graphiti-core 0.4.2__py3-none-any.whl → 0.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of graphiti-core might be problematic. Click here for more details.

Files changed (41) hide show
  1. graphiti_core/cross_encoder/bge_reranker_client.py +1 -2
  2. graphiti_core/cross_encoder/client.py +3 -4
  3. graphiti_core/cross_encoder/openai_reranker_client.py +2 -2
  4. graphiti_core/edges.py +56 -7
  5. graphiti_core/embedder/client.py +3 -3
  6. graphiti_core/embedder/openai.py +2 -2
  7. graphiti_core/embedder/voyage.py +3 -3
  8. graphiti_core/graphiti.py +39 -37
  9. graphiti_core/helpers.py +26 -0
  10. graphiti_core/llm_client/anthropic_client.py +4 -1
  11. graphiti_core/llm_client/client.py +45 -5
  12. graphiti_core/llm_client/errors.py +8 -0
  13. graphiti_core/llm_client/groq_client.py +4 -1
  14. graphiti_core/llm_client/openai_client.py +71 -7
  15. graphiti_core/llm_client/openai_generic_client.py +163 -0
  16. graphiti_core/nodes.py +58 -8
  17. graphiti_core/prompts/dedupe_edges.py +20 -17
  18. graphiti_core/prompts/dedupe_nodes.py +15 -1
  19. graphiti_core/prompts/eval.py +17 -14
  20. graphiti_core/prompts/extract_edge_dates.py +15 -7
  21. graphiti_core/prompts/extract_edges.py +18 -19
  22. graphiti_core/prompts/extract_nodes.py +11 -21
  23. graphiti_core/prompts/invalidate_edges.py +13 -25
  24. graphiti_core/prompts/lib.py +5 -1
  25. graphiti_core/prompts/prompt_helpers.py +1 -0
  26. graphiti_core/prompts/summarize_nodes.py +17 -16
  27. graphiti_core/search/search.py +5 -5
  28. graphiti_core/search/search_utils.py +55 -14
  29. graphiti_core/utils/__init__.py +0 -15
  30. graphiti_core/utils/bulk_utils.py +22 -15
  31. graphiti_core/utils/datetime_utils.py +42 -0
  32. graphiti_core/utils/maintenance/community_operations.py +13 -9
  33. graphiti_core/utils/maintenance/edge_operations.py +32 -26
  34. graphiti_core/utils/maintenance/graph_data_operations.py +3 -4
  35. graphiti_core/utils/maintenance/node_operations.py +19 -13
  36. graphiti_core/utils/maintenance/temporal_operations.py +17 -9
  37. {graphiti_core-0.4.2.dist-info → graphiti_core-0.5.0.dist-info}/METADATA +1 -1
  38. graphiti_core-0.5.0.dist-info/RECORD +60 -0
  39. graphiti_core-0.4.2.dist-info/RECORD +0 -57
  40. {graphiti_core-0.4.2.dist-info → graphiti_core-0.5.0.dist-info}/LICENSE +0 -0
  41. {graphiti_core-0.4.2.dist-info → graphiti_core-0.5.0.dist-info}/WHEEL +0 -0
@@ -21,6 +21,7 @@ import typing
21
21
  import groq
22
22
  from groq import AsyncGroq
23
23
  from groq.types.chat import ChatCompletionMessageParam
24
+ from pydantic import BaseModel
24
25
 
25
26
  from ..prompts.models import Message
26
27
  from .client import LLMClient
@@ -43,7 +44,9 @@ class GroqClient(LLMClient):
43
44
 
44
45
  self.client = AsyncGroq(api_key=config.api_key)
45
46
 
46
- async def _generate_response(self, messages: list[Message]) -> dict[str, typing.Any]:
47
+ async def _generate_response(
48
+ self, messages: list[Message], response_model: type[BaseModel] | None = None
49
+ ) -> dict[str, typing.Any]:
47
50
  msgs: list[ChatCompletionMessageParam] = []
48
51
  for m in messages:
49
52
  if m.role == 'user':
@@ -14,18 +14,19 @@ See the License for the specific language governing permissions and
14
14
  limitations under the License.
15
15
  """
16
16
 
17
- import json
18
17
  import logging
19
18
  import typing
19
+ from typing import ClassVar
20
20
 
21
21
  import openai
22
22
  from openai import AsyncOpenAI
23
23
  from openai.types.chat import ChatCompletionMessageParam
24
+ from pydantic import BaseModel
24
25
 
25
26
  from ..prompts.models import Message
26
27
  from .client import LLMClient
27
28
  from .config import LLMConfig
28
- from .errors import RateLimitError
29
+ from .errors import RateLimitError, RefusalError
29
30
 
30
31
  logger = logging.getLogger(__name__)
31
32
 
@@ -53,6 +54,9 @@ class OpenAIClient(LLMClient):
53
54
  Generates a response from the language model based on the provided messages.
54
55
  """
55
56
 
57
+ # Class-level constants
58
+ MAX_RETRIES: ClassVar[int] = 2
59
+
56
60
  def __init__(
57
61
  self, config: LLMConfig | None = None, cache: bool = False, client: typing.Any = None
58
62
  ):
@@ -65,6 +69,10 @@ class OpenAIClient(LLMClient):
65
69
  client (Any | None): An optional async client instance to use. If not provided, a new AsyncOpenAI client is created.
66
70
 
67
71
  """
72
+ # removed caching to simplify the `generate_response` override
73
+ if cache:
74
+ raise NotImplementedError('Caching is not implemented for OpenAI')
75
+
68
76
  if config is None:
69
77
  config = LLMConfig()
70
78
 
@@ -75,25 +83,81 @@ class OpenAIClient(LLMClient):
75
83
  else:
76
84
  self.client = client
77
85
 
78
- async def _generate_response(self, messages: list[Message]) -> dict[str, typing.Any]:
86
+ async def _generate_response(
87
+ self, messages: list[Message], response_model: type[BaseModel] | None = None
88
+ ) -> dict[str, typing.Any]:
79
89
  openai_messages: list[ChatCompletionMessageParam] = []
80
90
  for m in messages:
91
+ m.content = self._clean_input(m.content)
81
92
  if m.role == 'user':
82
93
  openai_messages.append({'role': 'user', 'content': m.content})
83
94
  elif m.role == 'system':
84
95
  openai_messages.append({'role': 'system', 'content': m.content})
85
96
  try:
86
- response = await self.client.chat.completions.create(
97
+ response = await self.client.beta.chat.completions.parse(
87
98
  model=self.model or DEFAULT_MODEL,
88
99
  messages=openai_messages,
89
100
  temperature=self.temperature,
90
101
  max_tokens=self.max_tokens,
91
- response_format={'type': 'json_object'},
102
+ response_format=response_model, # type: ignore
92
103
  )
93
- result = response.choices[0].message.content or ''
94
- return json.loads(result)
104
+
105
+ response_object = response.choices[0].message
106
+
107
+ if response_object.parsed:
108
+ return response_object.parsed.model_dump()
109
+ elif response_object.refusal:
110
+ raise RefusalError(response_object.refusal)
111
+ else:
112
+ raise Exception(f'Invalid response from LLM: {response_object.model_dump()}')
113
+ except openai.LengthFinishReasonError as e:
114
+ raise Exception(f'Output length exceeded max tokens {self.max_tokens}: {e}') from e
95
115
  except openai.RateLimitError as e:
96
116
  raise RateLimitError from e
97
117
  except Exception as e:
98
118
  logger.error(f'Error in generating LLM response: {e}')
99
119
  raise
120
+
121
+ async def generate_response(
122
+ self, messages: list[Message], response_model: type[BaseModel] | None = None
123
+ ) -> dict[str, typing.Any]:
124
+ retry_count = 0
125
+ last_error = None
126
+
127
+ while retry_count <= self.MAX_RETRIES:
128
+ try:
129
+ response = await self._generate_response(messages, response_model)
130
+ return response
131
+ except (RateLimitError, RefusalError):
132
+ # These errors should not trigger retries
133
+ raise
134
+ except (openai.APITimeoutError, openai.APIConnectionError, openai.InternalServerError):
135
+ # Let OpenAI's client handle these retries
136
+ raise
137
+ except Exception as e:
138
+ last_error = e
139
+
140
+ # Don't retry if we've hit the max retries
141
+ if retry_count >= self.MAX_RETRIES:
142
+ logger.error(f'Max retries ({self.MAX_RETRIES}) exceeded. Last error: {e}')
143
+ raise
144
+
145
+ retry_count += 1
146
+
147
+ # Construct a detailed error message for the LLM
148
+ error_context = (
149
+ f'The previous response attempt was invalid. '
150
+ f'Error type: {e.__class__.__name__}. '
151
+ f'Error details: {str(e)}. '
152
+ f'Please try again with a valid response, ensuring the output matches '
153
+ f'the expected format and constraints.'
154
+ )
155
+
156
+ error_message = Message(role='user', content=error_context)
157
+ messages.append(error_message)
158
+ logger.warning(
159
+ f'Retrying after application error (attempt {retry_count}/{self.MAX_RETRIES}): {e}'
160
+ )
161
+
162
+ # If we somehow get here, raise the last error
163
+ raise last_error or Exception('Max retries exceeded with no specific error')
@@ -0,0 +1,163 @@
1
+ """
2
+ Copyright 2024, Zep Software, Inc.
3
+
4
+ Licensed under the Apache License, Version 2.0 (the "License");
5
+ you may not use this file except in compliance with the License.
6
+ You may obtain a copy of the License at
7
+
8
+ http://www.apache.org/licenses/LICENSE-2.0
9
+
10
+ Unless required by applicable law or agreed to in writing, software
11
+ distributed under the License is distributed on an "AS IS" BASIS,
12
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ See the License for the specific language governing permissions and
14
+ limitations under the License.
15
+ """
16
+
17
+ import json
18
+ import logging
19
+ import typing
20
+ from typing import ClassVar
21
+
22
+ import openai
23
+ from openai import AsyncOpenAI
24
+ from openai.types.chat import ChatCompletionMessageParam
25
+ from pydantic import BaseModel
26
+
27
+ from ..prompts.models import Message
28
+ from .client import LLMClient
29
+ from .config import LLMConfig
30
+ from .errors import RateLimitError, RefusalError
31
+
32
+ logger = logging.getLogger(__name__)
33
+
34
+ DEFAULT_MODEL = 'gpt-4o-mini'
35
+
36
+
37
+ class OpenAIGenericClient(LLMClient):
38
+ """
39
+ OpenAIClient is a client class for interacting with OpenAI's language models.
40
+
41
+ This class extends the LLMClient and provides methods to initialize the client,
42
+ get an embedder, and generate responses from the language model.
43
+
44
+ Attributes:
45
+ client (AsyncOpenAI): The OpenAI client used to interact with the API.
46
+ model (str): The model name to use for generating responses.
47
+ temperature (float): The temperature to use for generating responses.
48
+ max_tokens (int): The maximum number of tokens to generate in a response.
49
+
50
+ Methods:
51
+ __init__(config: LLMConfig | None = None, cache: bool = False, client: typing.Any = None):
52
+ Initializes the OpenAIClient with the provided configuration, cache setting, and client.
53
+
54
+ _generate_response(messages: list[Message]) -> dict[str, typing.Any]:
55
+ Generates a response from the language model based on the provided messages.
56
+ """
57
+
58
+ # Class-level constants
59
+ MAX_RETRIES: ClassVar[int] = 2
60
+
61
+ def __init__(
62
+ self, config: LLMConfig | None = None, cache: bool = False, client: typing.Any = None
63
+ ):
64
+ """
65
+ Initialize the OpenAIClient with the provided configuration, cache setting, and client.
66
+
67
+ Args:
68
+ config (LLMConfig | None): The configuration for the LLM client, including API key, model, base URL, temperature, and max tokens.
69
+ cache (bool): Whether to use caching for responses. Defaults to False.
70
+ client (Any | None): An optional async client instance to use. If not provided, a new AsyncOpenAI client is created.
71
+
72
+ """
73
+ # removed caching to simplify the `generate_response` override
74
+ if cache:
75
+ raise NotImplementedError('Caching is not implemented for OpenAI')
76
+
77
+ if config is None:
78
+ config = LLMConfig()
79
+
80
+ super().__init__(config, cache)
81
+
82
+ if client is None:
83
+ self.client = AsyncOpenAI(api_key=config.api_key, base_url=config.base_url)
84
+ else:
85
+ self.client = client
86
+
87
+ async def _generate_response(
88
+ self, messages: list[Message], response_model: type[BaseModel] | None = None
89
+ ) -> dict[str, typing.Any]:
90
+ openai_messages: list[ChatCompletionMessageParam] = []
91
+ for m in messages:
92
+ m.content = self._clean_input(m.content)
93
+ if m.role == 'user':
94
+ openai_messages.append({'role': 'user', 'content': m.content})
95
+ elif m.role == 'system':
96
+ openai_messages.append({'role': 'system', 'content': m.content})
97
+ try:
98
+ response = await self.client.chat.completions.create(
99
+ model=self.model or DEFAULT_MODEL,
100
+ messages=openai_messages,
101
+ temperature=self.temperature,
102
+ max_tokens=self.max_tokens,
103
+ response_format={'type': 'json_object'},
104
+ )
105
+ result = response.choices[0].message.content or ''
106
+ return json.loads(result)
107
+ except openai.RateLimitError as e:
108
+ raise RateLimitError from e
109
+ except Exception as e:
110
+ logger.error(f'Error in generating LLM response: {e}')
111
+ raise
112
+
113
+ async def generate_response(
114
+ self, messages: list[Message], response_model: type[BaseModel] | None = None
115
+ ) -> dict[str, typing.Any]:
116
+ retry_count = 0
117
+ last_error = None
118
+
119
+ if response_model is not None:
120
+ serialized_model = json.dumps(response_model.model_json_schema())
121
+ messages[
122
+ -1
123
+ ].content += (
124
+ f'\n\nRespond with a JSON object in the following format:\n\n{serialized_model}'
125
+ )
126
+
127
+ while retry_count <= self.MAX_RETRIES:
128
+ try:
129
+ response = await self._generate_response(messages, response_model)
130
+ return response
131
+ except (RateLimitError, RefusalError):
132
+ # These errors should not trigger retries
133
+ raise
134
+ except (openai.APITimeoutError, openai.APIConnectionError, openai.InternalServerError):
135
+ # Let OpenAI's client handle these retries
136
+ raise
137
+ except Exception as e:
138
+ last_error = e
139
+
140
+ # Don't retry if we've hit the max retries
141
+ if retry_count >= self.MAX_RETRIES:
142
+ logger.error(f'Max retries ({self.MAX_RETRIES}) exceeded. Last error: {e}')
143
+ raise
144
+
145
+ retry_count += 1
146
+
147
+ # Construct a detailed error message for the LLM
148
+ error_context = (
149
+ f'The previous response attempt was invalid. '
150
+ f'Error type: {e.__class__.__name__}. '
151
+ f'Error details: {str(e)}. '
152
+ f'Please try again with a valid response, ensuring the output matches '
153
+ f'the expected format and constraints.'
154
+ )
155
+
156
+ error_message = Message(role='user', content=error_context)
157
+ messages.append(error_message)
158
+ logger.warning(
159
+ f'Retrying after application error (attempt {retry_count}/{self.MAX_RETRIES}): {e}'
160
+ )
161
+
162
+ # If we somehow get here, raise the last error
163
+ raise last_error or Exception('Max retries exceeded with no specific error')
graphiti_core/nodes.py CHANGED
@@ -16,7 +16,7 @@ limitations under the License.
16
16
 
17
17
  import logging
18
18
  from abc import ABC, abstractmethod
19
- from datetime import datetime, timezone
19
+ from datetime import datetime
20
20
  from enum import Enum
21
21
  from time import time
22
22
  from typing import Any
@@ -24,6 +24,7 @@ from uuid import uuid4
24
24
 
25
25
  from neo4j import AsyncDriver
26
26
  from pydantic import BaseModel, Field
27
+ from typing_extensions import LiteralString
27
28
 
28
29
  from graphiti_core.embedder import EmbedderClient
29
30
  from graphiti_core.errors import NodeNotFoundError
@@ -33,6 +34,7 @@ from graphiti_core.models.nodes.node_db_queries import (
33
34
  ENTITY_NODE_SAVE,
34
35
  EPISODIC_NODE_SAVE,
35
36
  )
37
+ from graphiti_core.utils.datetime_utils import utc_now
36
38
 
37
39
  logger = logging.getLogger(__name__)
38
40
 
@@ -78,7 +80,7 @@ class Node(BaseModel, ABC):
78
80
  name: str = Field(description='name of the node')
79
81
  group_id: str = Field(description='partition of the graph')
80
82
  labels: list[str] = Field(default_factory=list)
81
- created_at: datetime = Field(default_factory=lambda: datetime.now(timezone.utc))
83
+ created_at: datetime = Field(default_factory=lambda: utc_now())
82
84
 
83
85
  @abstractmethod
84
86
  async def save(self, driver: AsyncDriver): ...
@@ -207,10 +209,22 @@ class EpisodicNode(Node):
207
209
  return episodes
208
210
 
209
211
  @classmethod
210
- async def get_by_group_ids(cls, driver: AsyncDriver, group_ids: list[str]):
212
+ async def get_by_group_ids(
213
+ cls,
214
+ driver: AsyncDriver,
215
+ group_ids: list[str],
216
+ limit: int | None = None,
217
+ created_at: datetime | None = None,
218
+ ):
219
+ cursor_query: LiteralString = 'AND e.created_at < $created_at' if created_at else ''
220
+ limit_query: LiteralString = 'LIMIT $limit' if limit is not None else ''
221
+
211
222
  records, _, _ = await driver.execute_query(
212
223
  """
213
224
  MATCH (e:Episodic) WHERE e.group_id IN $group_ids
225
+ """
226
+ + cursor_query
227
+ + """
214
228
  RETURN DISTINCT
215
229
  e.content AS content,
216
230
  e.created_at AS created_at,
@@ -220,8 +234,12 @@ class EpisodicNode(Node):
220
234
  e.group_id AS group_id,
221
235
  e.source_description AS source_description,
222
236
  e.source AS source
223
- """,
237
+ ORDER BY e.uuid DESC
238
+ """
239
+ + limit_query,
224
240
  group_ids=group_ids,
241
+ created_at=created_at,
242
+ limit=limit,
225
243
  database_=DEFAULT_DATABASE,
226
244
  routing_='r',
227
245
  )
@@ -308,10 +326,22 @@ class EntityNode(Node):
308
326
  return nodes
309
327
 
310
328
  @classmethod
311
- async def get_by_group_ids(cls, driver: AsyncDriver, group_ids: list[str]):
329
+ async def get_by_group_ids(
330
+ cls,
331
+ driver: AsyncDriver,
332
+ group_ids: list[str],
333
+ limit: int | None = None,
334
+ created_at: datetime | None = None,
335
+ ):
336
+ cursor_query: LiteralString = 'AND n.created_at < $created_at' if created_at else ''
337
+ limit_query: LiteralString = 'LIMIT $limit' if limit is not None else ''
338
+
312
339
  records, _, _ = await driver.execute_query(
313
340
  """
314
341
  MATCH (n:Entity) WHERE n.group_id IN $group_ids
342
+ """
343
+ + cursor_query
344
+ + """
315
345
  RETURN
316
346
  n.uuid As uuid,
317
347
  n.name AS name,
@@ -319,8 +349,12 @@ class EntityNode(Node):
319
349
  n.group_id AS group_id,
320
350
  n.created_at AS created_at,
321
351
  n.summary AS summary
322
- """,
352
+ ORDER BY n.uuid DESC
353
+ """
354
+ + limit_query,
323
355
  group_ids=group_ids,
356
+ created_at=created_at,
357
+ limit=limit,
324
358
  database_=DEFAULT_DATABASE,
325
359
  routing_='r',
326
360
  )
@@ -407,10 +441,22 @@ class CommunityNode(Node):
407
441
  return communities
408
442
 
409
443
  @classmethod
410
- async def get_by_group_ids(cls, driver: AsyncDriver, group_ids: list[str]):
444
+ async def get_by_group_ids(
445
+ cls,
446
+ driver: AsyncDriver,
447
+ group_ids: list[str],
448
+ limit: int | None = None,
449
+ created_at: datetime | None = None,
450
+ ):
451
+ cursor_query: LiteralString = 'AND n.created_at < $created_at' if created_at else ''
452
+ limit_query: LiteralString = 'LIMIT $limit' if limit is not None else ''
453
+
411
454
  records, _, _ = await driver.execute_query(
412
455
  """
413
456
  MATCH (n:Community) WHERE n.group_id IN $group_ids
457
+ """
458
+ + cursor_query
459
+ + """
414
460
  RETURN
415
461
  n.uuid As uuid,
416
462
  n.name AS name,
@@ -418,8 +464,12 @@ class CommunityNode(Node):
418
464
  n.group_id AS group_id,
419
465
  n.created_at AS created_at,
420
466
  n.summary AS summary
421
- """,
467
+ ORDER BY n.uuid DESC
468
+ """
469
+ + limit_query,
422
470
  group_ids=group_ids,
471
+ created_at=created_at,
472
+ limit=limit,
423
473
  database_=DEFAULT_DATABASE,
424
474
  routing_='r',
425
475
  )
@@ -15,11 +15,30 @@ limitations under the License.
15
15
  """
16
16
 
17
17
  import json
18
- from typing import Any, Protocol, TypedDict
18
+ from typing import Any, Optional, Protocol, TypedDict
19
+
20
+ from pydantic import BaseModel, Field
19
21
 
20
22
  from .models import Message, PromptFunction, PromptVersion
21
23
 
22
24
 
25
+ class EdgeDuplicate(BaseModel):
26
+ is_duplicate: bool = Field(..., description='true or false')
27
+ uuid: Optional[str] = Field(
28
+ None,
29
+ description="uuid of the existing edge like '5d643020624c42fa9de13f97b1b3fa39' or null",
30
+ )
31
+
32
+
33
+ class UniqueFact(BaseModel):
34
+ uuid: str = Field(..., description='unique identifier of the fact')
35
+ fact: str = Field(..., description='fact of a unique edge')
36
+
37
+
38
+ class UniqueFacts(BaseModel):
39
+ unique_facts: list[UniqueFact]
40
+
41
+
23
42
  class Prompt(Protocol):
24
43
  edge: PromptVersion
25
44
  edge_list: PromptVersion
@@ -56,12 +75,6 @@ def edge(context: dict[str, Any]) -> list[Message]:
56
75
 
57
76
  Guidelines:
58
77
  1. The facts do not need to be completely identical to be duplicates, they just need to express the same information.
59
-
60
- Respond with a JSON object in the following format:
61
- {{
62
- "is_duplicate": true or false,
63
- "uuid": uuid of the existing edge like "5d643020624c42fa9de13f97b1b3fa39" or null,
64
- }}
65
78
  """,
66
79
  ),
67
80
  ]
@@ -90,16 +103,6 @@ def edge_list(context: dict[str, Any]) -> list[Message]:
90
103
  3. Facts will often discuss the same or similar relation between identical entities
91
104
  4. The final list should have only unique facts. If 3 facts are all duplicates of each other, only one of their
92
105
  facts should be in the response
93
-
94
- Respond with a JSON object in the following format:
95
- {{
96
- "unique_facts": [
97
- {{
98
- "uuid": "unique identifier of the fact",
99
- "fact": "fact of a unique edge"
100
- }}
101
- ]
102
- }}
103
106
  """,
104
107
  ),
105
108
  ]
@@ -15,11 +15,25 @@ limitations under the License.
15
15
  """
16
16
 
17
17
  import json
18
- from typing import Any, Protocol, TypedDict
18
+ from typing import Any, Optional, Protocol, TypedDict
19
+
20
+ from pydantic import BaseModel, Field
19
21
 
20
22
  from .models import Message, PromptFunction, PromptVersion
21
23
 
22
24
 
25
+ class NodeDuplicate(BaseModel):
26
+ is_duplicate: bool = Field(..., description='true or false')
27
+ uuid: Optional[str] = Field(
28
+ None,
29
+ description="uuid of the existing node like '5d643020624c42fa9de13f97b1b3fa39' or null",
30
+ )
31
+ name: str = Field(
32
+ ...,
33
+ description="Updated name of the new node (use the best name between the new node's name, an existing duplicate name, or a combination of both)",
34
+ )
35
+
36
+
23
37
  class Prompt(Protocol):
24
38
  node: PromptVersion
25
39
  node_list: PromptVersion
@@ -17,9 +17,26 @@ limitations under the License.
17
17
  import json
18
18
  from typing import Any, Protocol, TypedDict
19
19
 
20
+ from pydantic import BaseModel, Field
21
+
20
22
  from .models import Message, PromptFunction, PromptVersion
21
23
 
22
24
 
25
+ class QueryExpansion(BaseModel):
26
+ query: str = Field(..., description='query optimized for database search')
27
+
28
+
29
+ class QAResponse(BaseModel):
30
+ ANSWER: str = Field(..., description='how Alice would answer the question')
31
+
32
+
33
+ class EvalResponse(BaseModel):
34
+ is_correct: bool = Field(..., description='boolean if the answer is correct or incorrect')
35
+ reasoning: str = Field(
36
+ ..., description='why you determined the response was correct or incorrect'
37
+ )
38
+
39
+
23
40
  class Prompt(Protocol):
24
41
  qa_prompt: PromptVersion
25
42
  eval_prompt: PromptVersion
@@ -41,10 +58,6 @@ def query_expansion(context: dict[str, Any]) -> list[Message]:
41
58
  <QUESTION>
42
59
  {json.dumps(context['query'])}
43
60
  </QUESTION>
44
- respond with a JSON object in the following format:
45
- {{
46
- "query": "query optimized for database search"
47
- }}
48
61
  """
49
62
  return [
50
63
  Message(role='system', content=sys_prompt),
@@ -67,10 +80,6 @@ def qa_prompt(context: dict[str, Any]) -> list[Message]:
67
80
  <QUESTION>
68
81
  {context['query']}
69
82
  </QUESTION>
70
- respond with a JSON object in the following format:
71
- {{
72
- "ANSWER": "how Alice would answer the question"
73
- }}
74
83
  """
75
84
  return [
76
85
  Message(role='system', content=sys_prompt),
@@ -96,12 +105,6 @@ def eval_prompt(context: dict[str, Any]) -> list[Message]:
96
105
  <RESPONSE>
97
106
  {context['response']}
98
107
  </RESPONSE>
99
-
100
- respond with a JSON object in the following format:
101
- {{
102
- "is_correct": "boolean if the answer is correct or incorrect"
103
- "reasoning": "why you determined the response was correct or incorrect"
104
- }}
105
108
  """
106
109
  return [
107
110
  Message(role='system', content=sys_prompt),
@@ -14,11 +14,24 @@ See the License for the specific language governing permissions and
14
14
  limitations under the License.
15
15
  """
16
16
 
17
- from typing import Any, Protocol, TypedDict
17
+ from typing import Any, Optional, Protocol, TypedDict
18
+
19
+ from pydantic import BaseModel, Field
18
20
 
19
21
  from .models import Message, PromptFunction, PromptVersion
20
22
 
21
23
 
24
+ class EdgeDates(BaseModel):
25
+ valid_at: Optional[str] = Field(
26
+ None,
27
+ description='The date and time when the relationship described by the edge fact became true or was established. YYYY-MM-DDTHH:MM:SS.SSSSSSZ or null.',
28
+ )
29
+ invalid_at: Optional[str] = Field(
30
+ None,
31
+ description='The date and time when the relationship described by the edge fact stopped being true or ended. YYYY-MM-DDTHH:MM:SS.SSSSSSZ or null.',
32
+ )
33
+
34
+
22
35
  class Prompt(Protocol):
23
36
  v1: PromptVersion
24
37
 
@@ -60,7 +73,7 @@ def v1(context: dict[str, Any]) -> list[Message]:
60
73
  Analyze the conversation and determine if there are dates that are part of the edge fact. Only set dates if they explicitly relate to the formation or alteration of the relationship itself.
61
74
 
62
75
  Guidelines:
63
- 1. Use ISO 8601 format (YYYY-MM-DDTHH:MM:SSZ) for datetimes.
76
+ 1. Use ISO 8601 format (YYYY-MM-DDTHH:MM:SS.SSSSSSZ) for datetimes.
64
77
  2. Use the reference timestamp as the current time when determining the valid_at and invalid_at dates.
65
78
  3. If the fact is written in the present tense, use the Reference Timestamp for the valid_at date
66
79
  4. If no temporal information is found that establishes or changes the relationship, leave the fields as null.
@@ -69,11 +82,6 @@ def v1(context: dict[str, Any]) -> list[Message]:
69
82
  7. If only a date is mentioned without a specific time, use 00:00:00 (midnight) for that date.
70
83
  8. If only year is mentioned, use January 1st of that year at 00:00:00.
71
84
  9. Always include the time zone offset (use Z for UTC if no specific time zone is mentioned).
72
- Respond with a JSON object:
73
- {{
74
- "valid_at": "YYYY-MM-DDTHH:MM:SS.SSSSSSZ or null",
75
- "invalid_at": "YYYY-MM-DDTHH:MM:SS.SSSSSSZ or null",
76
- }}
77
85
  """,
78
86
  ),
79
87
  ]