
     | 
    
         
            -
             
     | 
| 
       84 
     | 
    
         
            -
                    self.data_name = annot_name
         
     | 
| 
       85 
     | 
    
         
            -
             
     | 
| 
       86 
     | 
    
         
            -
                #
         
     | 
| 
       87 
     | 
    
         
            -
                def load_marker_score(self):
         
     | 
| 
       88 
     | 
    
         
            -
                    """
         
     | 
| 
       89 
     | 
    
         
            -
                    Load marker scores of each cell.
         
     | 
| 
       90 
     | 
    
         
            -
                    """
         
     | 
| 
       91 
     | 
    
         
            -
                    mk_score = pd.read_feather(self.mk_score_file).set_index('HUMAN_GENE_SYM').rename_axis('gene_name')
         
     | 
| 
       92 
     | 
    
         
            -
                    mk_score.insert(0, 'all_gene', 1)
         
     | 
| 
       93 
     | 
    
         
            -
                    return mk_score
         
     | 
| 
       94 
     | 
    
         
            -
             
     | 
| 
       95 
     | 
    
         
            -
                #
         
     | 
| 
       96 
     | 
    
         
            -
                def load_gtf(self, mk_score):
         
     | 
| 
       97 
     | 
    
         
            -
                    """
         
     | 
| 
       98 
     | 
    
         
            -
                    Load the gene annotation file (gtf).
         
     | 
| 
       99 
     | 
    
         
            -
                    """
         
     | 
| 
       100 
     | 
    
         
            -
                    print("Loading gtf data")
         
     | 
| 
       101 
     | 
    
         
            -
                    #
         
     | 
| 
       102 
     | 
    
         
            -
                    # Load GTF file
         
     | 
| 
       103 
     | 
    
         
            -
                    gtf = pr.read_gtf(self.gtf_file)
         
     | 
| 
       104 
     | 
    
         
            -
                    gtf = gtf.df
         
     | 
| 
       105 
     | 
    
         
            -
                    #
         
     | 
| 
       106 
     | 
    
         
            -
                    # Select the common genes
         
     | 
| 
       107 
     | 
    
         
            -
                    gtf = gtf[gtf['Feature'] == 'gene']
         
     | 
| 
       108 
     | 
    
         
            -
                    common_gene = np.intersect1d(mk_score.index, gtf.gene_name)
         
     | 
| 
       109 
     | 
    
         
            -
                    #
         
     | 
| 
       110 
     | 
    
         
            -
                    gtf = gtf[gtf.gene_name.isin(common_gene)]
         
     | 
| 
       111 
     | 
    
         
            -
                    mk_score = mk_score[mk_score.index.isin(common_gene)]
         
     | 
| 
       112 
     | 
    
         
            -
                    #
         
     | 
| 
       113 
     | 
    
         
            -
                    # Remove duplicated lines
         
     | 
| 
       114 
     | 
    
         
            -
                    gtf = gtf.drop_duplicates(subset='gene_name', keep="first")
         
     | 
| 
       115 
     | 
    
         
            -
                    #
         
     | 
| 
       116 
     | 
    
         
            -
                    # Process the GTF (open 100-KB window: Tss - Ted)
         
     | 
| 
       117 
     | 
    
         
            -
                    gtf_bed = gtf[['Chromosome', 'Start', 'End', 'gene_name', 'Strand']].copy()
         
     | 
| 
       118 
     | 
    
         
            -
                    gtf_bed.loc[:, 'TSS'] = gtf_bed['Start']
         
     | 
| 
       119 
     | 
    
         
            -
                    gtf_bed.loc[:, 'TED'] = gtf_bed['End']
         
     | 
| 
       120 
     | 
    
         
            -
             
     | 
| 
       121 
     | 
    
         
            -
                    gtf_bed.loc[:, 'Start'] = gtf_bed['TSS'] - self.window_size
         
     | 
| 
       122 
     | 
    
         
            -
                    gtf_bed.loc[:, 'End'] = gtf_bed['TED'] + self.window_size
         
     | 
| 
       123 
     | 
    
         
            -
                    gtf_bed.loc[gtf_bed['Start'] < 0, 'Start'] = 0
         
     | 
| 
       124 
     | 
    
         
            -
                    #
         
     | 
| 
       125 
     | 
    
         
            -
                    # Correct the negative strand
         
     | 
| 
       126 
     | 
    
         
            -
                    tss_neg = gtf_bed.loc[gtf_bed['Strand'] == '-', 'TSS']
         
     | 
| 
       127 
     | 
    
         
            -
                    ted_neg = gtf_bed.loc[gtf_bed['Strand'] == '-', 'TED']
         
     | 
| 
       128 
     | 
    
         
            -
                    gtf_bed.loc[gtf_bed['Strand'] == '-', 'TSS'] = ted_neg
         
     | 
| 
       129 
     | 
    
         
            -
                    gtf_bed.loc[gtf_bed['Strand'] == '-', 'TED'] = tss_neg
         
     | 
| 
       130 
     | 
    
         
            -
                    gtf_bed = gtf_bed.drop('Strand', axis=1)
         
     | 
| 
       131 
     | 
    
         
            -
                    #
         
     | 
| 
       132 
     | 
    
         
            -
                    # Transform the GTF to PyRanges
         
     | 
| 
       133 
     | 
    
         
            -
                    gtf_pr = pr.PyRanges(gtf_bed)
         
     | 
| 
       134 
     | 
    
         
            -
                    return gtf_pr
         
     | 
| 
       135 
     | 
    
         
            -
             
     | 
| 
       136 
     | 
    
         
            -
                #
         
     | 
| 
       137 
     | 
    
         
            -
                def load_baseline(self, chr):
         
     | 
| 
       138 
     | 
    
         
            -
                    """
         
     | 
| 
       139 
     | 
    
         
            -
                    Load baseline annotations.
         
     | 
| 
       140 
     | 
    
         
            -
                    """
         
     | 
| 
       141 
     | 
    
         
            -
                    baseline = pd.read_csv(f'{self.base_root}.{chr}.annot.gz', sep='\t')
         
     | 
| 
       142 
     | 
    
         
            -
                    baseline.drop(['CHR', 'BP', 'CM'], axis=1, inplace=True)
         
     | 
| 
       143 
     | 
    
         
            -
                    return baseline
         
     | 
| 
       144 
     | 
    
         
            -
             
     | 
| 
       145 
     | 
    
         
            -
                # -
         
     | 
| 
       146 
     | 
    
         
            -
                def Load_bim(self, chr):
         
     | 
| 
       147 
     | 
    
         
            -
                    """
         
     | 
| 
       148 
     | 
    
         
            -
                    Load bim files.
         
     | 
| 
       149 
     | 
    
         
            -
                    """
         
     | 
| 
       150 
     | 
    
         
            -
                    bim_file = f'{self.bfile_root}.{chr}.bim'
         
     | 
| 
       151 
     | 
    
         
            -
                    bim = pd.read_csv(bim_file, sep='\t', header=None)
         
     | 
| 
       152 
     | 
    
         
            -
                    bim.columns = ["CHR", "SNP", "CM", "BP", "A1", "A2"]
         
     | 
| 
       153 
     | 
    
         
            -
                    #
         
     | 
| 
       154 
     | 
    
         
            -
                    # Transform bim to PyRanges
         
     | 
| 
       155 
     | 
    
         
            -
                    bim_pr = bim.copy()
         
     | 
| 
       156 
     | 
    
         
            -
                    bim_pr.columns = ["Chromosome", "SNP", "CM", "Start", "A1", "A2"]
         
     | 
| 
       157 
     | 
    
         
            -
                    bim_pr['End'] = bim_pr['Start']
         
     | 
| 
       158 
     | 
    
         
            -
                    bim_pr = pr.PyRanges(bim_pr)
         
     | 
| 
       159 
     | 
    
         
            -
                    bim_pr.Chromosome = f'chr{chr}'
         
     | 
| 
       160 
     | 
    
         
            -
                    return bim_pr, bim
         
     | 
| 
       161 
     | 
    
         
            -
             
     | 
| 
       162 
     | 
    
         
            -
                # -
         
     | 
| 
       163 
     | 
    
         
            -
                def Overlaps_gtf_bim(self, bim_pr):
         
     | 
| 
       164 
     | 
    
         
            -
                    """
         
     | 
| 
       165 
     | 
    
         
            -
                    Find overlaps between gtf and bim file.
         
     | 
| 
       166 
     | 
    
         
            -
                    """
         
     | 
| 
       167 
     | 
    
         
            -
                    # Select the overlapped regions (SNPs in gene windows)
         
     | 
| 
       168 
     | 
    
         
            -
                    overlaps = self.gtf_pr.join(bim_pr)
         
     | 
| 
       169 
     | 
    
         
            -
                    overlaps = overlaps.df
         
     | 
| 
       170 
     | 
    
         
            -
                    overlaps['Distance'] = np.abs(overlaps['Start_b'] - overlaps['TSS'])
         
     | 
| 
       171 
     | 
    
         
            -
                    overlaps_small = overlaps.copy()
         
     | 
| 
       172 
     | 
    
         
            -
                    overlaps_small = overlaps_small.loc[overlaps_small.groupby('SNP').Distance.idxmin()]
         
     | 
| 
       173 
     | 
    
         
            -
                    return overlaps_small
         
     | 
| 
       174 
     | 
    
         
            -
             
     | 
| 
       175 
     | 
    
         
            -
                # -
         
     | 
| 
       176 
     | 
    
         
            -
                def map_baseline(self, snp_score, baseline, chr):
         
     | 
| 
       177 
     | 
    
         
            -
                    """
         
     | 
| 
       178 
     | 
    
         
            -
                    Generate the baseline annotations for SNPs.
         
     | 
| 
       179 
     | 
    
         
            -
                    """
         
     | 
| 
       180 
     | 
    
         
            -
             
     | 
| 
       181 
     | 
    
         
            -
                    header = snp_score.columns[0:6].to_list()
         
     | 
| 
       182 
     | 
    
         
            -
             
     | 
| 
       183 
     | 
    
         
            -
                    if baseline is None:
         
     | 
| 
       184 
     | 
    
         
            -
                        print(f'Baseline annotations of chr{chr} are not provided, using uniform annotations for genes and SNPs')
         
     | 
| 
       185 
     | 
    
         
            -
                        baseline_score = snp_score[header + ['all_gene']].copy()
         
     | 
| 
       186 
     | 
    
         
            -
                        baseline_score.loc[:, 'base'] = 1
         
     | 
| 
       187 
     | 
    
         
            -
             
     | 
| 
       188 
     | 
    
         
            -
                    else:
         
     | 
| 
       189 
     | 
    
         
            -
                        print(f'Mapping baseline annotations of chr{chr}')
         
     | 
| 
       190 
     | 
    
         
            -
                        snp_score_baseline = pd.merge(snp_score, baseline, how='left', on='SNP').fillna(0).copy()
         
     | 
| 
       191 
     | 
    
         
            -
             
     | 
| 
       192 
     | 
    
         
            -
                        baseline_score = snp_score_baseline[header + ['all_gene'] + baseline.columns.to_list()]
         
     | 
| 
       193 
     | 
    
         
            -
                        baseline_score = baseline_score.loc[:, ~baseline_score.columns.duplicated()].copy()
         
     | 
| 
       194 
     | 
    
         
            -
             
     | 
| 
       195 
     | 
    
         
            -
                    # Create the folder (for baseline annotation)
         
     | 
| 
       196 
     | 
    
         
            -
                    file_base_root = f'{self.annot_root}/baseline'
         
     | 
| 
       197 
     | 
    
         
            -
                    if not os.path.exists(file_base_root):
         
     | 
| 
       198 
     | 
    
         
            -
                        os.makedirs(file_base_root, mode=0o777, exist_ok=True)
         
     | 
| 
       199 
     | 
    
         
            -
             
     | 
| 
       200 
     | 
    
         
            -
                        # Save baseline annotations (in parquet format)
         
     | 
| 
       201 
     | 
    
         
            -
                    file_base = f'{file_base_root}/baseline.{chr}.feather'
         
     | 
| 
       202 
     | 
    
         
            -
                    baseline_score.to_feather(file_base)
         
     | 
| 
       203 
     | 
    
         
            -
             
     | 
| 
       204 
     | 
    
         
            -
                    return 0
         
     | 
| 
       205 
     | 
    
         
            -
             
     | 
| 
       206 
     | 
    
         
            -
                # -
         
     | 
| 
       207 
     | 
    
         
            -
                def annotate_chr(self, chr):
         
     | 
| 
       208 
     | 
    
         
            -
                    """
         
     | 
| 
       209 
     | 
    
         
            -
                    Annotate SNPs of each chr.
         
     | 
| 
       210 
     | 
    
         
            -
                    """
         
     | 
| 
       211 
     | 
    
         
            -
                    # Load the baseline file
         
     | 
| 
       212 
     | 
    
         
            -
                    baseline = None
         
     | 
| 
       213 
     | 
    
         
            -
                    if self.base_root is not None:
         
     | 
| 
       214 
     | 
    
         
            -
                        baseline = self.load_baseline(chr)
         
     | 
| 
       215 
     | 
    
         
            -
             
     | 
| 
       216 
     | 
    
         
            -
                    # Load the bim file
         
     | 
| 
       217 
     | 
    
         
            -
                    bim_pr, bim = self.Load_bim(chr)
         
     | 
| 
       218 
     | 
    
         
            -
             
     | 
| 
       219 
     | 
    
         
            -
                    # Find overlapping
         
     | 
| 
       220 
     | 
    
         
            -
                    overlaps_small = self.Overlaps_gtf_bim(bim_pr)
         
     | 
| 
       221 
     | 
    
         
            -
             
     | 
| 
       222 
     | 
    
         
            -
                    # Do annotations
         
     | 
| 
       223 
     | 
    
         
            -
                    all_chunks = int(np.ceil(self.n_cells / self.max_chunk))
         
     | 
| 
       224 
     | 
    
         
            -
                    bar = IncrementalBar(f'Mapping the gene marker scores to SNPs in chr{chr}', max=all_chunks)
         
     | 
| 
       225 
     | 
    
         
            -
                    bar.check_tty = False
         
     | 
| 
       226 
     | 
    
         
            -
             
     | 
| 
       227 
     | 
    
         
            -
                    # Preprocess bim outside the loop as it doesn't change
         
     | 
| 
       228 
     | 
    
         
            -
                    anno_template = bim[["CHR", "BP", "SNP", "CM"]]
         
     | 
| 
       229 
     | 
    
         
            -
             
     | 
| 
       230 
     | 
    
         
            -
                    for chunk_index, left in enumerate(range(0, self.n_cells, self.max_chunk), start=1):
         
     | 
| 
       231 
     | 
    
         
            -
                        right = min(left + self.max_chunk, self.n_cells)
         
     | 
| 
       232 
     | 
    
         
            -
                        mk_score_current = self.mk_score.iloc[:, left:right]
         
     | 
| 
       233 
     | 
    
         
            -
             
     | 
| 
       234 
     | 
    
         
            -
                        # Process marker scores for SNPs
         
     | 
| 
       235 
     | 
    
         
            -
                        anno = anno_template.copy()
         
     | 
| 
       236 
     | 
    
         
            -
                        merged_data = overlaps_small[['SNP', 'gene_name', 'TSS']].merge(mk_score_current, on='gene_name',
         
     | 
| 
       237 
     | 
    
         
            -
                                                                                        how='left')
         
     | 
| 
       238 
     | 
    
         
            -
                        snp_score = pd.merge(anno, merged_data, how='left', on='SNP').fillna(0)
         
     | 
| 
       239 
     | 
    
         
            -
                        snp_score = snp_score.rename(columns={'gene_name': 'Gene'})
         
     | 
| 
       240 
     | 
    
         
            -
                        snp_score.loc[snp_score.Gene == 0, 'Gene'] = 'None'
         
     | 
| 
       241 
     | 
    
         
            -
             
     | 
| 
       242 
     | 
    
         
            -
                        # Process baseline annotations for the first chunk
         
     | 
| 
       243 
     | 
    
         
            -
                        if chunk_index == 1:
         
     | 
| 
       244 
     | 
    
         
            -
                            self.map_baseline(snp_score, baseline, chr)
         
     | 
| 
       245 
     | 
    
         
            -
                            snp_score = snp_score.drop('all_gene', axis=1)
         
     | 
| 
       246 
     | 
    
         
            -
             
     | 
| 
       247 
     | 
    
         
            -
                        # Create the folder and save SNP annotations
         
     | 
| 
       248 
     | 
    
         
            -
                        file_root = f'{self.annot_root}/{self.data_name}_chunk{chunk_index}'
         
     | 
| 
       249 
     | 
    
         
            -
                        os.makedirs(file_root, mode=0o777, exist_ok=True)
         
     | 
| 
       250 
     | 
    
         
            -
                        file_anno = f'{file_root}/{self.data_name}.{chr}.feather'
         
     | 
| 
       251 
     | 
    
         
            -
                        snp_score.to_feather(file_anno)
         
     | 
| 
       252 
     | 
    
         
            -
             
     | 
| 
       253 
     | 
    
         
            -
                        bar.next()
         
     | 
| 
       254 
     | 
    
         
            -
             
     | 
| 
       255 
     | 
    
         
            -
                    bar.finish()
         
     | 
| 
       256 
     | 
    
         
            -
             
     | 
| 
       257 
     | 
    
         
            -
                    return all_chunks
         
     | 
| 
       258 
     | 
    
         
            -
             
     | 
| 
       259 
     | 
    
         
            -
                #
         
     | 
| 
       260 
     | 
    
         
            -
                def annotate(self):
         
     | 
| 
       261 
     | 
    
         
            -
                    """
         
     | 
| 
       262 
     | 
    
         
            -
                    Perform SNP annotations for each chromosome.
         
     | 
| 
       263 
     | 
    
         
            -
                    """
         
     | 
| 
       264 
     | 
    
         
            -
                    if self.chr == None:
         
     | 
| 
       265 
     | 
    
         
            -
                        for chr in range(1, 23):
         
     | 
| 
       266 
     | 
    
         
            -
                            const_max_size = self.annotate_chr(chr=chr)
         
     | 
| 
       267 
     | 
    
         
            -
                    else:
         
     | 
| 
       268 
     | 
    
         
            -
                        const_max_size = self.annotate_chr(chr=self.chr)
         
     | 
| 
       269 
     | 
    
         
            -
             
     | 
| 
       270 
     | 
    
         
            -
                    return const_max_size
         
     | 
| 
       271 
     | 
    
         
            -
             
     | 
| 
       272 
     | 
    
         
            -
             
     | 
| 
       273 
     | 
    
         
            -
            class LDscore_Generator:
         
     | 
| 
       274 
     | 
    
         
            -
                def __init__(self, make_annotation_config: MakeAnnotationConfig, const_max_size):
         
     | 
| 
       275 
     | 
    
         
            -
                    self.bfile_root = make_annotation_config.bfile_root
         
     | 
| 
       276 
     | 
    
         
            -
                    self.annot_root = Path(make_annotation_config.output_dir)
         
     | 
| 
       277 
     | 
    
         
            -
                    self.const_max_size = const_max_size
         
     | 
| 
       278 
     | 
    
         
            -
                    self.data_name = make_annotation_config.sample_name
         
     | 
| 
       279 
     | 
    
         
            -
                    self.chr = make_annotation_config.chr
         
     | 
| 
       280 
     | 
    
         
            -
                    self.ld_wind = make_annotation_config.ld_wind
         
     | 
| 
       281 
     | 
    
         
            -
                    self.ld_wind_unit = make_annotation_config.ld_wind_unit
         
     | 
| 
       282 
     | 
    
         
            -
                    self.keep_snp = make_annotation_config.keep_snp_root
         
     | 
| 
       283 
     | 
    
         
            -
                    self.r2_cache_dir = make_annotation_config.r2_cache_dir
         
     | 
| 
       284 
     | 
    
         
            -
                    self.use_gpu = make_annotation_config.use_gpu
         
     | 
| 
       285 
     | 
    
         
            -
                    self.config = make_annotation_config
         
     | 
| 
       286 
     | 
    
         
            -
                    self.generate_r2_cache = False
         
     | 
| 
       287 
     | 
    
         
            -
             
     | 
| 
       288 
     | 
    
         
            -
                    # Set the r2 cache
         
     | 
| 
       289 
     | 
    
         
            -
                    if self.r2_cache_dir is None:
         
     | 
| 
       290 
     | 
    
         
            -
                        logger.info('No r2 cache directory specified, will not use r2 cache')
         
     | 
| 
       291 
     | 
    
         
            -
                        self.chr_r2_cache_dir = None
         
     | 
| 
       292 
     | 
    
         
            -
                    else:
         
     | 
| 
       293 
     | 
    
         
            -
                        assert self.chr is not None, 'Must specify chr when using r2 cache'
         
     | 
| 
       294 
     | 
    
         
            -
                        chr_r2_cache_dir = os.path.join(self.r2_cache_dir, f'chr{self.chr}')
         
     | 
| 
       295 
     | 
    
         
            -
                        self.chr_r2_cache_dir = chr_r2_cache_dir
         
     | 
| 
       296 
     | 
    
         
            -
                        if not os.path.exists(os.path.join(chr_r2_cache_dir, 'combined_r2_matrix.npz')):
         
     | 
| 
       297 
     | 
    
         
            -
                            logger.warning(
         
     | 
| 
       298 
     | 
    
         
            -
                                f'No r2 cache found for chr{self.chr}, will generate r2 cache for this chromosome, first time may take a while')
         
     | 
| 
       299 
     | 
    
         
            -
                            os.makedirs(chr_r2_cache_dir, exist_ok=True, mode=0o777, )
         
     | 
| 
       300 
     | 
    
         
            -
                            self.generate_r2_cache = True
         
     | 
| 
       301 
     | 
    
         
            -
                        else:
         
     | 
| 
       302 
     | 
    
         
            -
                            logger.info(f'Found r2 cache for chr{self.chr}, will use r2 cache for this chromosome')
         
     | 
| 
       303 
     | 
    
         
            -
             
     | 
| 
       304 
     | 
    
         
            -
                def compute_ldscore(self):
         
     | 
| 
       305 
     | 
    
         
            -
                    """
         
     | 
| 
       306 
     | 
    
         
            -
                    Compute LD scores.
         
     | 
| 
       307 
     | 
    
         
            -
                    """
         
     | 
| 
       308 
     | 
    
         
            -
                    start_time = time.time()
         
     | 
| 
       309 
     | 
    
         
            -
                    if self.chr == None:
         
     | 
| 
       310 
     | 
    
         
            -
                        for chr in range(1, 23):
         
     | 
| 
       311 
     | 
    
         
            -
                            logger.info(f'Computing LD scores for chr{chr}')
         
     | 
| 
       312 
     | 
    
         
            -
                            self.compute_ldscore_chr(chr=chr)
         
     | 
| 
       313 
     | 
    
         
            -
                            logger.info(f'Finished computing LD scores for chr{chr}')
         
     | 
| 
       314 
     | 
    
         
            -
                    else:
         
     | 
| 
       315 
     | 
    
         
            -
                        logger.info(f'Computing LD scores for chr{self.chr}')
         
     | 
| 
       316 
     | 
    
         
            -
                        self.compute_ldscore_chr(chr=self.chr)
         
     | 
| 
       317 
     | 
    
         
            -
                        logger.info(f'Finished computing LD scores for chr{self.chr}')
         
     | 
| 
       318 
     | 
    
         
            -
                    end_time = time.time()
         
     | 
| 
       319 
     | 
    
         
            -
                    logger.info(f'Finished computing LD scores, time elapsed: {(end_time - start_time) / 60} minutes')
         
     | 
| 
       320 
     | 
    
         
            -
             
     | 
| 
       321 
     | 
    
         
            -
                def compute_ldscore_chunk(self, annot_file, ld_score_file, M_file, M_5_file, geno_array: PlinkBEDFileWithR2Cache,
         
     | 
| 
       322 
     | 
    
         
            -
                                          block_left, snp):
         
     | 
| 
       323 
     | 
    
         
            -
                    """
         
     | 
| 
       324 
     | 
    
         
            -
                    Compute and save LD scores for each chunk
         
     | 
| 
       325 
     | 
    
         
            -
                    :param annot_file: Path to the annotation file
         
     | 
| 
       326 
     | 
    
         
            -
                    :param ld_score_file: Path to the LD score file
         
     | 
| 
       327 
     | 
    
         
            -
                    :param M_file: Path to the M file
         
     | 
| 
       328 
     | 
    
         
            -
                    :param M_5_file: Path to the M_5_50 file
         
     | 
| 
       329 
     | 
    
         
            -
                    :param geno_array: Genotype array
         
     | 
| 
       330 
     | 
    
         
            -
                    :param block_left: Block left
         
     | 
| 
       331 
     | 
    
         
            -
                    :param snp: SNP to be kept
         
     | 
| 
       332 
     | 
    
         
            -
                    :return: None
         
     | 
| 
       333 
     | 
    
         
            -
                    """
         
     | 
| 
       334 
     | 
    
         
            -
                    annot_df = pd.read_feather(annot_file)
         
     | 
| 
       335 
     | 
    
         
            -
                    n_annot, ma = len(annot_df.columns) - 6, len(annot_df)
         
     | 
| 
       336 
     | 
    
         
            -
             
     | 
| 
       337 
     | 
    
         
            -
                    # print("Read {A} annotations for {M} SNPs from {f}".format(f=annot_file, A=n_annot, M=ma))
         
     | 
| 
       338 
     | 
    
         
            -
                    annot_matrix = np.array(annot_df.iloc[:, 6:])
         
     | 
| 
       339 
     | 
    
         
            -
                    annot_colnames = annot_df.columns[6:]
         
     | 
| 
       340 
     | 
    
         
            -
             
     | 
| 
       341 
     | 
    
         
            -
                    # Reset the SNP point
         
     | 
| 
       342 
     | 
    
         
            -
                    geno_array.__restart__()
         
     | 
| 
       343 
     | 
    
         
            -
             
     | 
| 
       344 
     | 
    
         
            -
                    # Compute annotated LD score
         
     | 
| 
       345 
     | 
    
         
            -
                    if self.chr_r2_cache_dir is None:
         
     | 
| 
       346 
     | 
    
         
            -
                        lN_df = pd.DataFrame(geno_array.ldScoreVarBlocks(block_left, 50, annot=annot_matrix))
         
     | 
| 
       347 
     | 
    
         
            -
                    else:
         
     | 
| 
       348 
     | 
    
         
            -
                        lN_df = pd.DataFrame(self.get_ldscore_use_cache(annot_matrix))
         
     | 
| 
       349 
     | 
    
         
            -
             
     | 
| 
       350 
     | 
    
         
            -
                    ldscore = pd.concat([annot_df.iloc[:, 0:6], lN_df], axis=1)
         
     | 
| 
       351 
     | 
    
         
            -
                    ldscore.columns = annot_df.columns
         
     | 
| 
       352 
     | 
    
         
            -
             
     | 
| 
       353 
     | 
    
         
            -
                    # Keep the targeted SNPs
         
     | 
| 
       354 
     | 
    
         
            -
                    if not snp is None:
         
     | 
| 
       355 
     | 
    
         
            -
                        ldscore = ldscore.loc[ldscore.SNP.isin(snp)]
         
     | 
| 
       356 
     | 
    
         
            -
             
     | 
| 
       357 
     | 
    
         
            -
                    # Save the LD score annotations
         
     | 
| 
       358 
     | 
    
         
            -
                    ldscore = ldscore.reset_index()
         
     | 
| 
       359 
     | 
    
         
            -
                    ldscore.drop(columns=['index'], inplace=True)
         
     | 
| 
       360 
     | 
    
         
            -
                    ldscore.to_feather(ld_score_file)
         
     | 
| 
       361 
     | 
    
         
            -
             
     | 
| 
       362 
     | 
    
         
            -
                    # Compute the .M (.M_5_50) file
         
     | 
| 
       363 
     | 
    
         
            -
                    M = np.atleast_1d(np.squeeze(np.asarray(np.sum(annot_matrix, axis=0))))
         
     | 
| 
       364 
     | 
    
         
            -
                    ii = geno_array.maf > 0.05
         
     | 
| 
       365 
     | 
    
         
            -
                    M_5_50 = np.atleast_1d(np.squeeze(np.asarray(np.sum(annot_matrix[ii, :], axis=0))))
         
     | 
| 
       366 
     | 
    
         
            -
             
     | 
| 
       367 
     | 
    
         
            -
                    # Save the sum of score annotations (all and maf > 0.05)
         
     | 
| 
       368 
     | 
    
         
            -
                    np.savetxt(M_file, M, delimiter='\t')
         
     | 
| 
       369 
     | 
    
         
            -
                    np.savetxt(M_5_file, M_5_50, delimiter='\t')
         
     | 
| 
       370 
     | 
    
         
            -
             
     | 
| 
       371 
     | 
    
         
            -
                def get_ldscore_use_cache(self, annot_matrix, ):
         
     | 
| 
       372 
     | 
    
         
            -
                    if self.use_gpu:
         
     | 
| 
       373 
     | 
    
         
            -
                        logger.debug('Using GPU to compute LD score')
         
     | 
| 
       374 
     | 
    
         
            -
                        annot_matrix = cp.asarray(annot_matrix, dtype=cp.float32)
         
     | 
| 
       375 
     | 
    
         
            -
                        for i, r2_matrix_chunk in enumerate(self.r2_matrix_chunk_list):
         
     | 
| 
       376 
     | 
    
         
            -
                            r2_matrix_chunk = cp.sparse.csr_matrix(r2_matrix_chunk, dtype=cp.float32)
         
     | 
| 
       377 
     | 
    
         
            -
                            lN_chunk = cp.asnumpy(r2_matrix_chunk @ annot_matrix)
         
     | 
| 
       378 
     | 
    
         
            -
                            # convert to float16
         
     | 
| 
       379 
     | 
    
         
            -
                            lN_chunk = lN_chunk.astype(np.float16)
         
     | 
| 
       380 
     | 
    
         
            -
                            if i == 0:
         
     | 
| 
       381 
     | 
    
         
            -
                                lN = lN_chunk
         
     | 
| 
       382 
     | 
    
         
            -
                            else:
         
     | 
| 
       383 
     | 
    
         
            -
                                lN = np.concatenate([lN, lN_chunk], axis=0)
         
     | 
| 
       384 
     | 
    
         
            -
                    else:
         
     | 
| 
       385 
     | 
    
         
            -
                        logger.debug('Using CPU to compute LD score')
         
     | 
| 
       386 
     | 
    
         
            -
                        for i, r2_matrix_chunk in enumerate(self.r2_matrix_chunk_list):
         
     | 
| 
       387 
     | 
    
         
            -
                            lN_chunk = r2_matrix_chunk @ annot_matrix
         
     | 
| 
       388 
     | 
    
         
            -
                            # convert to float16
         
     | 
| 
       389 
     | 
    
         
            -
                            lN_chunk = lN_chunk.astype(np.float16)
         
     | 
| 
       390 
     | 
    
         
            -
                            if i == 0:
         
     | 
| 
       391 
     | 
    
         
            -
                                lN = lN_chunk
         
     | 
| 
       392 
     | 
    
         
            -
                            else:
         
     | 
| 
       393 
     | 
    
         
            -
                                lN = np.concatenate([lN, lN_chunk], axis=0)
         
     | 
| 
       394 
     | 
    
         
            -
                    return lN
         
     | 
| 
       395 
     | 
    
         
            -
             
     | 
| 
       396 
     | 
    
         
            -
                def compute_ldscore_chr(self, chr):
         
     | 
| 
       397 
     | 
    
         
            -
                    PlinkBIMFile = ID_List_Factory(['CHR', 'SNP', 'CM', 'BP', 'A1', 'A2'], 1, '.bim', usecols=[0, 1, 2, 3, 4, 5])
         
     | 
| 
       398 
     | 
    
         
            -
                    PlinkFAMFile = ID_List_Factory(['IID'], 0, '.fam', usecols=[1])
         
     | 
| 
       399 
     | 
    
         
            -
             
     | 
| 
       400 
     | 
    
         
            -
                    bfile = f"{self.bfile_root}.{chr}"
         
     | 
| 
       401 
     | 
    
         
            -
                    #
         
     | 
| 
       402 
     | 
    
         
            -
                    # Load bim file
         
     | 
| 
       403 
     | 
    
         
            -
                    snp_file, snp_obj = bfile + '.bim', PlinkBIMFile
         
     | 
| 
       404 
     | 
    
         
            -
                    array_snps = snp_obj(snp_file)
         
     | 
| 
       405 
     | 
    
         
            -
                    m = len(array_snps.IDList)
         
     | 
| 
       406 
     | 
    
         
            -
                    print(f'Read list of {m} SNPs from {snp_file}')
         
     | 
| 
       407 
     | 
    
         
            -
                    #
         
     | 
| 
       408 
     | 
    
         
            -
                    # Load fam
         
     | 
| 
       409 
     | 
    
         
            -
                    ind_file, ind_obj = bfile + '.fam', PlinkFAMFile
         
     | 
| 
       410 
     | 
    
         
            -
                    array_indivs = ind_obj(ind_file)
         
     | 
| 
       411 
     | 
    
         
            -
                    n = len(array_indivs.IDList)
         
     | 
| 
       412 
     | 
    
         
            -
                    print(f'Read list of {n} individuals from {ind_file}')
         
     | 
| 
       413 
     | 
    
         
            -
                    #
         
     | 
| 
       414 
     | 
    
         
            -
                    # Load genotype array
         
     | 
| 
       415 
     | 
    
         
            -
                    array_file, array_obj = bfile + '.bed', PlinkBEDFileWithR2Cache
         
     | 
| 
       416 
     | 
    
         
            -
                    geno_array = array_obj(array_file, n, array_snps, keep_snps=None, keep_indivs=None, mafMin=None)
         
     | 
| 
       417 
     | 
    
         
            -
             
     | 
| 
       418 
     | 
    
         
            -
                    # Load the snp to be print
         
     | 
| 
       419 
     | 
    
         
            -
                    if not self.keep_snp is None:
         
     | 
| 
       420 
     | 
    
         
            -
                        snp = pd.read_csv(f'{self.keep_snp}.{chr}.snp', header=None)[0].to_list()
         
     | 
| 
       421 
     | 
    
         
            -
                        num_snp = len(snp)
         
     | 
| 
       422 
     | 
    
         
            -
                        print(f'Loading {num_snp} SNPs')
         
     | 
| 
       423 
     | 
    
         
            -
                    else:
         
     | 
| 
       424 
     | 
    
         
            -
                        snp = None
         
     | 
| 
       425 
     | 
    
         
            -
             
     | 
| 
       426 
     | 
    
         
            -
                    # Load the annotations of the baseline
         
     | 
| 
       427 
     | 
    
         
            -
                    if self.ld_wind_unit == 'SNP':
         
     | 
| 
       428 
     | 
    
         
            -
                        max_dist = self.ld_wind
         
     | 
| 
       429 
     | 
    
         
            -
                        coords = np.array(range(geno_array.m))
         
     | 
| 
       430 
     | 
    
         
            -
                    elif self.ld_wind_unit == 'BP':
         
     | 
| 
       431 
     | 
    
         
            -
                        max_dist = self.ld_wind * 1000
         
     | 
| 
       432 
     | 
    
         
            -
                        coords = np.array(array_snps.df['BP'])[geno_array.kept_snps]
         
     | 
| 
       433 
     | 
    
         
            -
                    elif self.ld_wind_unit == 'CM':
         
     | 
| 
       434 
     | 
    
         
            -
                        max_dist = self.ld_wind
         
     | 
| 
       435 
     | 
    
         
            -
                        coords = np.array(array_snps.df['CM'])[geno_array.kept_snps]
         
     | 
| 
       436 
     | 
    
         
            -
                    block_left = getBlockLefts(coords, max_dist)
         
     | 
| 
       437 
     | 
    
         
            -
                    if self.generate_r2_cache:
         
     | 
| 
       438 
     | 
    
         
            -
                        logger.info(f'Generating r2 cache for chr{chr}, this may take a while')
         
     | 
| 
       439 
     | 
    
         
            -
                        geno_array.compute_r2_cache(block_left,
         
     | 
| 
       440 
     | 
    
         
            -
                                                    Path(self.chr_r2_cache_dir))
         
     | 
| 
       441 
     | 
    
         
            -
                        logger.info(f'Finished generating r2 cache for chr{chr}')
         
     | 
| 
       442 
     | 
    
         
            -
                    if self.chr_r2_cache_dir is not None:
         
     | 
| 
       443 
     | 
    
         
            -
                        logger.info('Loading r2 cache')
         
     | 
| 
       444 
     | 
    
         
            -
                        r2_matrix = geno_array.load_combined_r2_matrix(cached_r2_matrix_dir=self.chr_r2_cache_dir)
         
     | 
| 
       445 
     | 
    
         
            -
                        self.r2_matrix_chunk_list = [r2_matrix[i:i + self.config.snps_per_chunk, :] for i in
         
     | 
| 
       446 
     | 
    
         
            -
                                                     range(0, r2_matrix.shape[0], self.config.snps_per_chunk)]
         
     | 
| 
       447 
     | 
    
         
            -
                        logger.info('Finished loading r2 cache')
         
     | 
| 
       448 
     | 
    
         
            -
                    # Set the baseline root
         
     | 
| 
       449 
     | 
    
         
            -
                    annot_file = f'{self.annot_root}/baseline/baseline.{chr}.feather'
         
     | 
| 
       450 
     | 
    
         
            -
                    ld_score_file = f'{self.annot_root}/baseline/baseline.{chr}.l2.ldscore.feather'
         
     | 
| 
       451 
     | 
    
         
            -
                    M_file = f'{self.annot_root}/baseline/baseline.{chr}.l2.M'
         
     | 
| 
       452 
     | 
    
         
            -
                    M_5_file = f'{self.annot_root}/baseline/baseline.{chr}.l2.M_5_50'
         
     | 
| 
       453 
     | 
    
         
            -
             
     | 
| 
       454 
     | 
    
         
            -
                    # Compute annotations of the baseline
         
     | 
| 
       455 
     | 
    
         
            -
                    print(f"Computing LD score for baseline annotations of chr{chr}")
         
     | 
| 
       456 
     | 
    
         
            -
                    self.compute_ldscore_chunk(annot_file, ld_score_file, M_file, M_5_file, geno_array, block_left, snp)
         
     | 
| 
       457 
     | 
    
         
            -
             
     | 
| 
       458 
     | 
    
         
            -
                    # Load annotations of chunks
         
     | 
| 
       459 
     | 
    
         
            -
                    bar = IncrementalBar(f"Computing LD scores for spatial data annotations of chr{chr}", max=self.const_max_size)
         
     | 
| 
       460 
     | 
    
         
            -
                    bar.check_tty = False
         
     | 
| 
       461 
     | 
    
         
            -
                    for chunk_index in range(1, self.const_max_size + 1):
         
     | 
| 
       462 
     | 
    
         
            -
                        # Set the file root
         
     | 
| 
       463 
     | 
    
         
            -
                        annot_file = f'{self.annot_root}/{self.data_name}_chunk{chunk_index}/{self.data_name}.{chr}.feather'
         
     | 
| 
       464 
     | 
    
         
            -
                        ld_score_file = f'{self.annot_root}/{self.data_name}_chunk{chunk_index}/{self.data_name}.{chr}.l2.ldscore.feather'
         
     | 
| 
       465 
     | 
    
         
            -
                        M_file = f'{self.annot_root}/{self.data_name}_chunk{chunk_index}/{self.data_name}.{chr}.l2.M'
         
     | 
| 
       466 
     | 
    
         
            -
                        M_5_file = f'{self.annot_root}/{self.data_name}_chunk{chunk_index}/{self.data_name}.{chr}.l2.M_5_50'
         
     | 
| 
       467 
     | 
    
         
            -
             
     | 
| 
       468 
     | 
    
         
            -
                        # Compute annotations of the current chunk
         
     | 
| 
       469 
     | 
    
         
            -
                        self.compute_ldscore_chunk(annot_file, ld_score_file, M_file, M_5_file, geno_array, block_left, snp)
         
     | 
| 
       470 
     | 
    
         
            -
             
     | 
| 
       471 
     | 
    
         
            -
                        bar.next()
         
     | 
| 
       472 
     | 
    
         
            -
             
     | 
| 
       473 
     | 
    
         
            -
                    bar.finish()
         
     | 
| 
       474 
     | 
    
         
            -
             
     | 
| 
       475 
     | 
    
         
            -
             
     | 
| 
       476 
     | 
    
         
            -
             
     | 
| 
       477 
     | 
    
         
            -
            def add_make_annotation_args(parser):
         
     | 
| 
       478 
     | 
    
         
            -
                parser.add_argument('--input_feather_file', required=True, type=str, help='Input feather file for marker genes score (output of gsMap latent_to_gene)')
         
     | 
| 
       479 
     | 
    
         
            -
                parser.add_argument('--output_dir', required=True, type=str, help='Output directory to save the SNP annotation files')
         
     | 
| 
       480 
     | 
    
         
            -
                parser.add_argument('--sample_name', type=str, help='Name of the sample', required=True)
         
     | 
| 
       481 
     | 
    
         
            -
                parser.add_argument('--gtf_annotation_file', default=None, type=str, help='Path to the GTF file', required=True)
         
     | 
| 
       482 
     | 
    
         
            -
                parser.add_argument('--bfile_root', default=None, type=str, help='Bfile root for LD score', required=True)
         
     | 
| 
       483 
     | 
    
         
            -
                parser.add_argument('--baseline_annotation', default=None, type=str, help='Baseline annotation')
         
     | 
| 
       484 
     | 
    
         
            -
                parser.add_argument('--keep_snp_root', default=None, type=str,
         
     | 
| 
       485 
     | 
    
         
            -
                                    help='Only keep these SNP file after calculating LD score')
         
     | 
| 
       486 
     | 
    
         
            -
                parser.add_argument('--chr', default=None, type=int, help='Chromosome ID', )
         
     | 
| 
       487 
     | 
    
         
            -
                parser.add_argument('--window_size', default=50000, type=int,
         
     | 
| 
       488 
     | 
    
         
            -
                                    help='Window size for SNP annotation')
         
     | 
| 
       489 
     | 
    
         
            -
                parser.add_argument('--cells_per_chunk', default=500, type=int,
         
     | 
| 
       490 
     | 
    
         
            -
                                    help='Chunk size for number of cells for batch processing')
         
     | 
| 
       491 
     | 
    
         
            -
                parser.add_argument('--ld_wind', default=1, type=float)
         
     | 
| 
       492 
     | 
    
         
            -
                parser.add_argument('--ld_wind_unit', default='CM', type=str, choices=['CM', 'BP', 'SNP'],
         
     | 
| 
       493 
     | 
    
         
            -
                                    help='LD window size unit')
         
     | 
| 
       494 
     | 
    
         
            -
                parser.add_argument('--r2_cache_dir', default=None, type=str, help='Directory for r2 cache')
         
     | 
| 
       495 
     | 
    
         
            -
                parser.add_argument('--use_gpu', action='store_true', help='Whether to use GPU to compute LD score')
         
     | 
| 
       496 
     | 
    
         
            -
                parser.add_argument('--snps_per_chunk', default=50_000, type=int,
         
     | 
| 
       497 
     | 
    
         
            -
                                    help='Chunk size for number of SNPs for batch processing')
         
     | 
| 
       498 
     | 
    
         
            -
             
     | 
| 
       499 
     | 
    
         
            -
             
     | 
| 
       500 
     | 
    
         
            -
            # Defin the Container for plink files
         
     | 
| 
       501 
     | 
    
         
            -
             
     | 
| 
       502 
     | 
    
         
            -
            def run_make_annotation(args: MakeAnnotationConfig):
         
     | 
| 
       503 
     | 
    
         
            -
             
     | 
| 
       504 
     | 
    
         
            -
                snp_annotate = Snp_Annotator(mk_score_file=args.input_feather_file,
         
     | 
| 
       505 
     | 
    
         
            -
                                             gtf_file=args.gtf_file,
         
     | 
| 
       506 
     | 
    
         
            -
                                             bfile_root=args.bfile_root,
         
     | 
| 
       507 
     | 
    
         
            -
                                             annot_root=Path(args.output_dir),
         
     | 
| 
       508 
     | 
    
         
            -
                                             annot_name=args.sample_name,
         
     | 
| 
       509 
     | 
    
         
            -
                                             chr=args.chr,
         
     | 
| 
       510 
     | 
    
         
            -
                                             base_root=args.baseline_annotation,
         
     | 
| 
       511 
     | 
    
         
            -
                                             window_size=args.window_size,
         
     | 
| 
       512 
     | 
    
         
            -
                                             const_max_size=args.cells_per_chunk
         
     | 
| 
       513 
     | 
    
         
            -
                                             )
         
     | 
| 
       514 
     | 
    
         
            -
                const_max_size = snp_annotate.annotate()
         
     | 
| 
       515 
     | 
    
         
            -
                ldscore_generate = LDscore_Generator(
         
     | 
| 
       516 
     | 
    
         
            -
                    args, const_max_size
         
     | 
| 
       517 
     | 
    
         
            -
                )
         
     | 
| 
       518 
     | 
    
         
            -
                ldscore_generate.compute_ldscore()
         
     | 
| 
      
 1 
     | 
    
         
            +
            import argparse
         
     | 
| 
      
 2 
     | 
    
         
            +
            import logging
         
     | 
| 
      
 3 
     | 
    
         
            +
            import os
         
     | 
| 
      
 4 
     | 
    
         
            +
            import pprint
         
     | 
| 
      
 5 
     | 
    
         
            +
            import time
         
     | 
| 
      
 6 
     | 
    
         
            +
            from pathlib import Path
         
     | 
| 
      
 7 
     | 
    
         
            +
             
     | 
| 
      
 8 
     | 
    
         
            +
             
     | 
| 
      
 9 
     | 
    
         
            +
            import numpy as np
         
     | 
| 
      
 10 
     | 
    
         
            +
            import pandas as pd
         
     | 
| 
      
 11 
     | 
    
         
            +
            import pyranges as pr
         
     | 
| 
      
 12 
     | 
    
         
            +
            from progress.bar import IncrementalBar
         
     | 
| 
      
 13 
     | 
    
         
            +
             
     | 
| 
      
 14 
     | 
    
         
            +
            from gsMap.utils.generate_r2_matrix import PlinkBEDFileWithR2Cache, getBlockLefts, ID_List_Factory
         
     | 
| 
      
 15 
     | 
    
         
            +
             
     | 
| 
      
 16 
     | 
    
         
            +
             
     | 
| 
      
 17 
     | 
    
         
            +
            logger = logging.getLogger(__name__)
         
     | 
| 
      
 18 
     | 
    
         
            +
            logger.setLevel(logging.DEBUG)
         
     | 
| 
      
 19 
     | 
    
         
            +
            handler = logging.StreamHandler()
         
     | 
| 
      
 20 
     | 
    
         
            +
            handler.setFormatter(logging.Formatter(
         
     | 
| 
      
 21 
     | 
    
         
            +
                '[{asctime}] {levelname:8s} {filename} {message}', style='{'))
         
     | 
| 
      
 22 
     | 
    
         
            +
            logger.addHandler(handler)
         
     | 
| 
      
 23 
     | 
    
         
            +
            from dataclasses import dataclass, field
         
     | 
| 
      
 24 
     | 
    
         
            +
            from typing import Optional
         
     | 
| 
      
 25 
     | 
    
         
            +
            try:
         
     | 
| 
      
 26 
     | 
    
         
            +
                import cupy as cp
         
     | 
| 
      
 27 
     | 
    
         
            +
                pool = cp.cuda.MemoryPool(cp.cuda.malloc_async)
         
     | 
| 
      
 28 
     | 
    
         
            +
                cp.cuda.set_allocator(pool.malloc)
         
     | 
| 
      
 29 
     | 
    
         
            +
            except ImportError:
         
     | 
| 
      
 30 
     | 
    
         
            +
                logger.warning('Cupy not found, will not use GPU to compute LD score')
         
     | 
| 
      
 31 
     | 
    
         
            +
                cp = None
         
     | 
| 
      
 32 
     | 
    
         
            +
            @dataclass
         
     | 
| 
      
 33 
     | 
    
         
            +
            class MakeAnnotationConfig:
         
     | 
| 
      
 34 
     | 
    
         
            +
                input_feather_file: str
         
     | 
| 
      
 35 
     | 
    
         
            +
                output_dir: str
         
     | 
| 
      
 36 
     | 
    
         
            +
                sample_name: str
         
     | 
| 
      
 37 
     | 
    
         
            +
                gtf_file: Optional[str] = None
         
     | 
| 
      
 38 
     | 
    
         
            +
                bfile_root: Optional[str] = None
         
     | 
| 
      
 39 
     | 
    
         
            +
                baseline_annotation: Optional[str] = None
         
     | 
| 
      
 40 
     | 
    
         
            +
                keep_snp_root: Optional[str] = None
         
     | 
| 
      
 41 
     | 
    
         
            +
                chr: Optional[int] = None
         
     | 
| 
      
 42 
     | 
    
         
            +
                window_size: int = 50000
         
     | 
| 
      
 43 
     | 
    
         
            +
                cells_per_chunk: int = 500
         
     | 
| 
      
 44 
     | 
    
         
            +
                ld_wind: float = 1.0
         
     | 
| 
      
 45 
     | 
    
         
            +
                ld_wind_unit: str = field(default='CM', metadata={'choices': ['CM', 'BP', 'SNP']})
         
     | 
| 
      
 46 
     | 
    
         
            +
                r2_cache_dir: Optional[str] = None
         
     | 
| 
      
 47 
     | 
    
         
            +
                use_gpu: bool = False
         
     | 
| 
      
 48 
     | 
    
         
            +
                snps_per_chunk: int = 50_000
         
     | 
| 
      
 49 
     | 
    
         
            +
             
     | 
| 
      
 50 
     | 
    
         
            +
                def __post_init__(self):
         
     | 
| 
      
 51 
     | 
    
         
            +
                    if self.ld_wind_unit not in self.__dataclass_fields__['ld_wind_unit'].metadata['choices']:
         
     | 
| 
      
 52 
     | 
    
         
            +
                        raise ValueError(f"Invalid ld_wind_unit: {self.ld_wind_unit}. Choose from 'CM', 'BP', or 'SNP'.")
         
     | 
| 
      
 53 
     | 
    
         
            +
             
     | 
| 
      
 54 
     | 
    
         
            +
             
     | 
| 
      
 55 
     | 
    
         
            +
            class Snp_Annotator:
         
     | 
| 
      
 56 
     | 
    
         
            +
                """
         
     | 
| 
      
 57 
     | 
    
         
            +
                1. Annotate SNPs based on score of genes.
         
     | 
| 
      
 58 
     | 
    
         
            +
                2. Add baseline annotations.
         
     | 
| 
      
 59 
     | 
    
         
            +
                """
         
     | 
| 
      
 60 
     | 
    
         
            +
             
     | 
| 
      
 61 
     | 
    
         
            +
                def __init__(self, mk_score_file, gtf_file, bfile_root, annot_root, annot_name, chr=None, base_root=None,
         
     | 
| 
      
 62 
     | 
    
         
            +
                             window_size=50000, const_max_size=100):
         
     | 
| 
      
 63 
     | 
    
         
            +
                    #
         
     | 
| 
      
 64 
     | 
    
         
            +
                    # marker score
         
     | 
| 
      
 65 
     | 
    
         
            +
                    self.mk_score_file = mk_score_file
         
     | 
| 
      
 66 
     | 
    
         
            +
                    self.mk_score = self.load_marker_score()
         
     | 
| 
      
 67 
     | 
    
         
            +
                    #
         
     | 
| 
      
 68 
     | 
    
         
            +
                    # chunk cells
         
     | 
| 
      
 69 
     | 
    
         
            +
                    # self.const_max_size = const_max_size
         
     | 
| 
      
 70 
     | 
    
         
            +
                    self.n_cells = len(self.mk_score.columns)
         
     | 
| 
      
 71 
     | 
    
         
            +
                    self.max_chunk = const_max_size
         
     | 
| 
      
 72 
     | 
    
         
            +
                    # self.max_chunk = floor(self.n_cells / self.const_max_size)
         
     | 
| 
      
 73 
     | 
    
         
            +
                    #
         
     | 
| 
      
 74 
     | 
    
         
            +
                    # gtf data
         
     | 
| 
      
 75 
     | 
    
         
            +
                    self.gtf_file = gtf_file
         
     | 
| 
      
 76 
     | 
    
         
            +
                    self.window_size = window_size
         
     | 
| 
      
 77 
     | 
    
         
            +
                    self.gtf_pr = self.load_gtf(mk_score=self.mk_score)
         
     | 
| 
      
 78 
     | 
    
         
            +
                    #
         
     | 
| 
      
 79 
     | 
    
         
            +
                    self.bfile_root = bfile_root
         
     | 
| 
      
 80 
     | 
    
         
            +
                    self.annot_root = annot_root
         
     | 
| 
      
 81 
     | 
    
         
            +
                    self.base_root = base_root
         
     | 
| 
      
 82 
     | 
    
         
            +
                    self.chr = chr
         
     | 
| 
      
 83 
     | 
    
         
            +
             
     | 
| 
      
 84 
     | 
    
         
            +
                    self.data_name = annot_name
         
     | 
| 
      
 85 
     | 
    
         
            +
             
     | 
| 
      
 86 
     | 
    
         
            +
                #
         
     | 
| 
      
 87 
     | 
    
         
            +
                def load_marker_score(self):
         
     | 
| 
      
 88 
     | 
    
         
            +
                    """
         
     | 
| 
      
 89 
     | 
    
         
            +
                    Load marker scores of each cell.
         
     | 
| 
      
 90 
     | 
    
         
            +
                    """
         
     | 
| 
      
 91 
     | 
    
         
            +
                    mk_score = pd.read_feather(self.mk_score_file).set_index('HUMAN_GENE_SYM').rename_axis('gene_name')
         
     | 
| 
      
 92 
     | 
    
         
            +
                    mk_score.insert(0, 'all_gene', 1)
         
     | 
| 
      
 93 
     | 
    
         
            +
                    return mk_score
         
     | 
| 
      
 94 
     | 
    
         
            +
             
     | 
| 
      
 95 
     | 
    
         
            +
                #
         
     | 
| 
      
 96 
     | 
    
         
            +
                def load_gtf(self, mk_score):
         
     | 
| 
      
 97 
     | 
    
         
            +
                    """
         
     | 
| 
      
 98 
     | 
    
         
            +
                    Load the gene annotation file (gtf).
         
     | 
| 
      
 99 
     | 
    
         
            +
                    """
         
     | 
| 
      
 100 
     | 
    
         
            +
                    print("Loading gtf data")
         
     | 
| 
      
 101 
     | 
    
         
            +
                    #
         
     | 
| 
      
 102 
     | 
    
         
            +
                    # Load GTF file
         
     | 
| 
      
 103 
     | 
    
         
            +
                    gtf = pr.read_gtf(self.gtf_file)
         
     | 
| 
      
 104 
     | 
    
         
            +
                    gtf = gtf.df
         
     | 
| 
      
 105 
     | 
    
         
            +
                    #
         
     | 
| 
      
 106 
     | 
    
         
            +
                    # Select the common genes
         
     | 
| 
      
 107 
     | 
    
         
            +
                    gtf = gtf[gtf['Feature'] == 'gene']
         
     | 
| 
      
 108 
     | 
    
         
            +
                    common_gene = np.intersect1d(mk_score.index, gtf.gene_name)
         
     | 
| 
      
 109 
     | 
    
         
            +
                    #
         
     | 
| 
      
 110 
     | 
    
         
            +
                    gtf = gtf[gtf.gene_name.isin(common_gene)]
         
     | 
| 
      
 111 
     | 
    
         
            +
                    mk_score = mk_score[mk_score.index.isin(common_gene)]
         
     | 
| 
      
 112 
     | 
    
         
            +
                    #
         
     | 
| 
      
 113 
     | 
    
         
            +
                    # Remove duplicated lines
         
     | 
| 
      
 114 
     | 
    
         
            +
                    gtf = gtf.drop_duplicates(subset='gene_name', keep="first")
         
     | 
| 
      
 115 
     | 
    
         
            +
                    #
         
     | 
| 
      
 116 
     | 
    
         
            +
                    # Process the GTF (open 100-KB window: Tss - Ted)
         
     | 
| 
      
 117 
     | 
    
         
            +
                    gtf_bed = gtf[['Chromosome', 'Start', 'End', 'gene_name', 'Strand']].copy()
         
     | 
| 
      
 118 
     | 
    
         
            +
                    gtf_bed.loc[:, 'TSS'] = gtf_bed['Start']
         
     | 
| 
      
 119 
     | 
    
         
            +
                    gtf_bed.loc[:, 'TED'] = gtf_bed['End']
         
     | 
| 
      
 120 
     | 
    
         
            +
             
     | 
| 
      
 121 
     | 
    
         
            +
                    gtf_bed.loc[:, 'Start'] = gtf_bed['TSS'] - self.window_size
         
     | 
| 
      
 122 
     | 
    
         
            +
                    gtf_bed.loc[:, 'End'] = gtf_bed['TED'] + self.window_size
         
     | 
| 
      
 123 
     | 
    
         
            +
                    gtf_bed.loc[gtf_bed['Start'] < 0, 'Start'] = 0
         
     | 
| 
      
 124 
     | 
    
         
            +
                    #
         
     | 
| 
      
 125 
     | 
    
         
            +
                    # Correct the negative strand
         
     | 
| 
      
 126 
     | 
    
         
            +
                    tss_neg = gtf_bed.loc[gtf_bed['Strand'] == '-', 'TSS']
         
     | 
| 
      
 127 
     | 
    
         
            +
                    ted_neg = gtf_bed.loc[gtf_bed['Strand'] == '-', 'TED']
         
     | 
| 
      
 128 
     | 
    
         
            +
                    gtf_bed.loc[gtf_bed['Strand'] == '-', 'TSS'] = ted_neg
         
     | 
| 
      
 129 
     | 
    
         
            +
                    gtf_bed.loc[gtf_bed['Strand'] == '-', 'TED'] = tss_neg
         
     | 
| 
      
 130 
     | 
    
         
            +
                    gtf_bed = gtf_bed.drop('Strand', axis=1)
         
     | 
| 
      
 131 
     | 
    
         
            +
                    #
         
     | 
| 
      
 132 
     | 
    
         
            +
                    # Transform the GTF to PyRanges
         
     | 
| 
      
 133 
     | 
    
         
            +
                    gtf_pr = pr.PyRanges(gtf_bed)
         
     | 
| 
      
 134 
     | 
    
         
            +
                    return gtf_pr
         
     | 
| 
      
 135 
     | 
    
         
            +
             
     | 
| 
      
 136 
     | 
    
         
            +
                #
         
     | 
| 
      
 137 
     | 
    
         
            +
                def load_baseline(self, chr):
         
     | 
| 
      
 138 
     | 
    
         
            +
                    """
         
     | 
| 
      
 139 
     | 
    
         
            +
                    Load baseline annotations.
         
     | 
| 
      
 140 
     | 
    
         
            +
                    """
         
     | 
| 
      
 141 
     | 
    
         
            +
                    baseline = pd.read_csv(f'{self.base_root}.{chr}.annot.gz', sep='\t')
         
     | 
| 
      
 142 
     | 
    
         
            +
                    baseline.drop(['CHR', 'BP', 'CM'], axis=1, inplace=True)
         
     | 
| 
      
 143 
     | 
    
         
            +
                    return baseline
         
     | 
| 
      
 144 
     | 
    
         
            +
             
     | 
| 
      
 145 
     | 
    
         
            +
                # -
         
     | 
| 
      
 146 
     | 
    
         
            +
                def Load_bim(self, chr):
         
     | 
| 
      
 147 
     | 
    
         
            +
                    """
         
     | 
| 
      
 148 
     | 
    
         
            +
                    Load bim files.
         
     | 
| 
      
 149 
     | 
    
         
            +
                    """
         
     | 
| 
      
 150 
     | 
    
         
            +
                    bim_file = f'{self.bfile_root}.{chr}.bim'
         
     | 
| 
      
 151 
     | 
    
         
            +
                    bim = pd.read_csv(bim_file, sep='\t', header=None)
         
     | 
| 
      
 152 
     | 
    
         
            +
                    bim.columns = ["CHR", "SNP", "CM", "BP", "A1", "A2"]
         
     | 
| 
      
 153 
     | 
    
         
            +
                    #
         
     | 
| 
      
 154 
     | 
    
         
            +
                    # Transform bim to PyRanges
         
     | 
| 
      
 155 
     | 
    
         
            +
                    bim_pr = bim.copy()
         
     | 
| 
      
 156 
     | 
    
         
            +
                    bim_pr.columns = ["Chromosome", "SNP", "CM", "Start", "A1", "A2"]
         
     | 
| 
      
 157 
     | 
    
         
            +
                    bim_pr['End'] = bim_pr['Start']
         
     | 
| 
      
 158 
     | 
    
         
            +
                    bim_pr = pr.PyRanges(bim_pr)
         
     | 
| 
      
 159 
     | 
    
         
            +
                    bim_pr.Chromosome = f'chr{chr}'
         
     | 
| 
      
 160 
     | 
    
         
            +
                    return bim_pr, bim
         
     | 
| 
      
 161 
     | 
    
         
            +
             
     | 
| 
      
 162 
     | 
    
         
            +
                # -
         
     | 
| 
      
 163 
     | 
    
         
            +
                def Overlaps_gtf_bim(self, bim_pr):
         
     | 
| 
      
 164 
     | 
    
         
            +
                    """
         
     | 
| 
      
 165 
     | 
    
         
            +
                    Find overlaps between gtf and bim file.
         
     | 
| 
      
 166 
     | 
    
         
            +
                    """
         
     | 
| 
      
 167 
     | 
    
         
            +
                    # Select the overlapped regions (SNPs in gene windows)
         
     | 
| 
      
 168 
     | 
    
         
            +
                    overlaps = self.gtf_pr.join(bim_pr)
         
     | 
| 
      
 169 
     | 
    
         
            +
                    overlaps = overlaps.df
         
     | 
| 
      
 170 
     | 
    
         
            +
                    overlaps['Distance'] = np.abs(overlaps['Start_b'] - overlaps['TSS'])
         
     | 
| 
      
 171 
     | 
    
         
            +
                    overlaps_small = overlaps.copy()
         
     | 
| 
      
 172 
     | 
    
         
            +
                    overlaps_small = overlaps_small.loc[overlaps_small.groupby('SNP').Distance.idxmin()]
         
     | 
| 
      
 173 
     | 
    
         
            +
                    return overlaps_small
         
     | 
| 
      
 174 
     | 
    
         
            +
             
     | 
| 
      
 175 
     | 
    
         
            +
                # -
         
     | 
| 
      
 176 
     | 
    
         
            +
                def map_baseline(self, snp_score, baseline, chr):
         
     | 
| 
      
 177 
     | 
    
         
            +
                    """
         
     | 
| 
      
 178 
     | 
    
         
            +
                    Generate the baseline annotations for SNPs.
         
     | 
| 
      
 179 
     | 
    
         
            +
                    """
         
     | 
| 
      
 180 
     | 
    
         
            +
             
     | 
| 
      
 181 
     | 
    
         
            +
                    header = snp_score.columns[0:6].to_list()
         
     | 
| 
      
 182 
     | 
    
         
            +
             
     | 
| 
      
 183 
     | 
    
         
            +
                    if baseline is None:
         
     | 
| 
      
 184 
     | 
    
         
            +
                        print(f'Baseline annotations of chr{chr} are not provided, using uniform annotations for genes and SNPs')
         
     | 
| 
      
 185 
     | 
    
         
            +
                        baseline_score = snp_score[header + ['all_gene']].copy()
         
     | 
| 
      
 186 
     | 
    
         
            +
                        baseline_score.loc[:, 'base'] = 1
         
     | 
| 
      
 187 
     | 
    
         
            +
             
     | 
| 
      
 188 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 189 
     | 
    
         
            +
                        print(f'Mapping baseline annotations of chr{chr}')
         
     | 
| 
      
 190 
     | 
    
         
            +
                        snp_score_baseline = pd.merge(snp_score, baseline, how='left', on='SNP').fillna(0).copy()
         
     | 
| 
      
 191 
     | 
    
         
            +
             
     | 
| 
      
 192 
     | 
    
         
            +
                        baseline_score = snp_score_baseline[header + ['all_gene'] + baseline.columns.to_list()]
         
     | 
| 
      
 193 
     | 
    
         
            +
                        baseline_score = baseline_score.loc[:, ~baseline_score.columns.duplicated()].copy()
         
     | 
| 
      
 194 
     | 
    
         
            +
             
     | 
| 
      
 195 
     | 
    
         
            +
                    # Create the folder (for baseline annotation)
         
     | 
| 
      
 196 
     | 
    
         
            +
                    file_base_root = f'{self.annot_root}/baseline'
         
     | 
| 
      
 197 
     | 
    
         
            +
                    if not os.path.exists(file_base_root):
         
     | 
| 
      
 198 
     | 
    
         
            +
                        os.makedirs(file_base_root, mode=0o777, exist_ok=True)
         
     | 
| 
      
 199 
     | 
    
         
            +
             
     | 
| 
      
 200 
     | 
    
         
            +
                        # Save baseline annotations (in parquet format)
         
     | 
| 
      
 201 
     | 
    
         
            +
                    file_base = f'{file_base_root}/baseline.{chr}.feather'
         
     | 
| 
      
 202 
     | 
    
         
            +
                    baseline_score.to_feather(file_base)
         
     | 
| 
      
 203 
     | 
    
         
            +
             
     | 
| 
      
 204 
     | 
    
         
            +
                    return 0
         
     | 
| 
      
 205 
     | 
    
         
            +
             
     | 
| 
      
 206 
     | 
    
         
            +
                # -
         
     | 
| 
      
 207 
     | 
    
         
            +
                def annotate_chr(self, chr):
         
     | 
| 
      
 208 
     | 
    
         
            +
                    """
         
     | 
| 
      
 209 
     | 
    
         
            +
                    Annotate SNPs of each chr.
         
     | 
| 
      
 210 
     | 
    
         
            +
                    """
         
     | 
| 
      
 211 
     | 
    
         
            +
                    # Load the baseline file
         
     | 
| 
      
 212 
     | 
    
         
            +
                    baseline = None
         
     | 
| 
      
 213 
     | 
    
         
            +
                    if self.base_root is not None:
         
     | 
| 
      
 214 
     | 
    
         
            +
                        baseline = self.load_baseline(chr)
         
     | 
| 
      
 215 
     | 
    
         
            +
             
     | 
| 
      
 216 
     | 
    
         
            +
                    # Load the bim file
         
     | 
| 
      
 217 
     | 
    
         
            +
                    bim_pr, bim = self.Load_bim(chr)
         
     | 
| 
      
 218 
     | 
    
         
            +
             
     | 
| 
      
 219 
     | 
    
         
            +
                    # Find overlapping
         
     | 
| 
      
 220 
     | 
    
         
            +
                    overlaps_small = self.Overlaps_gtf_bim(bim_pr)
         
     | 
| 
      
 221 
     | 
    
         
            +
             
     | 
| 
      
 222 
     | 
    
         
            +
                    # Do annotations
         
     | 
| 
      
 223 
     | 
    
         
            +
                    all_chunks = int(np.ceil(self.n_cells / self.max_chunk))
         
     | 
| 
      
 224 
     | 
    
         
            +
                    bar = IncrementalBar(f'Mapping the gene marker scores to SNPs in chr{chr}', max=all_chunks)
         
     | 
| 
      
 225 
     | 
    
         
            +
                    bar.check_tty = False
         
     | 
| 
      
 226 
     | 
    
         
            +
             
     | 
| 
      
 227 
     | 
    
         
            +
                    # Preprocess bim outside the loop as it doesn't change
         
     | 
| 
      
 228 
     | 
    
         
            +
                    anno_template = bim[["CHR", "BP", "SNP", "CM"]]
         
     | 
| 
      
 229 
     | 
    
         
            +
             
     | 
| 
      
 230 
     | 
    
         
            +
                    for chunk_index, left in enumerate(range(0, self.n_cells, self.max_chunk), start=1):
         
     | 
| 
      
 231 
     | 
    
         
            +
                        right = min(left + self.max_chunk, self.n_cells)
         
     | 
| 
      
 232 
     | 
    
         
            +
                        mk_score_current = self.mk_score.iloc[:, left:right]
         
     | 
| 
      
 233 
     | 
    
         
            +
             
     | 
| 
      
 234 
     | 
    
         
            +
                        # Process marker scores for SNPs
         
     | 
| 
      
 235 
     | 
    
         
            +
                        anno = anno_template.copy()
         
     | 
| 
      
 236 
     | 
    
         
            +
                        merged_data = overlaps_small[['SNP', 'gene_name', 'TSS']].merge(mk_score_current, on='gene_name',
         
     | 
| 
      
 237 
     | 
    
         
            +
                                                                                        how='left')
         
     | 
| 
      
 238 
     | 
    
         
            +
                        snp_score = pd.merge(anno, merged_data, how='left', on='SNP').fillna(0)
         
     | 
| 
      
 239 
     | 
    
         
            +
                        snp_score = snp_score.rename(columns={'gene_name': 'Gene'})
         
     | 
| 
      
 240 
     | 
    
         
            +
                        snp_score.loc[snp_score.Gene == 0, 'Gene'] = 'None'
         
     | 
| 
      
 241 
     | 
    
         
            +
             
     | 
| 
      
 242 
     | 
    
         
            +
                        # Process baseline annotations for the first chunk
         
     | 
| 
      
 243 
     | 
    
         
            +
                        if chunk_index == 1:
         
     | 
| 
      
 244 
     | 
    
         
            +
                            self.map_baseline(snp_score, baseline, chr)
         
     | 
| 
      
 245 
     | 
    
         
            +
                            snp_score = snp_score.drop('all_gene', axis=1)
         
     | 
| 
      
 246 
     | 
    
         
            +
             
     | 
| 
      
 247 
     | 
    
         
            +
                        # Create the folder and save SNP annotations
         
     | 
| 
      
 248 
     | 
    
         
            +
                        file_root = f'{self.annot_root}/{self.data_name}_chunk{chunk_index}'
         
     | 
| 
      
 249 
     | 
    
         
            +
                        os.makedirs(file_root, mode=0o777, exist_ok=True)
         
     | 
| 
      
 250 
     | 
    
         
            +
                        file_anno = f'{file_root}/{self.data_name}.{chr}.feather'
         
     | 
| 
      
 251 
     | 
    
         
            +
                        snp_score.to_feather(file_anno)
         
     | 
| 
      
 252 
     | 
    
         
            +
             
     | 
| 
      
 253 
     | 
    
         
            +
                        bar.next()
         
     | 
| 
      
 254 
     | 
    
         
            +
             
     | 
| 
      
 255 
     | 
    
         
            +
                    bar.finish()
         
     | 
| 
      
 256 
     | 
    
         
            +
             
     | 
| 
      
 257 
     | 
    
         
            +
                    return all_chunks
         
     | 
| 
      
 258 
     | 
    
         
            +
             
     | 
| 
      
 259 
     | 
    
         
            +
                #
         
     | 
| 
      
 260 
     | 
    
         
            +
                def annotate(self):
         
     | 
| 
      
 261 
     | 
    
         
            +
                    """
         
     | 
| 
      
 262 
     | 
    
         
            +
                    Perform SNP annotations for each chromosome.
         
     | 
| 
      
 263 
     | 
    
         
            +
                    """
         
     | 
| 
      
 264 
     | 
    
         
            +
                    if self.chr == None:
         
     | 
| 
      
 265 
     | 
    
         
            +
                        for chr in range(1, 23):
         
     | 
| 
      
 266 
     | 
    
         
            +
                            const_max_size = self.annotate_chr(chr=chr)
         
     | 
| 
      
 267 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 268 
     | 
    
         
            +
                        const_max_size = self.annotate_chr(chr=self.chr)
         
     | 
| 
      
 269 
     | 
    
         
            +
             
     | 
| 
      
 270 
     | 
    
         
            +
                    return const_max_size
         
     | 
| 
      
 271 
     | 
    
         
            +
             
     | 
| 
      
 272 
     | 
    
         
            +
             
     | 
| 
      
 273 
     | 
    
         
            +
            class LDscore_Generator:
         
     | 
| 
      
 274 
     | 
    
         
            +
                def __init__(self, make_annotation_config: MakeAnnotationConfig, const_max_size):
         
     | 
| 
      
 275 
     | 
    
         
            +
                    self.bfile_root = make_annotation_config.bfile_root
         
     | 
| 
      
 276 
     | 
    
         
            +
                    self.annot_root = Path(make_annotation_config.output_dir)
         
     | 
| 
      
 277 
     | 
    
         
            +
                    self.const_max_size = const_max_size
         
     | 
| 
      
 278 
     | 
    
         
            +
                    self.data_name = make_annotation_config.sample_name
         
     | 
| 
      
 279 
     | 
    
         
            +
                    self.chr = make_annotation_config.chr
         
     | 
| 
      
 280 
     | 
    
         
            +
                    self.ld_wind = make_annotation_config.ld_wind
         
     | 
| 
      
 281 
     | 
    
         
            +
                    self.ld_wind_unit = make_annotation_config.ld_wind_unit
         
     | 
| 
      
 282 
     | 
    
         
            +
                    self.keep_snp = make_annotation_config.keep_snp_root
         
     | 
| 
      
 283 
     | 
    
         
            +
                    self.r2_cache_dir = make_annotation_config.r2_cache_dir
         
     | 
| 
      
 284 
     | 
    
         
            +
                    self.use_gpu = make_annotation_config.use_gpu
         
     | 
| 
      
 285 
     | 
    
         
            +
                    self.config = make_annotation_config
         
     | 
| 
      
 286 
     | 
    
         
            +
                    self.generate_r2_cache = False
         
     | 
| 
      
 287 
     | 
    
         
            +
             
     | 
| 
      
 288 
     | 
    
         
            +
                    # Set the r2 cache
         
     | 
| 
      
 289 
     | 
    
         
            +
                    if self.r2_cache_dir is None:
         
     | 
| 
      
 290 
     | 
    
         
            +
                        logger.info('No r2 cache directory specified, will not use r2 cache')
         
     | 
| 
      
 291 
     | 
    
         
            +
                        self.chr_r2_cache_dir = None
         
     | 
| 
      
 292 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 293 
     | 
    
         
            +
                        assert self.chr is not None, 'Must specify chr when using r2 cache'
         
     | 
| 
      
 294 
     | 
    
         
            +
                        chr_r2_cache_dir = os.path.join(self.r2_cache_dir, f'chr{self.chr}')
         
     | 
| 
      
 295 
     | 
    
         
            +
                        self.chr_r2_cache_dir = chr_r2_cache_dir
         
     | 
| 
      
 296 
     | 
    
         
            +
                        if not os.path.exists(os.path.join(chr_r2_cache_dir, 'combined_r2_matrix.npz')):
         
     | 
| 
      
 297 
     | 
    
         
            +
                            logger.warning(
         
     | 
| 
      
 298 
     | 
    
         
            +
                                f'No r2 cache found for chr{self.chr}, will generate r2 cache for this chromosome, first time may take a while')
         
     | 
| 
      
 299 
     | 
    
         
            +
                            os.makedirs(chr_r2_cache_dir, exist_ok=True, mode=0o777, )
         
     | 
| 
      
 300 
     | 
    
         
            +
                            self.generate_r2_cache = True
         
     | 
| 
      
 301 
     | 
    
         
            +
                        else:
         
     | 
| 
      
 302 
     | 
    
         
            +
                            logger.info(f'Found r2 cache for chr{self.chr}, will use r2 cache for this chromosome')
         
     | 
| 
      
 303 
     | 
    
         
            +
             
     | 
| 
      
 304 
     | 
    
         
            +
                def compute_ldscore(self):
         
     | 
| 
      
 305 
     | 
    
         
            +
                    """
         
     | 
| 
      
 306 
     | 
    
         
            +
                    Compute LD scores.
         
     | 
| 
      
 307 
     | 
    
         
            +
                    """
         
     | 
| 
      
 308 
     | 
    
         
            +
                    start_time = time.time()
         
     | 
| 
      
 309 
     | 
    
         
            +
                    if self.chr == None:
         
     | 
| 
      
 310 
     | 
    
         
            +
                        for chr in range(1, 23):
         
     | 
| 
      
 311 
     | 
    
         
            +
                            logger.info(f'Computing LD scores for chr{chr}')
         
     | 
| 
      
 312 
     | 
    
         
            +
                            self.compute_ldscore_chr(chr=chr)
         
     | 
| 
      
 313 
     | 
    
         
            +
                            logger.info(f'Finished computing LD scores for chr{chr}')
         
     | 
| 
      
 314 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 315 
     | 
    
         
            +
                        logger.info(f'Computing LD scores for chr{self.chr}')
         
     | 
| 
      
 316 
     | 
    
         
            +
                        self.compute_ldscore_chr(chr=self.chr)
         
     | 
| 
      
 317 
     | 
    
         
            +
                        logger.info(f'Finished computing LD scores for chr{self.chr}')
         
     | 
| 
      
 318 
     | 
    
         
            +
                    end_time = time.time()
         
     | 
| 
      
 319 
     | 
    
         
            +
                    logger.info(f'Finished computing LD scores, time elapsed: {(end_time - start_time) / 60} minutes')
         
     | 
| 
      
 320 
     | 
    
         
            +
             
     | 
| 
      
 321 
     | 
    
         
            +
                def compute_ldscore_chunk(self, annot_file, ld_score_file, M_file, M_5_file, geno_array: PlinkBEDFileWithR2Cache,
         
     | 
| 
      
 322 
     | 
    
         
            +
                                          block_left, snp):
         
     | 
| 
      
 323 
     | 
    
         
            +
                    """
         
     | 
| 
      
 324 
     | 
    
         
            +
                    Compute and save LD scores for each chunk
         
     | 
| 
      
 325 
     | 
    
         
            +
                    :param annot_file: Path to the annotation file
         
     | 
| 
      
 326 
     | 
    
         
            +
                    :param ld_score_file: Path to the LD score file
         
     | 
| 
      
 327 
     | 
    
         
            +
                    :param M_file: Path to the M file
         
     | 
| 
      
 328 
     | 
    
         
            +
                    :param M_5_file: Path to the M_5_50 file
         
     | 
| 
      
 329 
     | 
    
         
            +
                    :param geno_array: Genotype array
         
     | 
| 
      
 330 
     | 
    
         
            +
                    :param block_left: Block left
         
     | 
| 
      
 331 
     | 
    
         
            +
                    :param snp: SNP to be kept
         
     | 
| 
      
 332 
     | 
    
         
            +
                    :return: None
         
     | 
| 
      
 333 
     | 
    
         
            +
                    """
         
     | 
| 
      
 334 
     | 
    
         
            +
                    annot_df = pd.read_feather(annot_file)
         
     | 
| 
      
 335 
     | 
    
         
            +
                    n_annot, ma = len(annot_df.columns) - 6, len(annot_df)
         
     | 
| 
      
 336 
     | 
    
         
            +
             
     | 
| 
      
 337 
     | 
    
         
            +
                    # print("Read {A} annotations for {M} SNPs from {f}".format(f=annot_file, A=n_annot, M=ma))
         
     | 
| 
      
 338 
     | 
    
         
            +
                    annot_matrix = np.array(annot_df.iloc[:, 6:])
         
     | 
| 
      
 339 
     | 
    
         
            +
                    annot_colnames = annot_df.columns[6:]
         
     | 
| 
      
 340 
     | 
    
         
            +
             
     | 
| 
      
 341 
     | 
    
         
            +
                    # Reset the SNP point
         
     | 
| 
      
 342 
     | 
    
         
            +
                    geno_array.__restart__()
         
     | 
| 
      
 343 
     | 
    
         
            +
             
     | 
| 
      
 344 
     | 
    
         
            +
                    # Compute annotated LD score
         
     | 
| 
      
 345 
     | 
    
         
            +
                    if self.chr_r2_cache_dir is None:
         
     | 
| 
      
 346 
     | 
    
         
            +
                        lN_df = pd.DataFrame(geno_array.ldScoreVarBlocks(block_left, 50, annot=annot_matrix))
         
     | 
| 
      
 347 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 348 
     | 
    
         
            +
                        lN_df = pd.DataFrame(self.get_ldscore_use_cache(annot_matrix))
         
     | 
| 
      
 349 
     | 
    
         
            +
             
     | 
| 
      
 350 
     | 
    
         
            +
                    ldscore = pd.concat([annot_df.iloc[:, 0:6], lN_df], axis=1)
         
     | 
| 
      
 351 
     | 
    
         
            +
                    ldscore.columns = annot_df.columns
         
     | 
| 
      
 352 
     | 
    
         
            +
             
     | 
| 
      
 353 
     | 
    
         
            +
                    # Keep the targeted SNPs
         
     | 
| 
      
 354 
     | 
    
         
            +
                    if not snp is None:
         
     | 
| 
      
 355 
     | 
    
         
            +
                        ldscore = ldscore.loc[ldscore.SNP.isin(snp)]
         
     | 
| 
      
 356 
     | 
    
         
            +
             
     | 
| 
      
 357 
     | 
    
         
            +
                    # Save the LD score annotations
         
     | 
| 
      
 358 
     | 
    
         
            +
                    ldscore = ldscore.reset_index()
         
     | 
| 
      
 359 
     | 
    
         
            +
                    ldscore.drop(columns=['index'], inplace=True)
         
     | 
| 
      
 360 
     | 
    
         
            +
                    ldscore.to_feather(ld_score_file)
         
     | 
| 
      
 361 
     | 
    
         
            +
             
     | 
| 
      
 362 
     | 
    
         
            +
                    # Compute the .M (.M_5_50) file
         
     | 
| 
      
 363 
     | 
    
         
            +
                    M = np.atleast_1d(np.squeeze(np.asarray(np.sum(annot_matrix, axis=0))))
         
     | 
| 
      
 364 
     | 
    
         
            +
                    ii = geno_array.maf > 0.05
         
     | 
| 
      
 365 
     | 
    
         
            +
                    M_5_50 = np.atleast_1d(np.squeeze(np.asarray(np.sum(annot_matrix[ii, :], axis=0))))
         
     | 
| 
      
 366 
     | 
    
         
            +
             
     | 
| 
      
 367 
     | 
    
         
            +
                    # Save the sum of score annotations (all and maf > 0.05)
         
     | 
| 
      
 368 
     | 
    
         
            +
                    np.savetxt(M_file, M, delimiter='\t')
         
     | 
| 
      
 369 
     | 
    
         
            +
                    np.savetxt(M_5_file, M_5_50, delimiter='\t')
         
     | 
| 
      
 370 
     | 
    
         
            +
             
     | 
| 
      
 371 
     | 
    
         
            +
                def get_ldscore_use_cache(self, annot_matrix, ):
         
     | 
| 
      
 372 
     | 
    
         
            +
                    if self.use_gpu:
         
     | 
| 
      
 373 
     | 
    
         
            +
                        logger.debug('Using GPU to compute LD score')
         
     | 
| 
      
 374 
     | 
    
         
            +
                        annot_matrix = cp.asarray(annot_matrix, dtype=cp.float32)
         
     | 
| 
      
 375 
     | 
    
         
            +
                        for i, r2_matrix_chunk in enumerate(self.r2_matrix_chunk_list):
         
     | 
| 
      
 376 
     | 
    
         
            +
                            r2_matrix_chunk = cp.sparse.csr_matrix(r2_matrix_chunk, dtype=cp.float32)
         
     | 
| 
      
 377 
     | 
    
         
            +
                            lN_chunk = cp.asnumpy(r2_matrix_chunk @ annot_matrix)
         
     | 
| 
      
 378 
     | 
    
         
            +
                            # convert to float16
         
     | 
| 
      
 379 
     | 
    
         
            +
                            lN_chunk = lN_chunk.astype(np.float16)
         
     | 
| 
      
 380 
     | 
    
         
            +
                            if i == 0:
         
     | 
| 
      
 381 
     | 
    
         
            +
                                lN = lN_chunk
         
     | 
| 
      
 382 
     | 
    
         
            +
                            else:
         
     | 
| 
      
 383 
     | 
    
         
            +
                                lN = np.concatenate([lN, lN_chunk], axis=0)
         
     | 
| 
      
 384 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 385 
     | 
    
         
            +
                        logger.debug('Using CPU to compute LD score')
         
     | 
| 
      
 386 
     | 
    
         
            +
                        for i, r2_matrix_chunk in enumerate(self.r2_matrix_chunk_list):
         
     | 
| 
      
 387 
     | 
    
         
            +
                            lN_chunk = r2_matrix_chunk @ annot_matrix
         
     | 
| 
      
 388 
     | 
    
         
            +
                            # convert to float16
         
     | 
| 
      
 389 
     | 
    
         
            +
                            lN_chunk = lN_chunk.astype(np.float16)
         
     | 
| 
      
 390 
     | 
    
         
            +
                            if i == 0:
         
     | 
| 
      
 391 
     | 
    
         
            +
                                lN = lN_chunk
         
     | 
| 
      
 392 
     | 
    
         
            +
                            else:
         
     | 
| 
      
 393 
     | 
    
         
            +
                                lN = np.concatenate([lN, lN_chunk], axis=0)
         
     | 
| 
      
 394 
     | 
    
         
            +
                    return lN
         
     | 
| 
      
 395 
     | 
    
         
            +
             
     | 
| 
      
 396 
     | 
    
         
            +
                def compute_ldscore_chr(self, chr):
         
     | 
| 
      
 397 
     | 
    
         
            +
                    PlinkBIMFile = ID_List_Factory(['CHR', 'SNP', 'CM', 'BP', 'A1', 'A2'], 1, '.bim', usecols=[0, 1, 2, 3, 4, 5])
         
     | 
| 
      
 398 
     | 
    
         
            +
                    PlinkFAMFile = ID_List_Factory(['IID'], 0, '.fam', usecols=[1])
         
     | 
| 
      
 399 
     | 
    
         
            +
             
     | 
| 
      
 400 
     | 
    
         
            +
                    bfile = f"{self.bfile_root}.{chr}"
         
     | 
| 
      
 401 
     | 
    
         
            +
                    #
         
     | 
| 
      
 402 
     | 
    
         
            +
                    # Load bim file
         
     | 
| 
      
 403 
     | 
    
         
            +
                    snp_file, snp_obj = bfile + '.bim', PlinkBIMFile
         
     | 
| 
      
 404 
     | 
    
         
            +
                    array_snps = snp_obj(snp_file)
         
     | 
| 
      
 405 
     | 
    
         
            +
                    m = len(array_snps.IDList)
         
     | 
| 
      
 406 
     | 
    
         
            +
                    print(f'Read list of {m} SNPs from {snp_file}')
         
     | 
| 
      
 407 
     | 
    
         
            +
                    #
         
     | 
| 
      
 408 
     | 
    
         
            +
                    # Load fam
         
     | 
| 
      
 409 
     | 
    
         
            +
                    ind_file, ind_obj = bfile + '.fam', PlinkFAMFile
         
     | 
| 
      
 410 
     | 
    
         
            +
                    array_indivs = ind_obj(ind_file)
         
     | 
| 
      
 411 
     | 
    
         
            +
                    n = len(array_indivs.IDList)
         
     | 
| 
      
 412 
     | 
    
         
            +
                    print(f'Read list of {n} individuals from {ind_file}')
         
     | 
| 
      
 413 
     | 
    
         
            +
                    #
         
     | 
| 
      
 414 
     | 
    
         
            +
                    # Load genotype array
         
     | 
| 
      
 415 
     | 
    
         
            +
                    array_file, array_obj = bfile + '.bed', PlinkBEDFileWithR2Cache
         
     | 
| 
      
 416 
     | 
    
         
            +
                    geno_array = array_obj(array_file, n, array_snps, keep_snps=None, keep_indivs=None, mafMin=None)
         
     | 
| 
      
 417 
     | 
    
         
            +
             
     | 
| 
      
 418 
     | 
    
         
            +
                    # Load the snp to be print
         
     | 
| 
      
 419 
     | 
    
         
            +
                    if not self.keep_snp is None:
         
     | 
| 
      
 420 
     | 
    
         
            +
                        snp = pd.read_csv(f'{self.keep_snp}.{chr}.snp', header=None)[0].to_list()
         
     | 
| 
      
 421 
     | 
    
         
            +
                        num_snp = len(snp)
         
     | 
| 
      
 422 
     | 
    
         
            +
                        print(f'Loading {num_snp} SNPs')
         
     | 
| 
      
 423 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 424 
     | 
    
         
            +
                        snp = None
         
     | 
| 
      
 425 
     | 
    
         
            +
             
     | 
| 
      
 426 
     | 
    
         
            +
                    # Load the annotations of the baseline
         
     | 
| 
      
 427 
     | 
    
         
            +
                    if self.ld_wind_unit == 'SNP':
         
     | 
| 
      
 428 
     | 
    
         
            +
                        max_dist = self.ld_wind
         
     | 
| 
      
 429 
     | 
    
         
            +
                        coords = np.array(range(geno_array.m))
         
     | 
| 
      
 430 
     | 
    
         
            +
                    elif self.ld_wind_unit == 'BP':
         
     | 
| 
      
 431 
     | 
    
         
            +
                        max_dist = self.ld_wind * 1000
         
     | 
| 
      
 432 
     | 
    
         
            +
                        coords = np.array(array_snps.df['BP'])[geno_array.kept_snps]
         
     | 
| 
      
 433 
     | 
    
         
            +
                    elif self.ld_wind_unit == 'CM':
         
     | 
| 
      
 434 
     | 
    
         
            +
                        max_dist = self.ld_wind
         
     | 
| 
      
 435 
     | 
    
         
            +
                        coords = np.array(array_snps.df['CM'])[geno_array.kept_snps]
         
     | 
| 
      
 436 
     | 
    
         
            +
                    block_left = getBlockLefts(coords, max_dist)
         
     | 
| 
      
 437 
     | 
    
         
            +
                    if self.generate_r2_cache:
         
     | 
| 
      
 438 
     | 
    
         
            +
                        logger.info(f'Generating r2 cache for chr{chr}, this may take a while')
         
     | 
| 
      
 439 
     | 
    
         
            +
                        geno_array.compute_r2_cache(block_left,
         
     | 
| 
      
 440 
     | 
    
         
            +
                                                    Path(self.chr_r2_cache_dir))
         
     | 
| 
      
 441 
     | 
    
         
            +
                        logger.info(f'Finished generating r2 cache for chr{chr}')
         
     | 
| 
      
 442 
     | 
    
         
            +
                    if self.chr_r2_cache_dir is not None:
         
     | 
| 
      
 443 
     | 
    
         
            +
                        logger.info('Loading r2 cache')
         
     | 
| 
      
 444 
     | 
    
         
            +
                        r2_matrix = geno_array.load_combined_r2_matrix(cached_r2_matrix_dir=self.chr_r2_cache_dir)
         
     | 
| 
      
 445 
     | 
    
         
            +
                        self.r2_matrix_chunk_list = [r2_matrix[i:i + self.config.snps_per_chunk, :] for i in
         
     | 
| 
      
 446 
     | 
    
         
            +
                                                     range(0, r2_matrix.shape[0], self.config.snps_per_chunk)]
         
     | 
| 
      
 447 
     | 
    
         
            +
                        logger.info('Finished loading r2 cache')
         
     | 
| 
      
 448 
     | 
    
         
            +
                    # Set the baseline root
         
     | 
| 
      
 449 
     | 
    
         
            +
                    annot_file = f'{self.annot_root}/baseline/baseline.{chr}.feather'
         
     | 
| 
      
 450 
     | 
    
         
            +
                    ld_score_file = f'{self.annot_root}/baseline/baseline.{chr}.l2.ldscore.feather'
         
     | 
| 
      
 451 
     | 
    
         
            +
                    M_file = f'{self.annot_root}/baseline/baseline.{chr}.l2.M'
         
     | 
| 
      
 452 
     | 
    
         
            +
                    M_5_file = f'{self.annot_root}/baseline/baseline.{chr}.l2.M_5_50'
         
     | 
| 
      
 453 
     | 
    
         
            +
             
     | 
| 
      
 454 
     | 
    
         
            +
                    # Compute annotations of the baseline
         
     | 
| 
      
 455 
     | 
    
         
            +
                    print(f"Computing LD score for baseline annotations of chr{chr}")
         
     | 
| 
      
 456 
     | 
    
         
            +
                    self.compute_ldscore_chunk(annot_file, ld_score_file, M_file, M_5_file, geno_array, block_left, snp)
         
     | 
| 
      
 457 
     | 
    
         
            +
             
     | 
| 
      
 458 
     | 
    
         
            +
                    # Load annotations of chunks
         
     | 
| 
      
 459 
     | 
    
         
            +
                    bar = IncrementalBar(f"Computing LD scores for spatial data annotations of chr{chr}", max=self.const_max_size)
         
     | 
| 
      
 460 
     | 
    
         
            +
                    bar.check_tty = False
         
     | 
| 
      
 461 
     | 
    
         
            +
                    for chunk_index in range(1, self.const_max_size + 1):
         
     | 
| 
      
 462 
     | 
    
         
            +
                        # Set the file root
         
     | 
| 
      
 463 
     | 
    
         
            +
                        annot_file = f'{self.annot_root}/{self.data_name}_chunk{chunk_index}/{self.data_name}.{chr}.feather'
         
     | 
| 
      
 464 
     | 
    
         
            +
                        ld_score_file = f'{self.annot_root}/{self.data_name}_chunk{chunk_index}/{self.data_name}.{chr}.l2.ldscore.feather'
         
     | 
| 
      
 465 
     | 
    
         
            +
                        M_file = f'{self.annot_root}/{self.data_name}_chunk{chunk_index}/{self.data_name}.{chr}.l2.M'
         
     | 
| 
      
 466 
     | 
    
         
            +
                        M_5_file = f'{self.annot_root}/{self.data_name}_chunk{chunk_index}/{self.data_name}.{chr}.l2.M_5_50'
         
     | 
| 
      
 467 
     | 
    
         
            +
             
     | 
| 
      
 468 
     | 
    
         
            +
                        # Compute annotations of the current chunk
         
     | 
| 
      
 469 
     | 
    
         
            +
                        self.compute_ldscore_chunk(annot_file, ld_score_file, M_file, M_5_file, geno_array, block_left, snp)
         
     | 
| 
      
 470 
     | 
    
         
            +
             
     | 
| 
      
 471 
     | 
    
         
            +
                        bar.next()
         
     | 
| 
      
 472 
     | 
    
         
            +
             
     | 
| 
      
 473 
     | 
    
         
            +
                    bar.finish()
         
     | 
| 
      
 474 
     | 
    
         
            +
             
     | 
| 
      
 475 
     | 
    
         
            +
             
     | 
| 
      
 476 
     | 
    
         
            +
             
     | 
| 
      
 477 
     | 
    
         
            +
            def add_make_annotation_args(parser):
         
     | 
| 
      
 478 
     | 
    
         
            +
                parser.add_argument('--input_feather_file', required=True, type=str, help='Input feather file for marker genes score (output of gsMap latent_to_gene)')
         
     | 
| 
      
 479 
     | 
    
         
            +
                parser.add_argument('--output_dir', required=True, type=str, help='Output directory to save the SNP annotation files')
         
     | 
| 
      
 480 
     | 
    
         
            +
                parser.add_argument('--sample_name', type=str, help='Name of the sample', required=True)
         
     | 
| 
      
 481 
     | 
    
         
            +
                parser.add_argument('--gtf_annotation_file', default=None, type=str, help='Path to the GTF file', required=True)
         
     | 
| 
      
 482 
     | 
    
         
            +
                parser.add_argument('--bfile_root', default=None, type=str, help='Bfile root for LD score', required=True)
         
     | 
| 
      
 483 
     | 
    
         
            +
                parser.add_argument('--baseline_annotation', default=None, type=str, help='Baseline annotation')
         
     | 
| 
      
 484 
     | 
    
         
            +
                parser.add_argument('--keep_snp_root', default=None, type=str,
         
     | 
| 
      
 485 
     | 
    
         
            +
                                    help='Only keep these SNP file after calculating LD score')
         
     | 
| 
      
 486 
     | 
    
         
            +
                parser.add_argument('--chr', default=None, type=int, help='Chromosome ID', )
         
     | 
| 
      
 487 
     | 
    
         
            +
                parser.add_argument('--window_size', default=50000, type=int,
         
     | 
| 
      
 488 
     | 
    
         
            +
                                    help='Window size for SNP annotation')
         
     | 
| 
      
 489 
     | 
    
         
            +
                parser.add_argument('--cells_per_chunk', default=500, type=int,
         
     | 
| 
      
 490 
     | 
    
         
            +
                                    help='Chunk size for number of cells for batch processing')
         
     | 
| 
      
 491 
     | 
    
         
            +
                parser.add_argument('--ld_wind', default=1, type=float)
         
     | 
| 
      
 492 
     | 
    
         
            +
                parser.add_argument('--ld_wind_unit', default='CM', type=str, choices=['CM', 'BP', 'SNP'],
         
     | 
| 
      
 493 
     | 
    
         
            +
                                    help='LD window size unit')
         
     | 
| 
      
 494 
     | 
    
         
            +
                parser.add_argument('--r2_cache_dir', default=None, type=str, help='Directory for r2 cache')
         
     | 
| 
      
 495 
     | 
    
         
            +
                parser.add_argument('--use_gpu', action='store_true', help='Whether to use GPU to compute LD score')
         
     | 
| 
      
 496 
     | 
    
         
            +
                parser.add_argument('--snps_per_chunk', default=50_000, type=int,
         
     | 
| 
      
 497 
     | 
    
         
            +
                                    help='Chunk size for number of SNPs for batch processing')
         
     | 
| 
      
 498 
     | 
    
         
            +
             
     | 
| 
      
 499 
     | 
    
         
            +
             
     | 
| 
      
 500 
     | 
    
         
            +
            # Defin the Container for plink files
         
     | 
| 
      
 501 
     | 
    
         
            +
             
     | 
| 
      
 502 
     | 
    
         
            +
            def run_make_annotation(args: MakeAnnotationConfig):
         
     | 
| 
      
 503 
     | 
    
         
            +
             
     | 
| 
      
 504 
     | 
    
         
            +
                snp_annotate = Snp_Annotator(mk_score_file=args.input_feather_file,
         
     | 
| 
      
 505 
     | 
    
         
            +
                                             gtf_file=args.gtf_file,
         
     | 
| 
      
 506 
     | 
    
         
            +
                                             bfile_root=args.bfile_root,
         
     | 
| 
      
 507 
     | 
    
         
            +
                                             annot_root=Path(args.output_dir),
         
     | 
| 
      
 508 
     | 
    
         
            +
                                             annot_name=args.sample_name,
         
     | 
| 
      
 509 
     | 
    
         
            +
                                             chr=args.chr,
         
     | 
| 
      
 510 
     | 
    
         
            +
                                             base_root=args.baseline_annotation,
         
     | 
| 
      
 511 
     | 
    
         
            +
                                             window_size=args.window_size,
         
     | 
| 
      
 512 
     | 
    
         
            +
                                             const_max_size=args.cells_per_chunk
         
     | 
| 
      
 513 
     | 
    
         
            +
                                             )
         
     | 
| 
      
 514 
     | 
    
         
            +
                const_max_size = snp_annotate.annotate()
         
     | 
| 
      
 515 
     | 
    
         
            +
                ldscore_generate = LDscore_Generator(
         
     | 
| 
      
 516 
     | 
    
         
            +
                    args, const_max_size
         
     | 
| 
      
 517 
     | 
    
         
            +
                )
         
     | 
| 
      
 518 
     | 
    
         
            +
                ldscore_generate.compute_ldscore()
         
     |