grasp-tool 0.1.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- grasp_tool/__init__.py +17 -0
- grasp_tool/__main__.py +6 -0
- grasp_tool/cli/__init__.py +1 -0
- grasp_tool/cli/main.py +793 -0
- grasp_tool/cli/train_moco.py +778 -0
- grasp_tool/gnn/__init__.py +1 -0
- grasp_tool/gnn/embedding.py +165 -0
- grasp_tool/gnn/gat_moco_final.py +990 -0
- grasp_tool/gnn/graphloader.py +1748 -0
- grasp_tool/gnn/plot_refined.py +1556 -0
- grasp_tool/preprocessing/__init__.py +1 -0
- grasp_tool/preprocessing/augumentation.py +66 -0
- grasp_tool/preprocessing/cellplot.py +475 -0
- grasp_tool/preprocessing/filter.py +171 -0
- grasp_tool/preprocessing/network.py +79 -0
- grasp_tool/preprocessing/partition.py +654 -0
- grasp_tool/preprocessing/portrait.py +1862 -0
- grasp_tool/preprocessing/register.py +1021 -0
- grasp_tool-0.1.0.dist-info/METADATA +511 -0
- grasp_tool-0.1.0.dist-info/RECORD +22 -0
- grasp_tool-0.1.0.dist-info/WHEEL +4 -0
- grasp_tool-0.1.0.dist-info/entry_points.txt +3 -0
|
@@ -0,0 +1,654 @@
|
|
|
1
|
+
import numpy as np
|
|
2
|
+
import pandas as pd
|
|
3
|
+
import matplotlib.pyplot as plt
|
|
4
|
+
from sklearn.neighbors import KernelDensity
|
|
5
|
+
import seaborn as sns
|
|
6
|
+
import pickle
|
|
7
|
+
from shapely.geometry import Polygon, Point
|
|
8
|
+
import warnings
|
|
9
|
+
from scipy.spatial import distance_matrix
|
|
10
|
+
from tqdm import tqdm
|
|
11
|
+
import os
|
|
12
|
+
from itertools import combinations
|
|
13
|
+
from sklearn.metrics.pairwise import cosine_similarity
|
|
14
|
+
from sklearn.decomposition import PCA
|
|
15
|
+
from sklearn.manifold import TSNE
|
|
16
|
+
from sklearn.cluster import KMeans
|
|
17
|
+
from sklearn.metrics import silhouette_score
|
|
18
|
+
from sklearn.neighbors import NearestNeighbors
|
|
19
|
+
from sklearn.cluster import SpectralClustering
|
|
20
|
+
import multiprocessing as mp
|
|
21
|
+
import networkx as nx
|
|
22
|
+
|
|
23
|
+
# import ot
|
|
24
|
+
from matplotlib.patches import PathPatch
|
|
25
|
+
from matplotlib.path import Path
|
|
26
|
+
|
|
27
|
+
warnings.filterwarnings("ignore")
|
|
28
|
+
|
|
29
|
+
|
|
30
|
+
def classify_center_points_with_edge(
|
|
31
|
+
center_points, nuclear_boundary_df_registered, is_edge, epsilon=0.1
|
|
32
|
+
):
|
|
33
|
+
polygon_coords = list(
|
|
34
|
+
zip(
|
|
35
|
+
nuclear_boundary_df_registered["x_c_s"],
|
|
36
|
+
nuclear_boundary_df_registered["y_c_s"],
|
|
37
|
+
)
|
|
38
|
+
)
|
|
39
|
+
polygon = Polygon(polygon_coords)
|
|
40
|
+
classifications = []
|
|
41
|
+
for idx, point in enumerate(center_points):
|
|
42
|
+
if is_edge[idx]:
|
|
43
|
+
classifications.append("edge")
|
|
44
|
+
continue
|
|
45
|
+
point_geom = Point(point)
|
|
46
|
+
if polygon.contains(point_geom):
|
|
47
|
+
classifications.append("inside")
|
|
48
|
+
elif polygon.touches(point_geom):
|
|
49
|
+
classifications.append("boundary")
|
|
50
|
+
else:
|
|
51
|
+
distance_to_boundary = polygon.boundary.distance(point_geom)
|
|
52
|
+
if distance_to_boundary <= epsilon:
|
|
53
|
+
classifications.append("boundary")
|
|
54
|
+
else:
|
|
55
|
+
classifications.append("outside")
|
|
56
|
+
return classifications
|
|
57
|
+
|
|
58
|
+
|
|
59
|
+
def save_node_data_to_csv_old(
|
|
60
|
+
center_points, is_virtual, plot_dir, gene, node_counts, k, nuclear_positions
|
|
61
|
+
):
|
|
62
|
+
node_data = []
|
|
63
|
+
for idx, (x, y) in enumerate(center_points):
|
|
64
|
+
node_data.append(
|
|
65
|
+
{
|
|
66
|
+
"node_id": idx,
|
|
67
|
+
"x": x,
|
|
68
|
+
"y": y,
|
|
69
|
+
"is_virtual": 1 if is_virtual[idx] else 0,
|
|
70
|
+
"count": node_counts[idx],
|
|
71
|
+
"nuclear_position": nuclear_positions[idx],
|
|
72
|
+
}
|
|
73
|
+
)
|
|
74
|
+
node_df = pd.DataFrame(node_data)
|
|
75
|
+
node_df.to_csv(os.path.join(plot_dir, f"{gene}_node_matrix.csv"), index=False)
|
|
76
|
+
num_nodes = len(center_points)
|
|
77
|
+
distance_matrix = np.zeros((num_nodes, num_nodes))
|
|
78
|
+
|
|
79
|
+
for i in range(num_nodes):
|
|
80
|
+
for j in range(num_nodes):
|
|
81
|
+
if i == j:
|
|
82
|
+
distance_matrix[i, j] = 0
|
|
83
|
+
elif is_virtual[i] and is_virtual[j]:
|
|
84
|
+
# distance_matrix[i, j] = np.inf
|
|
85
|
+
distance_matrix[i, j] = 1e6
|
|
86
|
+
elif is_virtual[i] or is_virtual[j]:
|
|
87
|
+
# distance_matrix[i, j] = np.inf
|
|
88
|
+
distance_matrix[i, j] = 1e6
|
|
89
|
+
else:
|
|
90
|
+
distance_matrix[i, j] = np.linalg.norm(
|
|
91
|
+
np.array(center_points[i]) - np.array(center_points[j])
|
|
92
|
+
)
|
|
93
|
+
distance_matrix = pd.DataFrame(distance_matrix)
|
|
94
|
+
distance_matrix.to_csv(
|
|
95
|
+
os.path.join(plot_dir, f"{gene}_dis_matrix.csv"), index=False
|
|
96
|
+
)
|
|
97
|
+
adjacency_matrix = np.zeros((num_nodes, num_nodes), dtype=int)
|
|
98
|
+
for i in range(num_nodes):
|
|
99
|
+
if is_virtual[i]:
|
|
100
|
+
continue
|
|
101
|
+
nearest_indices = np.argsort(distance_matrix[i])[: k + 1]
|
|
102
|
+
for idx in nearest_indices:
|
|
103
|
+
if not is_virtual[idx]:
|
|
104
|
+
adjacency_matrix[i, idx] = 1
|
|
105
|
+
np.fill_diagonal(adjacency_matrix, 0)
|
|
106
|
+
# Make adjacency symmetric.
|
|
107
|
+
adjacency_matrix = np.maximum(adjacency_matrix, adjacency_matrix.T)
|
|
108
|
+
adjacency_matrix = pd.DataFrame(adjacency_matrix)
|
|
109
|
+
adjacency_matrix.to_csv(
|
|
110
|
+
os.path.join(plot_dir, f"{gene}_adj_matrix.csv"), index=False
|
|
111
|
+
)
|
|
112
|
+
|
|
113
|
+
|
|
114
|
+
# Count points per sector/ring (shared centroid locations)
|
|
115
|
+
def count_points_in_areas_same(df, n_sectors, m_rings, r):
|
|
116
|
+
df["theta"] = np.arctan2(df["y_c_s"], df["x_c_s"])
|
|
117
|
+
df["radius"] = np.sqrt(df["x_c_s"] ** 2 + df["y_c_s"] ** 2)
|
|
118
|
+
count_matrix = np.zeros((m_rings, n_sectors))
|
|
119
|
+
theta_edges = np.linspace(-np.pi, np.pi, n_sectors + 1)
|
|
120
|
+
radius_edges = np.linspace(0, r, m_rings + 1)
|
|
121
|
+
center_points = []
|
|
122
|
+
point_counts = []
|
|
123
|
+
is_virtual = []
|
|
124
|
+
is_edge = []
|
|
125
|
+
for i in range(m_rings):
|
|
126
|
+
for j in range(n_sectors):
|
|
127
|
+
points_in_ring = df[
|
|
128
|
+
(df["radius"] > radius_edges[i]) & (df["radius"] <= radius_edges[i + 1])
|
|
129
|
+
]
|
|
130
|
+
points_in_sector = points_in_ring[
|
|
131
|
+
(points_in_ring["theta"] >= theta_edges[j])
|
|
132
|
+
& (points_in_ring["theta"] < theta_edges[j + 1])
|
|
133
|
+
]
|
|
134
|
+
count = len(points_in_sector)
|
|
135
|
+
count_matrix[i, j] = count
|
|
136
|
+
point_counts.append(count)
|
|
137
|
+
theta_center = (theta_edges[j] + theta_edges[j + 1]) / 2
|
|
138
|
+
radius_center = (radius_edges[i] + radius_edges[i + 1]) / 2
|
|
139
|
+
x_center, y_center = (
|
|
140
|
+
radius_center * np.cos(theta_center),
|
|
141
|
+
radius_center * np.sin(theta_center),
|
|
142
|
+
)
|
|
143
|
+
weight = count if count > 0 else 1
|
|
144
|
+
center_points.append((x_center, y_center))
|
|
145
|
+
is_virtual.append(False if count > 0 else True)
|
|
146
|
+
is_edge.append(True if i == m_rings - 1 or i == m_rings - 2 else False)
|
|
147
|
+
return count_matrix, center_points, point_counts, is_virtual, is_edge
|
|
148
|
+
|
|
149
|
+
|
|
150
|
+
# Count points per sector/ring (centroid varies per sector)
|
|
151
|
+
def count_points_in_areas(df, n_sectors, m_rings, r):
|
|
152
|
+
df["theta"] = np.arctan2(df["y_c_s"], df["x_c_s"])
|
|
153
|
+
df["radius"] = np.sqrt(df["x_c_s"] ** 2 + df["y_c_s"] ** 2)
|
|
154
|
+
count_matrix = np.zeros((m_rings, n_sectors))
|
|
155
|
+
theta_edges = np.linspace(-np.pi, np.pi, n_sectors + 1)
|
|
156
|
+
radius_edges = np.linspace(0, r, m_rings + 1)
|
|
157
|
+
center_points = []
|
|
158
|
+
point_counts = []
|
|
159
|
+
is_virtual = []
|
|
160
|
+
for i in range(m_rings):
|
|
161
|
+
for j in range(n_sectors):
|
|
162
|
+
points_in_ring = df[
|
|
163
|
+
(df["radius"] > radius_edges[i]) & (df["radius"] <= radius_edges[i + 1])
|
|
164
|
+
]
|
|
165
|
+
points_in_sector = points_in_ring[
|
|
166
|
+
(points_in_ring["theta"] >= theta_edges[j])
|
|
167
|
+
& (points_in_ring["theta"] < theta_edges[j + 1])
|
|
168
|
+
]
|
|
169
|
+
count = len(points_in_sector)
|
|
170
|
+
count_matrix[i, j] = count
|
|
171
|
+
point_counts.append(count)
|
|
172
|
+
theta_center = (theta_edges[j] + theta_edges[j + 1]) / 2
|
|
173
|
+
radius_center = (radius_edges[i] + radius_edges[i + 1]) / 2
|
|
174
|
+
x_center, y_center = (
|
|
175
|
+
radius_center * np.cos(theta_center),
|
|
176
|
+
radius_center * np.sin(theta_center),
|
|
177
|
+
)
|
|
178
|
+
if count > 0:
|
|
179
|
+
x_center = points_in_sector["x_c_s"].mean()
|
|
180
|
+
y_center = points_in_sector["y_c_s"].mean()
|
|
181
|
+
is_virtual.append(False)
|
|
182
|
+
else:
|
|
183
|
+
is_virtual.append(True)
|
|
184
|
+
center_points.append((x_center, y_center))
|
|
185
|
+
return count_matrix, center_points, point_counts, is_virtual
|
|
186
|
+
|
|
187
|
+
|
|
188
|
+
def build_graph_k_nearest(center_points, k):
|
|
189
|
+
edges = []
|
|
190
|
+
center_points = np.array(center_points)
|
|
191
|
+
nbrs = NearestNeighbors(n_neighbors=k + 1, algorithm="ball_tree").fit(center_points)
|
|
192
|
+
distances, indices = nbrs.kneighbors(center_points)
|
|
193
|
+
for i, neighbors in enumerate(indices):
|
|
194
|
+
for j in neighbors[1:]:
|
|
195
|
+
edges.append((center_points[i], center_points[j]))
|
|
196
|
+
return edges
|
|
197
|
+
|
|
198
|
+
|
|
199
|
+
# Visualize partition, centers, and edges
|
|
200
|
+
def plot_cell_partition(
|
|
201
|
+
cell,
|
|
202
|
+
df,
|
|
203
|
+
center_points,
|
|
204
|
+
point_counts,
|
|
205
|
+
edges,
|
|
206
|
+
r,
|
|
207
|
+
gene,
|
|
208
|
+
is_virtual,
|
|
209
|
+
n_sectors,
|
|
210
|
+
m_rings,
|
|
211
|
+
plot_dir,
|
|
212
|
+
nuclear_boundary_df_registered,
|
|
213
|
+
):
|
|
214
|
+
fig, ax = plt.subplots(figsize=(4, 4))
|
|
215
|
+
ax.set_aspect("equal")
|
|
216
|
+
ax.axis("off")
|
|
217
|
+
theta = np.linspace(0, 2 * np.pi, n_sectors + 1)
|
|
218
|
+
radii = np.linspace(0, r, m_rings + 1)
|
|
219
|
+
for rad in radii:
|
|
220
|
+
circle = plt.Circle(
|
|
221
|
+
(0, 0), rad, color="grey", fill=False, linestyle="--", linewidth=0.5
|
|
222
|
+
)
|
|
223
|
+
ax.add_artist(circle)
|
|
224
|
+
for angle in theta:
|
|
225
|
+
ax.plot(
|
|
226
|
+
[0, r * np.cos(angle)],
|
|
227
|
+
[0, r * np.sin(angle)],
|
|
228
|
+
color="grey",
|
|
229
|
+
linestyle="--",
|
|
230
|
+
linewidth=0.5,
|
|
231
|
+
)
|
|
232
|
+
ax.scatter(df["x_c_s"], df["y_c_s"], s=1, color="blue", label="Gene Points")
|
|
233
|
+
center_points = np.array(center_points)
|
|
234
|
+
point_sizes = np.array(point_counts) * 0.2
|
|
235
|
+
actual_centers = center_points[np.logical_not(is_virtual)]
|
|
236
|
+
virtual_centers = center_points[is_virtual]
|
|
237
|
+
for edge in edges:
|
|
238
|
+
(x1, y1), (x2, y2) = edge
|
|
239
|
+
start_index = np.where((center_points == (x1, y1)).all(axis=1))[0][0]
|
|
240
|
+
end_index = np.where((center_points == (x2, y2)).all(axis=1))[0][0]
|
|
241
|
+
if is_virtual[start_index] or is_virtual[end_index]:
|
|
242
|
+
line_style = "dashed"
|
|
243
|
+
color = "gainsboro" # color = 'orange'
|
|
244
|
+
else:
|
|
245
|
+
line_style = "solid"
|
|
246
|
+
color = "green"
|
|
247
|
+
ax.plot([x1, x2], [y1, y2], color=color, linestyle=line_style, linewidth=0.3)
|
|
248
|
+
ax.scatter(
|
|
249
|
+
virtual_centers[:, 0], virtual_centers[:, 1], color="gainsboro", s=2
|
|
250
|
+
) # , label="Virtual Region Centers"
|
|
251
|
+
ax.scatter(
|
|
252
|
+
actual_centers[:, 0],
|
|
253
|
+
actual_centers[:, 1],
|
|
254
|
+
color="red",
|
|
255
|
+
s=point_sizes[np.logical_not(is_virtual)],
|
|
256
|
+
) # , label="Actual Region Centers"
|
|
257
|
+
polygon_coords = list(
|
|
258
|
+
zip(
|
|
259
|
+
nuclear_boundary_df_registered["x_c_s"],
|
|
260
|
+
nuclear_boundary_df_registered["y_c_s"],
|
|
261
|
+
)
|
|
262
|
+
)
|
|
263
|
+
polygon = Polygon(polygon_coords)
|
|
264
|
+
boundary_x, boundary_y = zip(*polygon_coords)
|
|
265
|
+
ax.plot(boundary_x, boundary_y, color="blue", linewidth=1)
|
|
266
|
+
# colors = {'inside': 'green', 'outside': 'red', 'boundary': 'orange'}
|
|
267
|
+
# for point, classification in zip(center_points, classifications):
|
|
268
|
+
# ax.scatter(*point, color=colors[classification], label=f'{classification}', s=25, edgecolor='grey')
|
|
269
|
+
ax.spines["top"].set_visible(False)
|
|
270
|
+
ax.spines["right"].set_visible(False)
|
|
271
|
+
ax.spines["left"].set_visible(False)
|
|
272
|
+
ax.spines["bottom"].set_visible(False)
|
|
273
|
+
|
|
274
|
+
plt.title(f"Cell {cell} - Gene {gene}")
|
|
275
|
+
plt.xlim(-r, r)
|
|
276
|
+
plt.ylim(-r, r)
|
|
277
|
+
if not os.path.exists(plot_dir):
|
|
278
|
+
os.makedirs(plot_dir)
|
|
279
|
+
plt.savefig(
|
|
280
|
+
os.path.join(plot_dir, f"{gene}_partition_plot.png"),
|
|
281
|
+
bbox_inches="tight",
|
|
282
|
+
pad_inches=0,
|
|
283
|
+
dpi=300,
|
|
284
|
+
)
|
|
285
|
+
plt.close()
|
|
286
|
+
|
|
287
|
+
|
|
288
|
+
def build_graph_with_networkx(center_points, edges, is_virtual):
|
|
289
|
+
G = nx.Graph()
|
|
290
|
+
for idx, (x, y) in enumerate(center_points):
|
|
291
|
+
G.add_node(idx, pos=(x, y), is_virtual=is_virtual[idx])
|
|
292
|
+
edges = [(tuple(edge[0]), tuple(edge[1])) for edge in edges]
|
|
293
|
+
G.add_edges_from(edges)
|
|
294
|
+
return G
|
|
295
|
+
|
|
296
|
+
|
|
297
|
+
def save_node_data_to_csv_nonposition(
|
|
298
|
+
center_points, is_virtual, plot_dir, gene, node_counts, k
|
|
299
|
+
):
|
|
300
|
+
node_data = []
|
|
301
|
+
for idx, (x, y) in enumerate(center_points):
|
|
302
|
+
node_data.append(
|
|
303
|
+
{
|
|
304
|
+
"node_id": idx,
|
|
305
|
+
"x": x,
|
|
306
|
+
"y": y,
|
|
307
|
+
"is_virtual": 1 if is_virtual[idx] else 0,
|
|
308
|
+
"count": node_counts[idx],
|
|
309
|
+
}
|
|
310
|
+
)
|
|
311
|
+
node_df = pd.DataFrame(node_data)
|
|
312
|
+
node_df.to_csv(os.path.join(plot_dir, f"{gene}_node_matrix.csv"), index=False)
|
|
313
|
+
num_nodes = len(center_points)
|
|
314
|
+
distance_matrix = np.zeros((num_nodes, num_nodes))
|
|
315
|
+
|
|
316
|
+
for i in range(num_nodes):
|
|
317
|
+
for j in range(num_nodes):
|
|
318
|
+
if i == j:
|
|
319
|
+
distance_matrix[i, j] = 0
|
|
320
|
+
elif is_virtual[i] and is_virtual[j]:
|
|
321
|
+
# distance_matrix[i, j] = np.inf
|
|
322
|
+
distance_matrix[i, j] = 1e6
|
|
323
|
+
elif is_virtual[i] or is_virtual[j]:
|
|
324
|
+
# distance_matrix[i, j] = np.inf
|
|
325
|
+
distance_matrix[i, j] = 1e6
|
|
326
|
+
else:
|
|
327
|
+
distance_matrix[i, j] = np.linalg.norm(
|
|
328
|
+
np.array(center_points[i]) - np.array(center_points[j])
|
|
329
|
+
)
|
|
330
|
+
distance_matrix = pd.DataFrame(distance_matrix)
|
|
331
|
+
distance_matrix.to_csv(
|
|
332
|
+
os.path.join(plot_dir, f"{gene}_dis_matrix.csv"), index=False
|
|
333
|
+
)
|
|
334
|
+
adjacency_matrix = np.zeros((num_nodes, num_nodes), dtype=int)
|
|
335
|
+
for i in range(num_nodes):
|
|
336
|
+
if is_virtual[i]:
|
|
337
|
+
continue
|
|
338
|
+
nearest_indices = np.argsort(distance_matrix[i])[: k + 1]
|
|
339
|
+
for idx in nearest_indices:
|
|
340
|
+
if not is_virtual[idx]:
|
|
341
|
+
adjacency_matrix[i, idx] = 1
|
|
342
|
+
np.fill_diagonal(adjacency_matrix, 0)
|
|
343
|
+
adjacency_matrix = pd.DataFrame(adjacency_matrix)
|
|
344
|
+
adjacency_matrix.to_csv(
|
|
345
|
+
os.path.join(plot_dir, f"{gene}_adj_matrix.csv"), index=False
|
|
346
|
+
)
|
|
347
|
+
|
|
348
|
+
|
|
349
|
+
def save_node_data_to_csv(
|
|
350
|
+
center_points,
|
|
351
|
+
is_virtual,
|
|
352
|
+
is_edge,
|
|
353
|
+
plot_dir,
|
|
354
|
+
gene,
|
|
355
|
+
node_counts,
|
|
356
|
+
k,
|
|
357
|
+
nuclear_positions,
|
|
358
|
+
):
|
|
359
|
+
node_data = []
|
|
360
|
+
for idx, (x, y) in enumerate(center_points):
|
|
361
|
+
node_data.append(
|
|
362
|
+
{
|
|
363
|
+
"node_id": idx,
|
|
364
|
+
"x": x,
|
|
365
|
+
"y": y,
|
|
366
|
+
"is_virtual": 1 if is_virtual[idx] else 0,
|
|
367
|
+
"is_edge": 1 if is_edge[idx] else 0, # Added is_edge column
|
|
368
|
+
"count": node_counts[idx],
|
|
369
|
+
"nuclear_position": nuclear_positions[idx],
|
|
370
|
+
}
|
|
371
|
+
)
|
|
372
|
+
node_df = pd.DataFrame(node_data)
|
|
373
|
+
node_df.to_csv(os.path.join(plot_dir, f"{gene}_node_matrix.csv"), index=False)
|
|
374
|
+
num_nodes = len(center_points)
|
|
375
|
+
distance_matrix = np.zeros((num_nodes, num_nodes))
|
|
376
|
+
|
|
377
|
+
for i in range(num_nodes):
|
|
378
|
+
for j in range(num_nodes):
|
|
379
|
+
if i == j:
|
|
380
|
+
distance_matrix[i, j] = 0
|
|
381
|
+
elif is_virtual[i] and is_virtual[j]:
|
|
382
|
+
# distance_matrix[i, j] = np.inf
|
|
383
|
+
distance_matrix[i, j] = 1e6
|
|
384
|
+
elif is_virtual[i] or is_virtual[j]:
|
|
385
|
+
# distance_matrix[i, j] = np.inf
|
|
386
|
+
distance_matrix[i, j] = 1e6
|
|
387
|
+
else:
|
|
388
|
+
distance_matrix[i, j] = np.linalg.norm(
|
|
389
|
+
np.array(center_points[i]) - np.array(center_points[j])
|
|
390
|
+
)
|
|
391
|
+
distance_matrix = pd.DataFrame(distance_matrix)
|
|
392
|
+
distance_matrix.to_csv(
|
|
393
|
+
os.path.join(plot_dir, f"{gene}_dis_matrix.csv"), index=False
|
|
394
|
+
)
|
|
395
|
+
adjacency_matrix = np.zeros((num_nodes, num_nodes), dtype=int)
|
|
396
|
+
for i in range(num_nodes):
|
|
397
|
+
if is_virtual[i]:
|
|
398
|
+
continue
|
|
399
|
+
nearest_indices = np.argsort(distance_matrix[i])[: k + 1]
|
|
400
|
+
for idx in nearest_indices:
|
|
401
|
+
if not is_virtual[idx]:
|
|
402
|
+
adjacency_matrix[i, idx] = 1
|
|
403
|
+
np.fill_diagonal(adjacency_matrix, 0)
|
|
404
|
+
adjacency_matrix = pd.DataFrame(adjacency_matrix)
|
|
405
|
+
adjacency_matrix.to_csv(
|
|
406
|
+
os.path.join(plot_dir, f"{gene}_adj_matrix.csv"), index=False
|
|
407
|
+
)
|
|
408
|
+
|
|
409
|
+
|
|
410
|
+
def plot_cell_partition_heatmap_noposition(
|
|
411
|
+
cell, gene, point_counts, n_sectors, m_rings, r, plot_dir
|
|
412
|
+
):
|
|
413
|
+
fig, ax = plt.subplots(figsize=(4, 4))
|
|
414
|
+
ax.set_aspect("equal")
|
|
415
|
+
ax.axis("off")
|
|
416
|
+
theta_edges = np.linspace(0, 2 * np.pi, n_sectors + 1)
|
|
417
|
+
radius_edges = np.linspace(0, r, m_rings + 1)
|
|
418
|
+
max_count = max(point_counts) if len(point_counts) > 0 else 1
|
|
419
|
+
normalized_counts = np.array(point_counts) / max_count
|
|
420
|
+
for sector_idx in range(n_sectors):
|
|
421
|
+
for ring_idx in range(m_rings):
|
|
422
|
+
theta_start = theta_edges[sector_idx]
|
|
423
|
+
theta_end = theta_edges[sector_idx + 1]
|
|
424
|
+
radius_start = radius_edges[ring_idx]
|
|
425
|
+
radius_end = radius_edges[ring_idx + 1]
|
|
426
|
+
index = ring_idx * n_sectors + sector_idx
|
|
427
|
+
count = normalized_counts[index] if index < len(normalized_counts) else 0
|
|
428
|
+
color = plt.cm.YlOrRd(count)
|
|
429
|
+
path_data = [
|
|
430
|
+
(
|
|
431
|
+
Path.MOVETO,
|
|
432
|
+
(
|
|
433
|
+
-radius_start * np.cos(theta_start),
|
|
434
|
+
-radius_start * np.sin(theta_start),
|
|
435
|
+
),
|
|
436
|
+
),
|
|
437
|
+
(
|
|
438
|
+
Path.LINETO,
|
|
439
|
+
(
|
|
440
|
+
-radius_end * np.cos(theta_start),
|
|
441
|
+
-radius_end * np.sin(theta_start),
|
|
442
|
+
),
|
|
443
|
+
),
|
|
444
|
+
(
|
|
445
|
+
Path.LINETO,
|
|
446
|
+
(-radius_end * np.cos(theta_end), -radius_end * np.sin(theta_end)),
|
|
447
|
+
),
|
|
448
|
+
(
|
|
449
|
+
Path.LINETO,
|
|
450
|
+
(
|
|
451
|
+
-radius_start * np.cos(theta_end),
|
|
452
|
+
-radius_start * np.sin(theta_end),
|
|
453
|
+
),
|
|
454
|
+
),
|
|
455
|
+
(
|
|
456
|
+
Path.CLOSEPOLY,
|
|
457
|
+
(
|
|
458
|
+
-radius_start * np.cos(theta_start),
|
|
459
|
+
-radius_start * np.sin(theta_start),
|
|
460
|
+
),
|
|
461
|
+
),
|
|
462
|
+
]
|
|
463
|
+
path = Path([p[1] for p in path_data], [p[0] for p in path_data])
|
|
464
|
+
patch = PathPatch(path, facecolor=color, edgecolor="grey", lw=0.5)
|
|
465
|
+
ax.add_patch(patch)
|
|
466
|
+
|
|
467
|
+
ax.spines["top"].set_visible(False)
|
|
468
|
+
ax.spines["right"].set_visible(False)
|
|
469
|
+
ax.spines["left"].set_visible(False)
|
|
470
|
+
ax.spines["bottom"].set_visible(False)
|
|
471
|
+
plt.title(f"Cell {cell} - Gene {gene}")
|
|
472
|
+
plt.xlim(-r, r)
|
|
473
|
+
plt.ylim(-r, r)
|
|
474
|
+
if not os.path.exists(plot_dir):
|
|
475
|
+
os.makedirs(plot_dir)
|
|
476
|
+
plt.savefig(
|
|
477
|
+
os.path.join(plot_dir, f"{gene}_partition_heatmap.png"),
|
|
478
|
+
bbox_inches="tight",
|
|
479
|
+
pad_inches=0,
|
|
480
|
+
dpi=300,
|
|
481
|
+
)
|
|
482
|
+
plt.close()
|
|
483
|
+
|
|
484
|
+
|
|
485
|
+
def plot_cell_partition_heatmap(
|
|
486
|
+
cell,
|
|
487
|
+
gene,
|
|
488
|
+
point_counts,
|
|
489
|
+
n_sectors,
|
|
490
|
+
m_rings,
|
|
491
|
+
r,
|
|
492
|
+
plot_dir,
|
|
493
|
+
nuclear_boundary_df_registered,
|
|
494
|
+
):
|
|
495
|
+
fig, ax = plt.subplots(figsize=(4, 4))
|
|
496
|
+
ax.set_aspect("equal")
|
|
497
|
+
ax.axis("off")
|
|
498
|
+
theta_edges = np.linspace(0, 2 * np.pi, n_sectors + 1)
|
|
499
|
+
radius_edges = np.linspace(0, r, m_rings + 1)
|
|
500
|
+
max_count = max(point_counts) if len(point_counts) > 0 else 1
|
|
501
|
+
normalized_counts = np.array(point_counts) / max_count
|
|
502
|
+
for sector_idx in range(n_sectors):
|
|
503
|
+
for ring_idx in range(m_rings):
|
|
504
|
+
theta_start = theta_edges[sector_idx]
|
|
505
|
+
theta_end = theta_edges[sector_idx + 1]
|
|
506
|
+
radius_start = radius_edges[ring_idx]
|
|
507
|
+
radius_end = radius_edges[ring_idx + 1]
|
|
508
|
+
index = ring_idx * n_sectors + sector_idx
|
|
509
|
+
count = normalized_counts[index] if index < len(normalized_counts) else 0
|
|
510
|
+
color = plt.cm.YlOrRd(count)
|
|
511
|
+
path_data = [
|
|
512
|
+
(
|
|
513
|
+
Path.MOVETO,
|
|
514
|
+
(
|
|
515
|
+
-radius_start * np.cos(theta_start),
|
|
516
|
+
-radius_start * np.sin(theta_start),
|
|
517
|
+
),
|
|
518
|
+
),
|
|
519
|
+
(
|
|
520
|
+
Path.LINETO,
|
|
521
|
+
(
|
|
522
|
+
-radius_end * np.cos(theta_start),
|
|
523
|
+
-radius_end * np.sin(theta_start),
|
|
524
|
+
),
|
|
525
|
+
),
|
|
526
|
+
(
|
|
527
|
+
Path.LINETO,
|
|
528
|
+
(-radius_end * np.cos(theta_end), -radius_end * np.sin(theta_end)),
|
|
529
|
+
),
|
|
530
|
+
(
|
|
531
|
+
Path.LINETO,
|
|
532
|
+
(
|
|
533
|
+
-radius_start * np.cos(theta_end),
|
|
534
|
+
-radius_start * np.sin(theta_end),
|
|
535
|
+
),
|
|
536
|
+
),
|
|
537
|
+
(
|
|
538
|
+
Path.CLOSEPOLY,
|
|
539
|
+
(
|
|
540
|
+
-radius_start * np.cos(theta_start),
|
|
541
|
+
-radius_start * np.sin(theta_start),
|
|
542
|
+
),
|
|
543
|
+
),
|
|
544
|
+
]
|
|
545
|
+
path = Path([p[1] for p in path_data], [p[0] for p in path_data])
|
|
546
|
+
patch = PathPatch(path, facecolor=color, edgecolor="grey", lw=0.5)
|
|
547
|
+
ax.add_patch(patch)
|
|
548
|
+
|
|
549
|
+
# Optional: add centroid markers
|
|
550
|
+
# center_points = np.array(center_points)
|
|
551
|
+
# actual_centers = center_points[np.logical_not(is_virtual)]
|
|
552
|
+
# virtual_centers = center_points[is_virtual]
|
|
553
|
+
# ax.scatter(actual_centers[:, 0], actual_centers[:, 1], c='red', s=10, label='Actual Centers')
|
|
554
|
+
# ax.scatter(virtual_centers[:, 0], virtual_centers[:, 1], c='grey', s=5, label='Virtual Centers')
|
|
555
|
+
|
|
556
|
+
polygon_coords = list(
|
|
557
|
+
zip(
|
|
558
|
+
nuclear_boundary_df_registered["x_c_s"],
|
|
559
|
+
nuclear_boundary_df_registered["y_c_s"],
|
|
560
|
+
)
|
|
561
|
+
)
|
|
562
|
+
polygon = Polygon(polygon_coords)
|
|
563
|
+
boundary_x, boundary_y = zip(*polygon_coords)
|
|
564
|
+
ax.plot(boundary_x, boundary_y, color="blue", linewidth=1)
|
|
565
|
+
# colors = {'inside': 'green', 'outside': 'red', 'boundary': 'orange'}
|
|
566
|
+
# for point, classification in zip(center_points, classifications):
|
|
567
|
+
# ax.scatter(*point, color=colors[classification], label=f'{classification}', s=25, edgecolor='grey')
|
|
568
|
+
# Remove spines
|
|
569
|
+
ax.spines["top"].set_visible(False)
|
|
570
|
+
ax.spines["right"].set_visible(False)
|
|
571
|
+
ax.spines["left"].set_visible(False)
|
|
572
|
+
ax.spines["bottom"].set_visible(False)
|
|
573
|
+
plt.title(f"Cell {cell} - Gene {gene}")
|
|
574
|
+
plt.xlim(-r, r)
|
|
575
|
+
plt.ylim(-r, r)
|
|
576
|
+
if not os.path.exists(plot_dir):
|
|
577
|
+
os.makedirs(plot_dir)
|
|
578
|
+
plt.savefig(
|
|
579
|
+
os.path.join(plot_dir, f"{gene}_partition_heatmap.png"),
|
|
580
|
+
bbox_inches="tight",
|
|
581
|
+
pad_inches=0,
|
|
582
|
+
dpi=300,
|
|
583
|
+
)
|
|
584
|
+
plt.close()
|
|
585
|
+
|
|
586
|
+
|
|
587
|
+
def classify_nuclear_position(
|
|
588
|
+
center_points, nuclear_boundary_df_registered, epsilon=0.1
|
|
589
|
+
): # Renamed, removed is_edge
|
|
590
|
+
polygon_coords = list(
|
|
591
|
+
zip(
|
|
592
|
+
nuclear_boundary_df_registered["x_c_s"],
|
|
593
|
+
nuclear_boundary_df_registered["y_c_s"],
|
|
594
|
+
)
|
|
595
|
+
)
|
|
596
|
+
polygon = Polygon(polygon_coords)
|
|
597
|
+
classifications = []
|
|
598
|
+
for point in center_points: # Removed idx, no is_edge check here
|
|
599
|
+
point_geom = Point(point)
|
|
600
|
+
if polygon.contains(point_geom):
|
|
601
|
+
classifications.append("inside")
|
|
602
|
+
elif polygon.touches(point_geom):
|
|
603
|
+
classifications.append("boundary")
|
|
604
|
+
else:
|
|
605
|
+
distance_to_boundary = polygon.boundary.distance(point_geom)
|
|
606
|
+
if distance_to_boundary <= epsilon:
|
|
607
|
+
classifications.append("boundary")
|
|
608
|
+
else:
|
|
609
|
+
classifications.append("outside")
|
|
610
|
+
return classifications
|
|
611
|
+
|
|
612
|
+
|
|
613
|
+
def plot_partition_nuclear_position(
|
|
614
|
+
center_points, nuclear_boundary_df_registered, classifications, cell, gene, plot_dir
|
|
615
|
+
):
|
|
616
|
+
polygon_coords = list(
|
|
617
|
+
zip(
|
|
618
|
+
nuclear_boundary_df_registered["x_c_s"],
|
|
619
|
+
nuclear_boundary_df_registered["y_c_s"],
|
|
620
|
+
)
|
|
621
|
+
)
|
|
622
|
+
polygon = Polygon(polygon_coords)
|
|
623
|
+
fig, ax = plt.subplots(figsize=(4, 4))
|
|
624
|
+
boundary_x, boundary_y = zip(*polygon_coords)
|
|
625
|
+
ax.plot(boundary_x, boundary_y, color="blue", linewidth=1)
|
|
626
|
+
colors = {"inside": "green", "outside": "red", "boundary": "orange"}
|
|
627
|
+
for point, classification in zip(center_points, classifications):
|
|
628
|
+
ax.scatter(
|
|
629
|
+
*point,
|
|
630
|
+
color=colors[classification],
|
|
631
|
+
label=f"{classification}",
|
|
632
|
+
s=25,
|
|
633
|
+
edgecolor="grey",
|
|
634
|
+
)
|
|
635
|
+
# Remove spines
|
|
636
|
+
ax.spines["top"].set_visible(False)
|
|
637
|
+
ax.spines["right"].set_visible(False)
|
|
638
|
+
ax.spines["left"].set_visible(False)
|
|
639
|
+
ax.spines["bottom"].set_visible(False)
|
|
640
|
+
ax.axis("off")
|
|
641
|
+
ax.set_xlim(-1, 1)
|
|
642
|
+
ax.set_ylim(-1, 1)
|
|
643
|
+
ax.set_aspect("equal", "box")
|
|
644
|
+
ax.set_title(f"Cell {cell} - Gene {gene}")
|
|
645
|
+
# plt.show()
|
|
646
|
+
if not os.path.exists(plot_dir):
|
|
647
|
+
os.makedirs(plot_dir)
|
|
648
|
+
plt.savefig(
|
|
649
|
+
os.path.join(plot_dir, f"{gene}_partition_nuclear_position.png"),
|
|
650
|
+
bbox_inches="tight",
|
|
651
|
+
pad_inches=0,
|
|
652
|
+
dpi=300,
|
|
653
|
+
)
|
|
654
|
+
plt.close()
|