gsMap 1.67__py3-none-any.whl → 1.70__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
File without changes
@@ -1,75 +1,75 @@
1
- import numpy as np
2
- import pandas as pd
3
- import scipy.sparse as sp
4
- from sklearn.neighbors import NearestNeighbors
5
- import torch
6
-
7
- def cal_spatial_net(adata, n_neighbors=5, verbose=True):
8
- """Construct the spatial neighbor network."""
9
- if verbose:
10
- print('------Calculating spatial graph...')
11
- coor = pd.DataFrame(adata.obsm['spatial'], index=adata.obs.index)
12
- nbrs = NearestNeighbors(n_neighbors=n_neighbors).fit(coor)
13
- distances, indices = nbrs.kneighbors(coor)
14
- n_cells, n_neighbors = indices.shape
15
- cell_indices = np.arange(n_cells)
16
- cell1 = np.repeat(cell_indices, n_neighbors)
17
- cell2 = indices.flatten()
18
- distance = distances.flatten()
19
- knn_df = pd.DataFrame({'Cell1': cell1, 'Cell2': cell2, 'Distance': distance})
20
- knn_df = knn_df[knn_df['Distance'] > 0].copy()
21
- cell_id_map = dict(zip(cell_indices, coor.index))
22
- knn_df['Cell1'] = knn_df['Cell1'].map(cell_id_map)
23
- knn_df['Cell2'] = knn_df['Cell2'].map(cell_id_map)
24
- return knn_df
25
-
26
- def sparse_mx_to_torch_sparse_tensor(sparse_mx):
27
- """Convert a scipy sparse matrix to a torch sparse tensor."""
28
- sparse_mx = sparse_mx.tocoo().astype(np.float32)
29
- indices = torch.from_numpy(
30
- np.vstack((sparse_mx.row, sparse_mx.col)).astype(np.int64)
31
- )
32
- values = torch.from_numpy(sparse_mx.data)
33
- shape = torch.Size(sparse_mx.shape)
34
- return torch.sparse.FloatTensor(indices, values, shape)
35
-
36
- def preprocess_graph(adj):
37
- """Symmetrically normalize the adjacency matrix."""
38
- adj = sp.coo_matrix(adj)
39
- adj_ = adj + sp.eye(adj.shape[0])
40
- rowsum = np.array(adj_.sum(1)).flatten()
41
- degree_mat_inv_sqrt = sp.diags(np.power(rowsum, -0.5))
42
- adj_normalized = adj_.dot(degree_mat_inv_sqrt).transpose().dot(degree_mat_inv_sqrt).tocoo()
43
- return sparse_mx_to_torch_sparse_tensor(adj_normalized)
44
-
45
- def construct_adjacency_matrix(adata, params, verbose=True):
46
- """Construct the adjacency matrix from spatial data."""
47
- spatial_net = cal_spatial_net(adata, n_neighbors=params.n_neighbors, verbose=verbose)
48
- if verbose:
49
- num_edges = spatial_net.shape[0]
50
- num_cells = adata.n_obs
51
- print(f'The graph contains {num_edges} edges, {num_cells} cells.')
52
- print(f'{num_edges / num_cells:.2f} neighbors per cell on average.')
53
- cell_ids = {cell: idx for idx, cell in enumerate(adata.obs.index)}
54
- spatial_net['Cell1'] = spatial_net['Cell1'].map(cell_ids)
55
- spatial_net['Cell2'] = spatial_net['Cell2'].map(cell_ids)
56
- if params.weighted_adj:
57
- distance_normalized = spatial_net['Distance'] / (spatial_net['Distance'].max() + 1)
58
- weights = np.exp(-0.5 * distance_normalized ** 2)
59
- adj_org = sp.coo_matrix(
60
- (weights, (spatial_net['Cell1'], spatial_net['Cell2'])),
61
- shape=(adata.n_obs, adata.n_obs)
62
- )
63
- else:
64
- adj_org = sp.coo_matrix(
65
- (np.ones(spatial_net.shape[0]), (spatial_net['Cell1'], spatial_net['Cell2'])),
66
- shape=(adata.n_obs, adata.n_obs)
67
- )
68
- adj_norm = preprocess_graph(adj_org)
69
- norm_value = adj_org.shape[0] ** 2 / ((adj_org.shape[0] ** 2 - adj_org.sum()) * 2)
70
- graph_dict = {
71
- "adj_org": adj_org,
72
- "adj_norm": adj_norm,
73
- "norm_value": norm_value
74
- }
75
- return graph_dict
1
+ import numpy as np
2
+ import pandas as pd
3
+ import scipy.sparse as sp
4
+ from sklearn.neighbors import NearestNeighbors
5
+ import torch
6
+
7
+ def cal_spatial_net(adata, n_neighbors=5, verbose=True):
8
+ """Construct the spatial neighbor network."""
9
+ if verbose:
10
+ print('------Calculating spatial graph...')
11
+ coor = pd.DataFrame(adata.obsm['spatial'], index=adata.obs.index)
12
+ nbrs = NearestNeighbors(n_neighbors=n_neighbors).fit(coor)
13
+ distances, indices = nbrs.kneighbors(coor)
14
+ n_cells, n_neighbors = indices.shape
15
+ cell_indices = np.arange(n_cells)
16
+ cell1 = np.repeat(cell_indices, n_neighbors)
17
+ cell2 = indices.flatten()
18
+ distance = distances.flatten()
19
+ knn_df = pd.DataFrame({'Cell1': cell1, 'Cell2': cell2, 'Distance': distance})
20
+ knn_df = knn_df[knn_df['Distance'] > 0].copy()
21
+ cell_id_map = dict(zip(cell_indices, coor.index))
22
+ knn_df['Cell1'] = knn_df['Cell1'].map(cell_id_map)
23
+ knn_df['Cell2'] = knn_df['Cell2'].map(cell_id_map)
24
+ return knn_df
25
+
26
+ def sparse_mx_to_torch_sparse_tensor(sparse_mx):
27
+ """Convert a scipy sparse matrix to a torch sparse tensor."""
28
+ sparse_mx = sparse_mx.tocoo().astype(np.float32)
29
+ indices = torch.from_numpy(
30
+ np.vstack((sparse_mx.row, sparse_mx.col)).astype(np.int64)
31
+ )
32
+ values = torch.from_numpy(sparse_mx.data)
33
+ shape = torch.Size(sparse_mx.shape)
34
+ return torch.sparse_coo_tensor(indices, values, shape)
35
+
36
+ def preprocess_graph(adj):
37
+ """Symmetrically normalize the adjacency matrix."""
38
+ adj = sp.coo_matrix(adj)
39
+ adj_ = adj + sp.eye(adj.shape[0])
40
+ rowsum = np.array(adj_.sum(1)).flatten()
41
+ degree_mat_inv_sqrt = sp.diags(np.power(rowsum, -0.5))
42
+ adj_normalized = adj_.dot(degree_mat_inv_sqrt).transpose().dot(degree_mat_inv_sqrt).tocoo()
43
+ return sparse_mx_to_torch_sparse_tensor(adj_normalized)
44
+
45
+ def construct_adjacency_matrix(adata, params, verbose=True):
46
+ """Construct the adjacency matrix from spatial data."""
47
+ spatial_net = cal_spatial_net(adata, n_neighbors=params.n_neighbors, verbose=verbose)
48
+ if verbose:
49
+ num_edges = spatial_net.shape[0]
50
+ num_cells = adata.n_obs
51
+ print(f'The graph contains {num_edges} edges, {num_cells} cells.')
52
+ print(f'{num_edges / num_cells:.2f} neighbors per cell on average.')
53
+ cell_ids = {cell: idx for idx, cell in enumerate(adata.obs.index)}
54
+ spatial_net['Cell1'] = spatial_net['Cell1'].map(cell_ids)
55
+ spatial_net['Cell2'] = spatial_net['Cell2'].map(cell_ids)
56
+ if params.weighted_adj:
57
+ distance_normalized = spatial_net['Distance'] / (spatial_net['Distance'].max() + 1)
58
+ weights = np.exp(-0.5 * distance_normalized ** 2)
59
+ adj_org = sp.coo_matrix(
60
+ (weights, (spatial_net['Cell1'], spatial_net['Cell2'])),
61
+ shape=(adata.n_obs, adata.n_obs)
62
+ )
63
+ else:
64
+ adj_org = sp.coo_matrix(
65
+ (np.ones(spatial_net.shape[0]), (spatial_net['Cell1'], spatial_net['Cell2'])),
66
+ shape=(adata.n_obs, adata.n_obs)
67
+ )
68
+ adj_norm = preprocess_graph(adj_org)
69
+ norm_value = adj_org.shape[0] ** 2 / ((adj_org.shape[0] ** 2 - adj_org.sum()) * 2)
70
+ graph_dict = {
71
+ "adj_org": adj_org,
72
+ "adj_norm": adj_norm,
73
+ "norm_value": norm_value
74
+ }
75
+ return graph_dict
@@ -1,89 +1,89 @@
1
- import torch
2
- import torch.nn as nn
3
- import torch.nn.functional as F
4
- from torch_geometric.nn import GATConv
5
-
6
- def full_block(in_features, out_features, p_drop):
7
- return nn.Sequential(
8
- nn.Linear(in_features, out_features),
9
- nn.BatchNorm1d(out_features),
10
- nn.ELU(),
11
- nn.Dropout(p=p_drop)
12
- )
13
-
14
- class GATModel(nn.Module):
15
- def __init__(self, input_dim, params, num_classes=1):
16
- super().__init__()
17
- self.var = params.var
18
- self.num_classes = num_classes
19
- self.params = params
20
-
21
- # Encoder
22
- self.encoder = nn.Sequential(
23
- full_block(input_dim, params.feat_hidden1, params.p_drop),
24
- full_block(params.feat_hidden1, params.feat_hidden2, params.p_drop)
25
- )
26
-
27
- # GAT Layers
28
- self.gat1 = GATConv(
29
- in_channels=params.feat_hidden2,
30
- out_channels=params.gat_hidden1,
31
- heads=params.nheads,
32
- dropout=params.p_drop
33
- )
34
- self.gat2 = GATConv(
35
- in_channels=params.gat_hidden1 * params.nheads,
36
- out_channels=params.gat_hidden2,
37
- heads=1,
38
- concat=False,
39
- dropout=params.p_drop
40
- )
41
- if self.var:
42
- self.gat3 = GATConv(
43
- in_channels=params.gat_hidden1 * params.nheads,
44
- out_channels=params.gat_hidden2,
45
- heads=1,
46
- concat=False,
47
- dropout=params.p_drop
48
- )
49
-
50
- # Decoder
51
- self.decoder = nn.Sequential(
52
- full_block(params.gat_hidden2, params.feat_hidden2, params.p_drop),
53
- full_block(params.feat_hidden2, params.feat_hidden1, params.p_drop),
54
- nn.Linear(params.feat_hidden1, input_dim)
55
- )
56
-
57
- # Clustering Layer
58
- self.cluster = nn.Sequential(
59
- full_block(params.gat_hidden2, params.feat_hidden2, params.p_drop),
60
- nn.Linear(params.feat_hidden2, self.num_classes)
61
- )
62
-
63
- def encode(self, x, edge_index):
64
- x = self.encoder(x)
65
- x = self.gat1(x, edge_index)
66
- x = F.relu(x)
67
- x = F.dropout(x, p=self.params.p_drop, training=self.training)
68
-
69
- mu = self.gat2(x, edge_index)
70
- if self.var:
71
- logvar = self.gat3(x, edge_index)
72
- return mu, logvar
73
- else:
74
- return mu, None
75
-
76
- def reparameterize(self, mu, logvar):
77
- if self.training and logvar is not None:
78
- std = torch.exp(0.5 * logvar)
79
- eps = torch.randn_like(std)
80
- return eps * std + mu
81
- else:
82
- return mu
83
-
84
- def forward(self, x, edge_index):
85
- mu, logvar = self.encode(x, edge_index)
86
- z = self.reparameterize(mu, logvar)
87
- x_reconstructed = self.decoder(z)
88
- pred_label = F.softmax(self.cluster(z), dim=1)
89
- return pred_label, x_reconstructed, z, mu, logvar
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+ from torch_geometric.nn import GATConv
5
+
6
+ def full_block(in_features, out_features, p_drop):
7
+ return nn.Sequential(
8
+ nn.Linear(in_features, out_features),
9
+ nn.BatchNorm1d(out_features),
10
+ nn.ELU(),
11
+ nn.Dropout(p=p_drop)
12
+ )
13
+
14
+ class GATModel(nn.Module):
15
+ def __init__(self, input_dim, params, num_classes=1):
16
+ super().__init__()
17
+ self.var = params.var
18
+ self.num_classes = num_classes
19
+ self.params = params
20
+
21
+ # Encoder
22
+ self.encoder = nn.Sequential(
23
+ full_block(input_dim, params.feat_hidden1, params.p_drop),
24
+ full_block(params.feat_hidden1, params.feat_hidden2, params.p_drop)
25
+ )
26
+
27
+ # GAT Layers
28
+ self.gat1 = GATConv(
29
+ in_channels=params.feat_hidden2,
30
+ out_channels=params.gat_hidden1,
31
+ heads=params.nheads,
32
+ dropout=params.p_drop
33
+ )
34
+ self.gat2 = GATConv(
35
+ in_channels=params.gat_hidden1 * params.nheads,
36
+ out_channels=params.gat_hidden2,
37
+ heads=1,
38
+ concat=False,
39
+ dropout=params.p_drop
40
+ )
41
+ if self.var:
42
+ self.gat3 = GATConv(
43
+ in_channels=params.gat_hidden1 * params.nheads,
44
+ out_channels=params.gat_hidden2,
45
+ heads=1,
46
+ concat=False,
47
+ dropout=params.p_drop
48
+ )
49
+
50
+ # Decoder
51
+ self.decoder = nn.Sequential(
52
+ full_block(params.gat_hidden2, params.feat_hidden2, params.p_drop),
53
+ full_block(params.feat_hidden2, params.feat_hidden1, params.p_drop),
54
+ nn.Linear(params.feat_hidden1, input_dim)
55
+ )
56
+
57
+ # Clustering Layer
58
+ self.cluster = nn.Sequential(
59
+ full_block(params.gat_hidden2, params.feat_hidden2, params.p_drop),
60
+ nn.Linear(params.feat_hidden2, self.num_classes)
61
+ )
62
+
63
+ def encode(self, x, edge_index):
64
+ x = self.encoder(x)
65
+ x = self.gat1(x, edge_index)
66
+ x = F.relu(x)
67
+ x = F.dropout(x, p=self.params.p_drop, training=self.training)
68
+
69
+ mu = self.gat2(x, edge_index)
70
+ if self.var:
71
+ logvar = self.gat3(x, edge_index)
72
+ return mu, logvar
73
+ else:
74
+ return mu, None
75
+
76
+ def reparameterize(self, mu, logvar):
77
+ if self.training and logvar is not None:
78
+ std = torch.exp(0.5 * logvar)
79
+ eps = torch.randn_like(std)
80
+ return eps * std + mu
81
+ else:
82
+ return mu
83
+
84
+ def forward(self, x, edge_index):
85
+ mu, logvar = self.encode(x, edge_index)
86
+ z = self.reparameterize(mu, logvar)
87
+ x_reconstructed = self.decoder(z)
88
+ pred_label = F.softmax(self.cluster(z), dim=1)
89
+ return pred_label, x_reconstructed, z, mu, logvar
@@ -1,86 +1,88 @@
1
- import logging
2
- import time
3
-
4
- import torch
5
- import torch.nn.functional as F
6
- from progress.bar import Bar
7
-
8
- from gsMap.GNN_VAE.model import GATModel
9
-
10
- logger = logging.getLogger(__name__)
11
-
12
-
13
- def reconstruction_loss(decoded, x):
14
- """Compute the mean squared error loss."""
15
- return F.mse_loss(decoded, x)
16
-
17
-
18
- def label_loss(pred_label, true_label):
19
- """Compute the cross-entropy loss."""
20
- return F.cross_entropy(pred_label, true_label)
21
-
22
- class ModelTrainer:
23
- def __init__(self, node_x, graph_dict, params, label=None):
24
- """Initialize the ModelTrainer with data and hyperparameters."""
25
- self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
26
- self.params = params
27
- self.epochs = params.epochs
28
- self.node_x = torch.FloatTensor(node_x).to(self.device)
29
- self.adj_norm = graph_dict["adj_norm"].to(self.device).coalesce()
30
- self.label = label
31
- self.num_classes = 1
32
-
33
- if self.label is not None:
34
- self.label = torch.tensor(self.label).to(self.device)
35
- self.num_classes = len(torch.unique(self.label))
36
-
37
- # Set up the model
38
- self.model = GATModel(self.params.feat_cell, self.params, self.num_classes).to(self.device)
39
- self.optimizer = torch.optim.Adam(
40
- self.model.parameters(),
41
- lr=self.params.gat_lr,
42
- weight_decay=self.params.gcn_decay
43
- )
44
-
45
- def run_train(self):
46
- """Train the model."""
47
- self.model.train()
48
- prev_loss = float('inf')
49
- bar = Bar('GAT-AE model train:', max=self.epochs)
50
- bar.check_tty = False
51
-
52
- logger.info('Start training...')
53
- for epoch in range(self.epochs):
54
- start_time = time.time()
55
- self.optimizer.zero_grad()
56
- pred_label, de_feat, latent_z, mu, logvar = self.model(self.node_x, self.adj_norm)
57
- loss_rec = reconstruction_loss(de_feat, self.node_x)
58
-
59
- if self.label is not None:
60
- loss_pre = label_loss(pred_label, self.label)
61
- loss = self.params.rec_w * loss_rec + self.params.label_w * loss_pre
62
- else:
63
- loss = loss_rec
64
-
65
- loss.backward()
66
- self.optimizer.step()
67
-
68
- batch_time = time.time() - start_time
69
- left_time = batch_time * (self.epochs - epoch - 1) / 60 # in minutes
70
-
71
- bar.suffix = f'{epoch + 1} / {self.epochs} | Left time: {left_time:.2f} mins | Loss: {loss.item():.4f}'
72
- bar.next()
73
-
74
- if abs(loss.item() - prev_loss) <= self.params.convergence_threshold and epoch >= 200:
75
- logger.info('\nConvergence reached. Training stopped.')
76
- break
77
-
78
- prev_loss = loss.item()
79
- bar.finish()
80
-
81
- def get_latent(self):
82
- """Retrieve the latent representation from the model."""
83
- self.model.eval()
84
- with torch.no_grad():
85
- _, _, latent_z, _, _ = self.model(self.node_x, self.adj_norm)
86
- return latent_z.cpu().numpy()
1
+ import logging
2
+ import time
3
+
4
+ import torch
5
+ import torch.nn.functional as F
6
+ from tqdm import tqdm
7
+
8
+ from gsMap.GNN.model import GATModel
9
+
10
+ logger = logging.getLogger(__name__)
11
+
12
+
13
+ def reconstruction_loss(decoded, x):
14
+ """Compute the mean squared error loss."""
15
+ return F.mse_loss(decoded, x)
16
+
17
+
18
+ def label_loss(pred_label, true_label):
19
+ """Compute the cross-entropy loss."""
20
+ return F.cross_entropy(pred_label, true_label)
21
+
22
+
23
+ class ModelTrainer:
24
+ def __init__(self, node_x, graph_dict, params, label=None):
25
+ """Initialize the ModelTrainer with data and hyperparameters."""
26
+ self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
27
+ self.params = params
28
+ self.epochs = params.epochs
29
+ self.node_x = torch.FloatTensor(node_x).to(self.device)
30
+ self.adj_norm = graph_dict["adj_norm"].to(self.device).coalesce()
31
+ self.label = label
32
+ self.num_classes = 1
33
+
34
+ if self.label is not None:
35
+ self.label = torch.tensor(self.label).to(self.device)
36
+ self.num_classes = len(torch.unique(self.label))
37
+
38
+ # Set up the model
39
+ self.model = GATModel(self.params.feat_cell, self.params, self.num_classes).to(self.device)
40
+ self.optimizer = torch.optim.Adam(
41
+ self.model.parameters(),
42
+ lr=self.params.gat_lr,
43
+ weight_decay=self.params.gcn_decay
44
+ )
45
+
46
+ def run_train(self):
47
+ """Train the model."""
48
+ self.model.train()
49
+ prev_loss = float('inf')
50
+ logger.info('Start training...')
51
+ pbar = tqdm(range(self.epochs), desc='GAT-AE model train:', total=self.epochs)
52
+ for epoch in range(self.epochs):
53
+ start_time = time.time()
54
+ self.optimizer.zero_grad()
55
+ pred_label, de_feat, latent_z, mu, logvar = self.model(self.node_x, self.adj_norm)
56
+ loss_rec = reconstruction_loss(de_feat, self.node_x)
57
+
58
+ if self.label is not None:
59
+ loss_pre = label_loss(pred_label, self.label)
60
+ loss = self.params.rec_w * loss_rec + self.params.label_w * loss_pre
61
+ else:
62
+ loss = loss_rec
63
+
64
+ loss.backward()
65
+ self.optimizer.step()
66
+
67
+ batch_time = time.time() - start_time
68
+ left_time = batch_time * (self.epochs - epoch - 1) / 60 # in minutes
69
+
70
+ pbar.set_postfix({'Left time': f'{left_time:.2f} mins', 'Loss': f'{loss.item():.4f}'})
71
+ pbar.update(1)
72
+
73
+ if abs(loss.item() - prev_loss) <= self.params.convergence_threshold and epoch >= 200:
74
+ pbar.close()
75
+ logger.info('Convergence reached. Training stopped.')
76
+ break
77
+ prev_loss = loss.item()
78
+ else:
79
+ pbar.close()
80
+ logger.info('Max epochs reached. Training stopped.')
81
+
82
+
83
+ def get_latent(self):
84
+ """Retrieve the latent representation from the model."""
85
+ self.model.eval()
86
+ with torch.no_grad():
87
+ _, _, latent_z, _, _ = self.model(self.node_x, self.adj_norm)
88
+ return latent_z.cpu().numpy()
gsMap/__init__.py CHANGED
@@ -1,5 +1,5 @@
1
- '''
2
- Genetics-informed pathogenic spatial mapping
3
- '''
4
-
5
- __version__ = '1.67'
1
+ '''
2
+ Genetics-informed pathogenic spatial mapping
3
+ '''
4
+
5
+ __version__ = '1.70'
gsMap/__main__.py CHANGED
@@ -1,3 +1,3 @@
1
- from .main import main
2
- if __name__ == '__main__':
1
+ from .main import main
2
+ if __name__ == '__main__':
3
3
  main()