graphiti-core 0.3.16__py3-none-any.whl → 0.3.17__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of graphiti-core might be problematic. Click here for more details.

File without changes
@@ -0,0 +1,45 @@
1
+ """
2
+ Copyright 2024, Zep Software, Inc.
3
+
4
+ Licensed under the Apache License, Version 2.0 (the "License");
5
+ you may not use this file except in compliance with the License.
6
+ You may obtain a copy of the License at
7
+
8
+ http://www.apache.org/licenses/LICENSE-2.0
9
+
10
+ Unless required by applicable law or agreed to in writing, software
11
+ distributed under the License is distributed on an "AS IS" BASIS,
12
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ See the License for the specific language governing permissions and
14
+ limitations under the License.
15
+ """
16
+
17
+ import asyncio
18
+ from typing import List, Tuple
19
+
20
+ from sentence_transformers import CrossEncoder
21
+
22
+ from graphiti_core.cross_encoder.client import CrossEncoderClient
23
+
24
+
25
+ class BGERerankerClient(CrossEncoderClient):
26
+ def __init__(self):
27
+ self.model = CrossEncoder('BAAI/bge-reranker-v2-m3')
28
+
29
+ async def rank(self, query: str, passages: List[str]) -> List[Tuple[str, float]]:
30
+ if not passages:
31
+ return []
32
+
33
+ input_pairs = [[query, passage] for passage in passages]
34
+
35
+ # Run the synchronous predict method in an executor
36
+ loop = asyncio.get_running_loop()
37
+ scores = await loop.run_in_executor(None, self.model.predict, input_pairs)
38
+
39
+ ranked_passages = sorted(
40
+ [(passage, float(score)) for passage, score in zip(passages, scores)],
41
+ key=lambda x: x[1],
42
+ reverse=True,
43
+ )
44
+
45
+ return ranked_passages
@@ -0,0 +1,41 @@
1
+ """
2
+ Copyright 2024, Zep Software, Inc.
3
+
4
+ Licensed under the Apache License, Version 2.0 (the "License");
5
+ you may not use this file except in compliance with the License.
6
+ You may obtain a copy of the License at
7
+
8
+ http://www.apache.org/licenses/LICENSE-2.0
9
+
10
+ Unless required by applicable law or agreed to in writing, software
11
+ distributed under the License is distributed on an "AS IS" BASIS,
12
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ See the License for the specific language governing permissions and
14
+ limitations under the License.
15
+ """
16
+
17
+ from abc import ABC, abstractmethod
18
+ from typing import List, Tuple
19
+
20
+
21
+ class CrossEncoderClient(ABC):
22
+ """
23
+ CrossEncoderClient is an abstract base class that defines the interface
24
+ for cross-encoder models used for ranking passages based on their relevance to a query.
25
+ It allows for different implementations of cross-encoder models to be used interchangeably.
26
+ """
27
+
28
+ @abstractmethod
29
+ async def rank(self, query: str, passages: List[str]) -> List[Tuple[str, float]]:
30
+ """
31
+ Rank the given passages based on their relevance to the query.
32
+
33
+ Args:
34
+ query (str): The query string.
35
+ passages (List[str]): A list of passages to rank.
36
+
37
+ Returns:
38
+ List[Tuple[str, float]]: A list of tuples containing the passage and its score,
39
+ sorted in descending order of relevance.
40
+ """
41
+ pass
@@ -0,0 +1,113 @@
1
+ """
2
+ Copyright 2024, Zep Software, Inc.
3
+
4
+ Licensed under the Apache License, Version 2.0 (the "License");
5
+ you may not use this file except in compliance with the License.
6
+ You may obtain a copy of the License at
7
+
8
+ http://www.apache.org/licenses/LICENSE-2.0
9
+
10
+ Unless required by applicable law or agreed to in writing, software
11
+ distributed under the License is distributed on an "AS IS" BASIS,
12
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ See the License for the specific language governing permissions and
14
+ limitations under the License.
15
+ """
16
+
17
+ import asyncio
18
+ import logging
19
+ from typing import Any
20
+
21
+ import openai
22
+ from openai import AsyncOpenAI
23
+ from pydantic import BaseModel
24
+
25
+ from ..llm_client import LLMConfig, RateLimitError
26
+ from ..prompts import Message
27
+ from .client import CrossEncoderClient
28
+
29
+ logger = logging.getLogger(__name__)
30
+
31
+ DEFAULT_MODEL = 'gpt-4o-mini'
32
+
33
+
34
+ class BooleanClassifier(BaseModel):
35
+ isTrue: bool
36
+
37
+
38
+ class OpenAIRerankerClient(CrossEncoderClient):
39
+ def __init__(self, config: LLMConfig | None = None):
40
+ """
41
+ Initialize the OpenAIClient with the provided configuration, cache setting, and client.
42
+
43
+ Args:
44
+ config (LLMConfig | None): The configuration for the LLM client, including API key, model, base URL, temperature, and max tokens.
45
+ cache (bool): Whether to use caching for responses. Defaults to False.
46
+ client (Any | None): An optional async client instance to use. If not provided, a new AsyncOpenAI client is created.
47
+
48
+ """
49
+ if config is None:
50
+ config = LLMConfig()
51
+
52
+ self.config = config
53
+ self.client = AsyncOpenAI(api_key=config.api_key, base_url=config.base_url)
54
+
55
+ async def rank(self, query: str, passages: list[str]) -> list[tuple[str, float]]:
56
+ openai_messages_list: Any = [
57
+ [
58
+ Message(
59
+ role='system',
60
+ content='You are an expert tasked with determining whether the passage is relevant to the query',
61
+ ),
62
+ Message(
63
+ role='user',
64
+ content=f"""
65
+ Respond with "True" if PASSAGE is relevant to QUERY and "False" otherwise.
66
+ <PASSAGE>
67
+ {query}
68
+ </PASSAGE>
69
+ {passage}
70
+ <QUERY>
71
+ </QUERY>
72
+ """,
73
+ ),
74
+ ]
75
+ for passage in passages
76
+ ]
77
+ try:
78
+ responses = await asyncio.gather(
79
+ *[
80
+ self.client.chat.completions.create(
81
+ model=DEFAULT_MODEL,
82
+ messages=openai_messages,
83
+ temperature=0,
84
+ max_tokens=1,
85
+ logit_bias={'6432': 1, '7983': 1},
86
+ logprobs=True,
87
+ top_logprobs=2,
88
+ )
89
+ for openai_messages in openai_messages_list
90
+ ]
91
+ )
92
+
93
+ responses_top_logprobs = [
94
+ response.choices[0].logprobs.content[0].top_logprobs
95
+ if response.choices[0].logprobs is not None
96
+ and response.choices[0].logprobs.content is not None
97
+ else []
98
+ for response in responses
99
+ ]
100
+ scores: list[float] = []
101
+ for top_logprobs in responses_top_logprobs:
102
+ for logprob in top_logprobs:
103
+ if bool(logprob.token):
104
+ scores.append(logprob.logprob)
105
+
106
+ results = [(passage, score) for passage, score in zip(passages, scores)]
107
+ results.sort(reverse=True, key=lambda x: x[1])
108
+ return results
109
+ except openai.RateLimitError as e:
110
+ raise RateLimitError from e
111
+ except Exception as e:
112
+ logger.error(f'Error in generating LLM response: {e}')
113
+ raise
graphiti_core/graphiti.py CHANGED
@@ -23,8 +23,11 @@ from dotenv import load_dotenv
23
23
  from neo4j import AsyncGraphDatabase
24
24
  from pydantic import BaseModel
25
25
 
26
+ from graphiti_core.cross_encoder.client import CrossEncoderClient
27
+ from graphiti_core.cross_encoder.openai_reranker_client import OpenAIRerankerClient
26
28
  from graphiti_core.edges import EntityEdge, EpisodicEdge
27
29
  from graphiti_core.embedder import EmbedderClient, OpenAIEmbedder
30
+ from graphiti_core.helpers import DEFAULT_DATABASE
28
31
  from graphiti_core.llm_client import LLMClient, OpenAIClient
29
32
  from graphiti_core.nodes import CommunityNode, EntityNode, EpisodeType, EpisodicNode
30
33
  from graphiti_core.search.search import SearchConfig, search
@@ -92,6 +95,7 @@ class Graphiti:
92
95
  password: str,
93
96
  llm_client: LLMClient | None = None,
94
97
  embedder: EmbedderClient | None = None,
98
+ cross_encoder: CrossEncoderClient | None = None,
95
99
  store_raw_episode_content: bool = True,
96
100
  ):
97
101
  """
@@ -131,7 +135,7 @@ class Graphiti:
131
135
  Graphiti if you're using the default OpenAIClient.
132
136
  """
133
137
  self.driver = AsyncGraphDatabase.driver(uri, auth=(user, password))
134
- self.database = 'neo4j'
138
+ self.database = DEFAULT_DATABASE
135
139
  self.store_raw_episode_content = store_raw_episode_content
136
140
  if llm_client:
137
141
  self.llm_client = llm_client
@@ -141,6 +145,10 @@ class Graphiti:
141
145
  self.embedder = embedder
142
146
  else:
143
147
  self.embedder = OpenAIEmbedder()
148
+ if cross_encoder:
149
+ self.cross_encoder = cross_encoder
150
+ else:
151
+ self.cross_encoder = OpenAIRerankerClient()
144
152
 
145
153
  async def close(self):
146
154
  """
@@ -648,6 +656,7 @@ class Graphiti:
648
656
  await search(
649
657
  self.driver,
650
658
  self.embedder,
659
+ self.cross_encoder,
651
660
  query,
652
661
  group_ids,
653
662
  search_config,
@@ -663,8 +672,18 @@ class Graphiti:
663
672
  config: SearchConfig,
664
673
  group_ids: list[str] | None = None,
665
674
  center_node_uuid: str | None = None,
675
+ bfs_origin_node_uuids: list[str] | None = None,
666
676
  ) -> SearchResults:
667
- return await search(self.driver, self.embedder, query, group_ids, config, center_node_uuid)
677
+ return await search(
678
+ self.driver,
679
+ self.embedder,
680
+ self.cross_encoder,
681
+ query,
682
+ group_ids,
683
+ config,
684
+ center_node_uuid,
685
+ bfs_origin_node_uuids,
686
+ )
668
687
 
669
688
  async def get_nodes_by_query(
670
689
  self,
@@ -716,7 +735,13 @@ class Graphiti:
716
735
 
717
736
  nodes = (
718
737
  await search(
719
- self.driver, self.embedder, query, group_ids, search_config, center_node_uuid
738
+ self.driver,
739
+ self.embedder,
740
+ self.cross_encoder,
741
+ query,
742
+ group_ids,
743
+ search_config,
744
+ center_node_uuid,
720
745
  )
721
746
  ).nodes
722
747
  return nodes
@@ -21,6 +21,7 @@ from time import time
21
21
 
22
22
  from neo4j import AsyncDriver
23
23
 
24
+ from graphiti_core.cross_encoder.client import CrossEncoderClient
24
25
  from graphiti_core.edges import EntityEdge
25
26
  from graphiti_core.embedder import EmbedderClient
26
27
  from graphiti_core.errors import SearchRerankerError
@@ -39,6 +40,7 @@ from graphiti_core.search.search_config import (
39
40
  from graphiti_core.search.search_utils import (
40
41
  community_fulltext_search,
41
42
  community_similarity_search,
43
+ edge_bfs_search,
42
44
  edge_fulltext_search,
43
45
  edge_similarity_search,
44
46
  episode_mentions_reranker,
@@ -55,40 +57,49 @@ logger = logging.getLogger(__name__)
55
57
  async def search(
56
58
  driver: AsyncDriver,
57
59
  embedder: EmbedderClient,
60
+ cross_encoder: CrossEncoderClient,
58
61
  query: str,
59
62
  group_ids: list[str] | None,
60
63
  config: SearchConfig,
61
64
  center_node_uuid: str | None = None,
65
+ bfs_origin_node_uuids: list[str] | None = None,
62
66
  ) -> SearchResults:
63
67
  start = time()
64
- query = query.replace('\n', ' ')
68
+ query_vector = await embedder.create(input=[query.replace('\n', ' ')])
69
+
65
70
  # if group_ids is empty, set it to None
66
71
  group_ids = group_ids if group_ids else None
67
72
  edges, nodes, communities = await asyncio.gather(
68
73
  edge_search(
69
74
  driver,
70
- embedder,
75
+ cross_encoder,
71
76
  query,
77
+ query_vector,
72
78
  group_ids,
73
79
  config.edge_config,
74
80
  center_node_uuid,
81
+ bfs_origin_node_uuids,
75
82
  config.limit,
76
83
  ),
77
84
  node_search(
78
85
  driver,
79
- embedder,
86
+ cross_encoder,
80
87
  query,
88
+ query_vector,
81
89
  group_ids,
82
90
  config.node_config,
83
91
  center_node_uuid,
92
+ bfs_origin_node_uuids,
84
93
  config.limit,
85
94
  ),
86
95
  community_search(
87
96
  driver,
88
- embedder,
97
+ cross_encoder,
89
98
  query,
99
+ query_vector,
90
100
  group_ids,
91
101
  config.community_config,
102
+ bfs_origin_node_uuids,
92
103
  config.limit,
93
104
  ),
94
105
  )
@@ -99,27 +110,27 @@ async def search(
99
110
  communities=communities,
100
111
  )
101
112
 
102
- end = time()
113
+ latency = (time() - start) * 1000
103
114
 
104
- logger.info(f'search returned context for query {query} in {(end - start) * 1000} ms')
115
+ logger.debug(f'search returned context for query {query} in {latency} ms')
105
116
 
106
117
  return results
107
118
 
108
119
 
109
120
  async def edge_search(
110
121
  driver: AsyncDriver,
111
- embedder: EmbedderClient,
122
+ cross_encoder: CrossEncoderClient,
112
123
  query: str,
124
+ query_vector: list[float],
113
125
  group_ids: list[str] | None,
114
126
  config: EdgeSearchConfig | None,
115
127
  center_node_uuid: str | None = None,
128
+ bfs_origin_node_uuids: list[str] | None = None,
116
129
  limit=DEFAULT_SEARCH_LIMIT,
117
130
  ) -> list[EntityEdge]:
118
131
  if config is None:
119
132
  return []
120
133
 
121
- query_vector = await embedder.create(input=[query])
122
-
123
134
  search_results: list[list[EntityEdge]] = list(
124
135
  await asyncio.gather(
125
136
  *[
@@ -127,6 +138,7 @@ async def edge_search(
127
138
  edge_similarity_search(
128
139
  driver, query_vector, None, None, group_ids, 2 * limit, config.sim_min_score
129
140
  ),
141
+ edge_bfs_search(driver, bfs_origin_node_uuids, config.bfs_max_depth),
130
142
  ]
131
143
  )
132
144
  )
@@ -147,6 +159,10 @@ async def edge_search(
147
159
  reranked_uuids = maximal_marginal_relevance(
148
160
  query_vector, search_result_uuids_and_vectors, config.mmr_lambda
149
161
  )
162
+ elif config.reranker == EdgeReranker.cross_encoder:
163
+ fact_to_uuid_map = {edge.fact: edge.uuid for result in search_results for edge in result}
164
+ reranked_facts = await cross_encoder.rank(query, list(fact_to_uuid_map.keys()))
165
+ reranked_uuids = [fact_to_uuid_map[fact] for fact, _ in reranked_facts]
150
166
  elif config.reranker == EdgeReranker.node_distance:
151
167
  if center_node_uuid is None:
152
168
  raise SearchRerankerError('No center node provided for Node Distance reranker')
@@ -177,18 +193,18 @@ async def edge_search(
177
193
 
178
194
  async def node_search(
179
195
  driver: AsyncDriver,
180
- embedder: EmbedderClient,
196
+ cross_encoder: CrossEncoderClient,
181
197
  query: str,
198
+ query_vector: list[float],
182
199
  group_ids: list[str] | None,
183
200
  config: NodeSearchConfig | None,
184
201
  center_node_uuid: str | None = None,
202
+ bfs_origin_node_uuids: list[str] | None = None,
185
203
  limit=DEFAULT_SEARCH_LIMIT,
186
204
  ) -> list[EntityNode]:
187
205
  if config is None:
188
206
  return []
189
207
 
190
- query_vector = await embedder.create(input=[query])
191
-
192
208
  search_results: list[list[EntityNode]] = list(
193
209
  await asyncio.gather(
194
210
  *[
@@ -215,6 +231,12 @@ async def node_search(
215
231
  reranked_uuids = maximal_marginal_relevance(
216
232
  query_vector, search_result_uuids_and_vectors, config.mmr_lambda
217
233
  )
234
+ elif config.reranker == NodeReranker.cross_encoder:
235
+ summary_to_uuid_map = {
236
+ node.summary: node.uuid for result in search_results for node in result
237
+ }
238
+ reranked_summaries = await cross_encoder.rank(query, list(summary_to_uuid_map.keys()))
239
+ reranked_uuids = [summary_to_uuid_map[fact] for fact, _ in reranked_summaries]
218
240
  elif config.reranker == NodeReranker.episode_mentions:
219
241
  reranked_uuids = await episode_mentions_reranker(driver, search_result_uuids)
220
242
  elif config.reranker == NodeReranker.node_distance:
@@ -231,17 +253,17 @@ async def node_search(
231
253
 
232
254
  async def community_search(
233
255
  driver: AsyncDriver,
234
- embedder: EmbedderClient,
256
+ cross_encoder: CrossEncoderClient,
235
257
  query: str,
258
+ query_vector: list[float],
236
259
  group_ids: list[str] | None,
237
260
  config: CommunitySearchConfig | None,
261
+ bfs_origin_node_uuids: list[str] | None = None,
238
262
  limit=DEFAULT_SEARCH_LIMIT,
239
263
  ) -> list[CommunityNode]:
240
264
  if config is None:
241
265
  return []
242
266
 
243
- query_vector = await embedder.create(input=[query])
244
-
245
267
  search_results: list[list[CommunityNode]] = list(
246
268
  await asyncio.gather(
247
269
  *[
@@ -273,6 +295,12 @@ async def community_search(
273
295
  reranked_uuids = maximal_marginal_relevance(
274
296
  query_vector, search_result_uuids_and_vectors, config.mmr_lambda
275
297
  )
298
+ elif config.reranker == CommunityReranker.cross_encoder:
299
+ summary_to_uuid_map = {
300
+ node.summary: node.uuid for result in search_results for node in result
301
+ }
302
+ reranked_summaries = await cross_encoder.rank(query, list(summary_to_uuid_map.keys()))
303
+ reranked_uuids = [summary_to_uuid_map[fact] for fact, _ in reranked_summaries]
276
304
 
277
305
  reranked_communities = [community_uuid_map[uuid] for uuid in reranked_uuids]
278
306
 
@@ -20,7 +20,11 @@ from pydantic import BaseModel, Field
20
20
 
21
21
  from graphiti_core.edges import EntityEdge
22
22
  from graphiti_core.nodes import CommunityNode, EntityNode
23
- from graphiti_core.search.search_utils import DEFAULT_MIN_SCORE, DEFAULT_MMR_LAMBDA
23
+ from graphiti_core.search.search_utils import (
24
+ DEFAULT_MIN_SCORE,
25
+ DEFAULT_MMR_LAMBDA,
26
+ MAX_SEARCH_DEPTH,
27
+ )
24
28
 
25
29
  DEFAULT_SEARCH_LIMIT = 10
26
30
 
@@ -28,11 +32,13 @@ DEFAULT_SEARCH_LIMIT = 10
28
32
  class EdgeSearchMethod(Enum):
29
33
  cosine_similarity = 'cosine_similarity'
30
34
  bm25 = 'bm25'
35
+ bfs = 'breadth_first_search'
31
36
 
32
37
 
33
38
  class NodeSearchMethod(Enum):
34
39
  cosine_similarity = 'cosine_similarity'
35
40
  bm25 = 'bm25'
41
+ bfs = 'breadth_first_search'
36
42
 
37
43
 
38
44
  class CommunitySearchMethod(Enum):
@@ -45,6 +51,7 @@ class EdgeReranker(Enum):
45
51
  node_distance = 'node_distance'
46
52
  episode_mentions = 'episode_mentions'
47
53
  mmr = 'mmr'
54
+ cross_encoder = 'cross_encoder'
48
55
 
49
56
 
50
57
  class NodeReranker(Enum):
@@ -52,11 +59,13 @@ class NodeReranker(Enum):
52
59
  node_distance = 'node_distance'
53
60
  episode_mentions = 'episode_mentions'
54
61
  mmr = 'mmr'
62
+ cross_encoder = 'cross_encoder'
55
63
 
56
64
 
57
65
  class CommunityReranker(Enum):
58
66
  rrf = 'reciprocal_rank_fusion'
59
67
  mmr = 'mmr'
68
+ cross_encoder = 'cross_encoder'
60
69
 
61
70
 
62
71
  class EdgeSearchConfig(BaseModel):
@@ -64,6 +73,7 @@ class EdgeSearchConfig(BaseModel):
64
73
  reranker: EdgeReranker = Field(default=EdgeReranker.rrf)
65
74
  sim_min_score: float = Field(default=DEFAULT_MIN_SCORE)
66
75
  mmr_lambda: float = Field(default=DEFAULT_MMR_LAMBDA)
76
+ bfs_max_depth: int = Field(default=MAX_SEARCH_DEPTH)
67
77
 
68
78
 
69
79
  class NodeSearchConfig(BaseModel):
@@ -71,6 +81,7 @@ class NodeSearchConfig(BaseModel):
71
81
  reranker: NodeReranker = Field(default=NodeReranker.rrf)
72
82
  sim_min_score: float = Field(default=DEFAULT_MIN_SCORE)
73
83
  mmr_lambda: float = Field(default=DEFAULT_MMR_LAMBDA)
84
+ bfs_max_depth: int = Field(default=MAX_SEARCH_DEPTH)
74
85
 
75
86
 
76
87
  class CommunitySearchConfig(BaseModel):
@@ -78,6 +89,7 @@ class CommunitySearchConfig(BaseModel):
78
89
  reranker: CommunityReranker = Field(default=CommunityReranker.rrf)
79
90
  sim_min_score: float = Field(default=DEFAULT_MIN_SCORE)
80
91
  mmr_lambda: float = Field(default=DEFAULT_MMR_LAMBDA)
92
+ bfs_max_depth: int = Field(default=MAX_SEARCH_DEPTH)
81
93
 
82
94
 
83
95
  class SearchConfig(BaseModel):
@@ -48,14 +48,41 @@ COMBINED_HYBRID_SEARCH_MMR = SearchConfig(
48
48
  edge_config=EdgeSearchConfig(
49
49
  search_methods=[EdgeSearchMethod.bm25, EdgeSearchMethod.cosine_similarity],
50
50
  reranker=EdgeReranker.mmr,
51
+ mmr_lambda=1,
51
52
  ),
52
53
  node_config=NodeSearchConfig(
53
54
  search_methods=[NodeSearchMethod.bm25, NodeSearchMethod.cosine_similarity],
54
55
  reranker=NodeReranker.mmr,
56
+ mmr_lambda=1,
55
57
  ),
56
58
  community_config=CommunitySearchConfig(
57
59
  search_methods=[CommunitySearchMethod.bm25, CommunitySearchMethod.cosine_similarity],
58
60
  reranker=CommunityReranker.mmr,
61
+ mmr_lambda=1,
62
+ ),
63
+ )
64
+
65
+ # Performs a full-text search, similarity search, and bfs with cross_encoder reranking over edges, nodes, and communities
66
+ COMBINED_HYBRID_SEARCH_CROSS_ENCODER = SearchConfig(
67
+ edge_config=EdgeSearchConfig(
68
+ search_methods=[
69
+ EdgeSearchMethod.bm25,
70
+ EdgeSearchMethod.cosine_similarity,
71
+ EdgeSearchMethod.bfs,
72
+ ],
73
+ reranker=EdgeReranker.cross_encoder,
74
+ ),
75
+ node_config=NodeSearchConfig(
76
+ search_methods=[
77
+ NodeSearchMethod.bm25,
78
+ NodeSearchMethod.cosine_similarity,
79
+ NodeSearchMethod.bfs,
80
+ ],
81
+ reranker=NodeReranker.cross_encoder,
82
+ ),
83
+ community_config=CommunitySearchConfig(
84
+ search_methods=[CommunitySearchMethod.bm25, CommunitySearchMethod.cosine_similarity],
85
+ reranker=CommunityReranker.cross_encoder,
59
86
  ),
60
87
  )
61
88
 
@@ -81,7 +108,6 @@ EDGE_HYBRID_SEARCH_NODE_DISTANCE = SearchConfig(
81
108
  search_methods=[EdgeSearchMethod.bm25, EdgeSearchMethod.cosine_similarity],
82
109
  reranker=EdgeReranker.node_distance,
83
110
  ),
84
- limit=30,
85
111
  )
86
112
 
87
113
  # performs a hybrid search over edges with episode mention reranking
@@ -37,6 +37,7 @@ logger = logging.getLogger(__name__)
37
37
  RELEVANT_SCHEMA_LIMIT = 3
38
38
  DEFAULT_MIN_SCORE = 0.6
39
39
  DEFAULT_MMR_LAMBDA = 0.5
40
+ MAX_SEARCH_DEPTH = 3
40
41
  MAX_QUERY_LENGTH = 128
41
42
 
42
43
 
@@ -79,21 +80,21 @@ async def get_mentioned_nodes(
79
80
  driver: AsyncDriver, episodes: list[EpisodicNode]
80
81
  ) -> list[EntityNode]:
81
82
  episode_uuids = [episode.uuid for episode in episodes]
82
- async with driver.session(database=DEFAULT_DATABASE) as session:
83
- result = await session.run(
84
- """
85
- MATCH (episode:Episodic)-[:MENTIONS]->(n:Entity) WHERE episode.uuid IN $uuids
86
- RETURN DISTINCT
87
- n.uuid As uuid,
88
- n.group_id AS group_id,
89
- n.name AS name,
90
- n.name_embedding AS name_embedding,
91
- n.created_at AS created_at,
92
- n.summary AS summary
93
- """,
94
- {'uuids': episode_uuids},
95
- )
96
- records = [record async for record in result]
83
+ records, _, _ = await driver.execute_query(
84
+ """
85
+ MATCH (episode:Episodic)-[:MENTIONS]->(n:Entity) WHERE episode.uuid IN $uuids
86
+ RETURN DISTINCT
87
+ n.uuid As uuid,
88
+ n.group_id AS group_id,
89
+ n.name AS name,
90
+ n.name_embedding AS name_embedding,
91
+ n.created_at AS created_at,
92
+ n.summary AS summary
93
+ """,
94
+ uuids=episode_uuids,
95
+ database_=DEFAULT_DATABASE,
96
+ routing_='r',
97
+ )
97
98
 
98
99
  nodes = [get_entity_node_from_record(record) for record in records]
99
100
 
@@ -104,21 +105,21 @@ async def get_communities_by_nodes(
104
105
  driver: AsyncDriver, nodes: list[EntityNode]
105
106
  ) -> list[CommunityNode]:
106
107
  node_uuids = [node.uuid for node in nodes]
107
- async with driver.session(database=DEFAULT_DATABASE) as session:
108
- result = await session.run(
109
- """
110
- MATCH (c:Community)-[:HAS_MEMBER]->(n:Entity) WHERE n.uuid IN $uuids
111
- RETURN DISTINCT
112
- c.uuid As uuid,
113
- c.group_id AS group_id,
114
- c.name AS name,
115
- c.name_embedding AS name_embedding
116
- c.created_at AS created_at,
117
- c.summary AS summary
118
- """,
119
- {'uuids': node_uuids},
120
- )
121
- records = [record async for record in result]
108
+ records, _, _ = await driver.execute_query(
109
+ """
110
+ MATCH (c:Community)-[:HAS_MEMBER]->(n:Entity) WHERE n.uuid IN $uuids
111
+ RETURN DISTINCT
112
+ c.uuid As uuid,
113
+ c.group_id AS group_id,
114
+ c.name AS name,
115
+ c.name_embedding AS name_embedding
116
+ c.created_at AS created_at,
117
+ c.summary AS summary
118
+ """,
119
+ uuids=node_uuids,
120
+ database_=DEFAULT_DATABASE,
121
+ routing_='r',
122
+ )
122
123
 
123
124
  communities = [get_community_node_from_record(record) for record in records]
124
125
 
@@ -141,8 +142,10 @@ async def edge_fulltext_search(
141
142
  cypher_query = Query("""
142
143
  CALL db.index.fulltext.queryRelationships("edge_name_and_fact", $query)
143
144
  YIELD relationship AS rel, score
144
- MATCH (n:Entity)-[r {uuid: rel.uuid}]-(m:Entity)
145
- RETURN
145
+ MATCH (n:Entity)-[r {uuid: rel.uuid}]->(m:Entity)
146
+ WHERE ($source_uuid IS NULL OR n.uuid IN [$source_uuid, $target_uuid])
147
+ AND ($target_uuid IS NULL OR m.uuid IN [$source_uuid, $target_uuid])
148
+ RETURN
146
149
  r.uuid AS uuid,
147
150
  r.group_id AS group_id,
148
151
  n.uuid AS source_node_uuid,
@@ -158,18 +161,16 @@ async def edge_fulltext_search(
158
161
  ORDER BY score DESC LIMIT $limit
159
162
  """)
160
163
 
161
- async with driver.session(database=DEFAULT_DATABASE) as session:
162
- result = await session.run(
163
- cypher_query,
164
- {
165
- 'query': fuzzy_query,
166
- 'source_uuid': source_node_uuid,
167
- 'target_uuid': target_node_uuid,
168
- 'group_ids': group_ids,
169
- 'limit': limit,
170
- },
171
- )
172
- records = [record async for record in result]
164
+ records, _, _ = await driver.execute_query(
165
+ cypher_query,
166
+ query=fuzzy_query,
167
+ source_uuid=source_node_uuid,
168
+ target_uuid=target_node_uuid,
169
+ group_ids=group_ids,
170
+ limit=limit,
171
+ database_=DEFAULT_DATABASE,
172
+ routing_='r',
173
+ )
173
174
 
174
175
  edges = [get_entity_edge_from_record(record) for record in records]
175
176
 
@@ -188,17 +189,17 @@ async def edge_similarity_search(
188
189
  # vector similarity search over embedded facts
189
190
  query = Query("""
190
191
  CYPHER runtime = parallel parallelRuntimeSupport=all
191
- MATCH (n:Entity)-[r:RELATES_TO]-(m:Entity)
192
+ MATCH (n:Entity)-[r:RELATES_TO]->(m:Entity)
192
193
  WHERE ($group_ids IS NULL OR r.group_id IN $group_ids)
193
- AND ($source_uuid IS NULL OR n.uuid = $source_uuid)
194
- AND ($target_uuid IS NULL OR m.uuid = $target_uuid)
195
- WITH n, r, m, vector.similarity.cosine(r.fact_embedding, $search_vector) AS score
194
+ AND ($source_uuid IS NULL OR n.uuid IN [$source_uuid, $target_uuid])
195
+ AND ($target_uuid IS NULL OR m.uuid IN [$source_uuid, $target_uuid])
196
+ WITH DISTINCT r, vector.similarity.cosine(r.fact_embedding, $search_vector) AS score
196
197
  WHERE score > $min_score
197
198
  RETURN
198
199
  r.uuid AS uuid,
199
200
  r.group_id AS group_id,
200
- n.uuid AS source_node_uuid,
201
- m.uuid AS target_node_uuid,
201
+ startNode(r).uuid AS source_node_uuid,
202
+ endNode(r).uuid AS target_node_uuid,
202
203
  r.created_at AS created_at,
203
204
  r.name AS name,
204
205
  r.fact AS fact,
@@ -211,19 +212,59 @@ async def edge_similarity_search(
211
212
  LIMIT $limit
212
213
  """)
213
214
 
214
- async with driver.session(database=DEFAULT_DATABASE) as session:
215
- result = await session.run(
216
- query,
217
- {
218
- 'search_vector': search_vector,
219
- 'source_uuid': source_node_uuid,
220
- 'target_uuid': target_node_uuid,
221
- 'group_ids': group_ids,
222
- 'limit': limit,
223
- 'min_score': min_score,
224
- },
225
- )
226
- records = [record async for record in result]
215
+ records, _, _ = await driver.execute_query(
216
+ query,
217
+ search_vector=search_vector,
218
+ source_uuid=source_node_uuid,
219
+ target_uuid=target_node_uuid,
220
+ group_ids=group_ids,
221
+ limit=limit,
222
+ min_score=min_score,
223
+ database_=DEFAULT_DATABASE,
224
+ routing_='r',
225
+ )
226
+
227
+ edges = [get_entity_edge_from_record(record) for record in records]
228
+
229
+ return edges
230
+
231
+
232
+ async def edge_bfs_search(
233
+ driver: AsyncDriver,
234
+ bfs_origin_node_uuids: list[str] | None,
235
+ bfs_max_depth: int,
236
+ ) -> list[EntityEdge]:
237
+ # vector similarity search over embedded facts
238
+ if bfs_origin_node_uuids is None:
239
+ return []
240
+
241
+ query = Query("""
242
+ UNWIND $bfs_origin_node_uuids AS origin_uuid
243
+ MATCH path = (origin:Entity|Episodic {uuid: origin_uuid})-[:RELATES_TO|MENTIONS]->{1,3}(n:Entity)
244
+ UNWIND relationships(path) AS rel
245
+ MATCH ()-[r:RELATES_TO {uuid: rel.uuid}]-()
246
+ RETURN DISTINCT
247
+ r.uuid AS uuid,
248
+ r.group_id AS group_id,
249
+ startNode(r).uuid AS source_node_uuid,
250
+ endNode(r).uuid AS target_node_uuid,
251
+ r.created_at AS created_at,
252
+ r.name AS name,
253
+ r.fact AS fact,
254
+ r.fact_embedding AS fact_embedding,
255
+ r.episodes AS episodes,
256
+ r.expired_at AS expired_at,
257
+ r.valid_at AS valid_at,
258
+ r.invalid_at AS invalid_at
259
+ """)
260
+
261
+ records, _, _ = await driver.execute_query(
262
+ query,
263
+ bfs_origin_node_uuids=bfs_origin_node_uuids,
264
+ depth=bfs_max_depth,
265
+ database_=DEFAULT_DATABASE,
266
+ routing_='r',
267
+ )
227
268
 
228
269
  edges = [get_entity_edge_from_record(record) for record in records]
229
270
 
@@ -241,28 +282,26 @@ async def node_fulltext_search(
241
282
  if fuzzy_query == '':
242
283
  return []
243
284
 
244
- async with driver.session(database=DEFAULT_DATABASE) as session:
245
- result = await session.run(
246
- """
247
- CALL db.index.fulltext.queryNodes("node_name_and_summary", $query)
248
- YIELD node AS n, score
249
- RETURN
250
- n.uuid AS uuid,
251
- n.group_id AS group_id,
252
- n.name AS name,
253
- n.name_embedding AS name_embedding,
254
- n.created_at AS created_at,
255
- n.summary AS summary
256
- ORDER BY score DESC
257
- LIMIT $limit
258
- """,
259
- {
260
- 'query': fuzzy_query,
261
- 'group_ids': group_ids,
262
- 'limit': limit,
263
- },
264
- )
265
- records = [record async for record in result]
285
+ records, _, _ = await driver.execute_query(
286
+ """
287
+ CALL db.index.fulltext.queryNodes("node_name_and_summary", $query)
288
+ YIELD node AS n, score
289
+ RETURN
290
+ n.uuid AS uuid,
291
+ n.group_id AS group_id,
292
+ n.name AS name,
293
+ n.name_embedding AS name_embedding,
294
+ n.created_at AS created_at,
295
+ n.summary AS summary
296
+ ORDER BY score DESC
297
+ LIMIT $limit
298
+ """,
299
+ query=fuzzy_query,
300
+ group_ids=group_ids,
301
+ limit=limit,
302
+ database_=DEFAULT_DATABASE,
303
+ routing_='r',
304
+ )
266
305
  nodes = [get_entity_node_from_record(record) for record in records]
267
306
 
268
307
  return nodes
@@ -276,32 +315,62 @@ async def node_similarity_search(
276
315
  min_score: float = DEFAULT_MIN_SCORE,
277
316
  ) -> list[EntityNode]:
278
317
  # vector similarity search over entity names
279
- async with driver.session(database=DEFAULT_DATABASE) as session:
280
- result = await session.run(
281
- """
282
- CYPHER runtime = parallel parallelRuntimeSupport=all
283
- MATCH (n:Entity)
284
- WHERE $group_ids IS NULL OR n.group_id IN $group_ids
285
- WITH n, vector.similarity.cosine(n.name_embedding, $search_vector) AS score
286
- WHERE score > $min_score
287
- RETURN
288
- n.uuid As uuid,
289
- n.group_id AS group_id,
290
- n.name AS name,
291
- n.name_embedding AS name_embedding,
292
- n.created_at AS created_at,
293
- n.summary AS summary
294
- ORDER BY score DESC
295
- LIMIT $limit
296
- """,
297
- {
298
- 'search_vector': search_vector,
299
- 'group_ids': group_ids,
300
- 'limit': limit,
301
- 'min_score': min_score,
302
- },
303
- )
304
- records = [record async for record in result]
318
+ records, _, _ = await driver.execute_query(
319
+ """
320
+ CYPHER runtime = parallel parallelRuntimeSupport=all
321
+ MATCH (n:Entity)
322
+ WHERE $group_ids IS NULL OR n.group_id IN $group_ids
323
+ WITH n, vector.similarity.cosine(n.name_embedding, $search_vector) AS score
324
+ WHERE score > $min_score
325
+ RETURN
326
+ n.uuid As uuid,
327
+ n.group_id AS group_id,
328
+ n.name AS name,
329
+ n.name_embedding AS name_embedding,
330
+ n.created_at AS created_at,
331
+ n.summary AS summary
332
+ ORDER BY score DESC
333
+ LIMIT $limit
334
+ """,
335
+ search_vector=search_vector,
336
+ group_ids=group_ids,
337
+ limit=limit,
338
+ min_score=min_score,
339
+ database_=DEFAULT_DATABASE,
340
+ routing_='r',
341
+ )
342
+ nodes = [get_entity_node_from_record(record) for record in records]
343
+
344
+ return nodes
345
+
346
+
347
+ async def node_bfs_search(
348
+ driver: AsyncDriver,
349
+ bfs_origin_node_uuids: list[str] | None,
350
+ bfs_max_depth: int,
351
+ ) -> list[EntityNode]:
352
+ # vector similarity search over entity names
353
+ if bfs_origin_node_uuids is None:
354
+ return []
355
+
356
+ records, _, _ = await driver.execute_query(
357
+ """
358
+ UNWIND $bfs_origin_node_uuids AS origin_uuid
359
+ MATCH (origin:Entity|Episodic {uuid: origin_uuid})-[:RELATES_TO|MENTIONS]->{1,3}(n:Entity)
360
+ RETURN DISTINCT
361
+ n.uuid As uuid,
362
+ n.group_id AS group_id,
363
+ n.name AS name,
364
+ n.name_embedding AS name_embedding,
365
+ n.created_at AS created_at,
366
+ n.summary AS summary
367
+ LIMIT $limit
368
+ """,
369
+ bfs_origin_node_uuids=bfs_origin_node_uuids,
370
+ depth=bfs_max_depth,
371
+ database_=DEFAULT_DATABASE,
372
+ routing_='r',
373
+ )
305
374
  nodes = [get_entity_node_from_record(record) for record in records]
306
375
 
307
376
  return nodes
@@ -318,28 +387,26 @@ async def community_fulltext_search(
318
387
  if fuzzy_query == '':
319
388
  return []
320
389
 
321
- async with driver.session(database=DEFAULT_DATABASE) as session:
322
- result = await session.run(
323
- """
324
- CALL db.index.fulltext.queryNodes("community_name", $query)
325
- YIELD node AS comm, score
326
- RETURN
327
- comm.uuid AS uuid,
328
- comm.group_id AS group_id,
329
- comm.name AS name,
330
- comm.name_embedding AS name_embedding,
331
- comm.created_at AS created_at,
332
- comm.summary AS summary
333
- ORDER BY score DESC
334
- LIMIT $limit
335
- """,
336
- {
337
- 'query': fuzzy_query,
338
- 'group_ids': group_ids,
339
- 'limit': limit,
340
- },
341
- )
342
- records = [record async for record in result]
390
+ records, _, _ = await driver.execute_query(
391
+ """
392
+ CALL db.index.fulltext.queryNodes("community_name", $query)
393
+ YIELD node AS comm, score
394
+ RETURN
395
+ comm.uuid AS uuid,
396
+ comm.group_id AS group_id,
397
+ comm.name AS name,
398
+ comm.name_embedding AS name_embedding,
399
+ comm.created_at AS created_at,
400
+ comm.summary AS summary
401
+ ORDER BY score DESC
402
+ LIMIT $limit
403
+ """,
404
+ query=fuzzy_query,
405
+ group_ids=group_ids,
406
+ limit=limit,
407
+ database_=DEFAULT_DATABASE,
408
+ routing_='r',
409
+ )
343
410
  communities = [get_community_node_from_record(record) for record in records]
344
411
 
345
412
  return communities
@@ -353,32 +420,30 @@ async def community_similarity_search(
353
420
  min_score=DEFAULT_MIN_SCORE,
354
421
  ) -> list[CommunityNode]:
355
422
  # vector similarity search over entity names
356
- async with driver.session(database=DEFAULT_DATABASE) as session:
357
- result = await session.run(
358
- """
359
- CYPHER runtime = parallel parallelRuntimeSupport=all
360
- MATCH (comm:Community)
361
- WHERE ($group_ids IS NULL OR comm.group_id IN $group_ids)
362
- WITH comm, vector.similarity.cosine(comm.name_embedding, $search_vector) AS score
363
- WHERE score > $min_score
364
- RETURN
365
- comm.uuid As uuid,
366
- comm.group_id AS group_id,
367
- comm.name AS name,
368
- comm.name_embedding AS name_embedding,
369
- comm.created_at AS created_at,
370
- comm.summary AS summary
371
- ORDER BY score DESC
372
- LIMIT $limit
373
- """,
374
- {
375
- 'search_vector': search_vector,
376
- 'group_ids': group_ids,
377
- 'limit': limit,
378
- 'min_score': min_score,
379
- },
380
- )
381
- records = [record async for record in result]
423
+ records, _, _ = await driver.execute_query(
424
+ """
425
+ CYPHER runtime = parallel parallelRuntimeSupport=all
426
+ MATCH (comm:Community)
427
+ WHERE ($group_ids IS NULL OR comm.group_id IN $group_ids)
428
+ WITH comm, vector.similarity.cosine(comm.name_embedding, $search_vector) AS score
429
+ WHERE score > $min_score
430
+ RETURN
431
+ comm.uuid As uuid,
432
+ comm.group_id AS group_id,
433
+ comm.name AS name,
434
+ comm.name_embedding AS name_embedding,
435
+ comm.created_at AS created_at,
436
+ comm.summary AS summary
437
+ ORDER BY score DESC
438
+ LIMIT $limit
439
+ """,
440
+ search_vector=search_vector,
441
+ group_ids=group_ids,
442
+ limit=limit,
443
+ min_score=min_score,
444
+ database_=DEFAULT_DATABASE,
445
+ routing_='r',
446
+ )
382
447
  communities = [get_community_node_from_record(record) for record in records]
383
448
 
384
449
  return communities
@@ -554,32 +619,27 @@ async def node_distance_reranker(
554
619
  driver: AsyncDriver, node_uuids: list[str], center_node_uuid: str
555
620
  ) -> list[str]:
556
621
  # filter out node_uuid center node node uuid
557
- filtered_uuids = list(filter(lambda uuid: uuid != center_node_uuid, node_uuids))
622
+ filtered_uuids = list(filter(lambda node_uuid: node_uuid != center_node_uuid, node_uuids))
558
623
  scores: dict[str, float] = {}
559
624
 
560
625
  # Find the shortest path to center node
561
626
  query = Query("""
562
- MATCH p = SHORTEST 1 (center:Entity {uuid: $center_uuid})-[:RELATES_TO]-+(n:Entity {uuid: $node_uuid})
563
- RETURN length(p) AS score
627
+ UNWIND $node_uuids AS node_uuid
628
+ MATCH p = SHORTEST 1 (center:Entity {uuid: $center_uuid})-[:RELATES_TO]-+(n:Entity {uuid: node_uuid})
629
+ RETURN length(p) AS score, node_uuid AS uuid
564
630
  """)
565
631
 
566
- path_results = await asyncio.gather(
567
- *[
568
- driver.execute_query(
569
- query,
570
- node_uuid=uuid,
571
- center_uuid=center_node_uuid,
572
- database_=DEFAULT_DATABASE,
573
- )
574
- for uuid in filtered_uuids
575
- ]
632
+ path_results, _, _ = await driver.execute_query(
633
+ query,
634
+ node_uuids=filtered_uuids,
635
+ center_uuid=center_node_uuid,
636
+ database_=DEFAULT_DATABASE,
576
637
  )
577
638
 
578
- for uuid, result in zip(filtered_uuids, path_results):
579
- records = result[0]
580
- record = records[0] if len(records) > 0 else None
581
- distance: float = record['score'] if record is not None else float('inf')
582
- scores[uuid] = distance
639
+ for result in path_results:
640
+ uuid = result['uuid']
641
+ score = result['score'] if 'score' in result else float('inf')
642
+ scores[uuid] = score
583
643
 
584
644
  # rerank on shortest distance
585
645
  filtered_uuids.sort(key=lambda cur_uuid: scores[cur_uuid])
@@ -596,25 +656,20 @@ async def episode_mentions_reranker(driver: AsyncDriver, node_uuids: list[list[s
596
656
  scores: dict[str, float] = {}
597
657
 
598
658
  # Find the shortest path to center node
599
- query = Query("""
600
- MATCH (episode:Episodic)-[r:MENTIONS]->(n:Entity {uuid: $node_uuid})
601
- RETURN count(*) AS score
659
+ query = Query("""
660
+ UNWIND $node_uuids AS node_uuid
661
+ MATCH (episode:Episodic)-[r:MENTIONS]->(n:Entity {uuid: node_uuid})
662
+ RETURN count(*) AS score, n.uuid AS uuid
602
663
  """)
603
664
 
604
- result_scores = await asyncio.gather(
605
- *[
606
- driver.execute_query(
607
- query,
608
- node_uuid=uuid,
609
- database_=DEFAULT_DATABASE,
610
- )
611
- for uuid in sorted_uuids
612
- ]
665
+ results, _, _ = await driver.execute_query(
666
+ query,
667
+ node_uuids=sorted_uuids,
668
+ database_=DEFAULT_DATABASE,
613
669
  )
614
670
 
615
- for uuid, result in zip(sorted_uuids, result_scores):
616
- record = result[0][0]
617
- scores[uuid] = record['score']
671
+ for result in results:
672
+ scores[result['uuid']] = result['score']
618
673
 
619
674
  # rerank on shortest distance
620
675
  sorted_uuids.sort(key=lambda cur_uuid: scores[cur_uuid])
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: graphiti-core
3
- Version: 0.3.16
3
+ Version: 0.3.17
4
4
  Summary: A temporal graph building library
5
5
  License: Apache-2.0
6
6
  Author: Paul Paliychuk
@@ -17,7 +17,6 @@ Requires-Dist: numpy (>=1.0.0)
17
17
  Requires-Dist: openai (>=1.50.2,<2.0.0)
18
18
  Requires-Dist: pydantic (>=2.8.2,<3.0.0)
19
19
  Requires-Dist: tenacity (<9.0.0)
20
- Requires-Dist: voyageai (>=0.2.3,<0.3.0)
21
20
  Description-Content-Type: text/markdown
22
21
 
23
22
  <div align="center">
@@ -1,11 +1,15 @@
1
1
  graphiti_core/__init__.py,sha256=e5SWFkRiaUwfprYIeIgVIh7JDedNiloZvd3roU-0aDY,55
2
+ graphiti_core/cross_encoder/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
3
+ graphiti_core/cross_encoder/bge_reranker_client.py,sha256=jsXBUHfFpGsNASHaRnfz1_miQ3x070DdU8QS4J3DciI,1466
4
+ graphiti_core/cross_encoder/client.py,sha256=PyFYYsALQAD9wu0gL5uquPsulmaBZ0AZkJmLq2DFA-c,1472
5
+ graphiti_core/cross_encoder/openai_reranker_client.py,sha256=ij1E1Y5G9GNP3h3h8nSUF-ZJrQ921B54uudZUsCUaDc,4063
2
6
  graphiti_core/edges.py,sha256=KgH1f-nwexEX3PCRaQHPqbD033EeiKo_s39mqZn43zk,13082
3
7
  graphiti_core/embedder/__init__.py,sha256=eWd-0sPxflnYXLoWNT9sxwCIFun5JNO9Fk4E-ZXXf8Y,164
4
8
  graphiti_core/embedder/client.py,sha256=Sd9CyYXaqRazdOH8opKackrTx-y9y-T54M78XTVMzxs,1006
5
9
  graphiti_core/embedder/openai.py,sha256=28cl4qQCQeu6EGxVVPw3lPesA-Z_Cpvuhozyc1jdqVg,1586
6
10
  graphiti_core/embedder/voyage.py,sha256=pGrSquGnSiYl4nXGnutbdWchtYgZb0Fi_yW3c90dPlI,1497
7
11
  graphiti_core/errors.py,sha256=ddHrHGQxhwkVAtSph4AV84UoOlgwZufMczXPwB7uqPo,1795
8
- graphiti_core/graphiti.py,sha256=BBYuSDgGj8FZKm6ldNntn8Dv7jFccFSZK1_kTDZNUQE,26945
12
+ graphiti_core/graphiti.py,sha256=c9Rh777TrHYffPF6qvFAfm-m-PA4kD8a3ZW_ShsZGxE,27714
9
13
  graphiti_core/helpers.py,sha256=kqC2TD8Auwty4sG7KH4BuRMX413oTChGaAT_XUt9ZjU,2108
10
14
  graphiti_core/llm_client/__init__.py,sha256=PA80TSMeX-sUXITXEAxMDEt3gtfZgcJrGJUcyds1mSo,207
11
15
  graphiti_core/llm_client/anthropic_client.py,sha256=4l2PbCjIoeRr7UJ2DUh2grYLTtE2vNaWlo72IIRQDeI,2405
@@ -34,10 +38,10 @@ graphiti_core/prompts/models.py,sha256=cvx_Bv5RMFUD_5IUawYrbpOKLPHogai7_bm7YXrSz
34
38
  graphiti_core/prompts/summarize_nodes.py,sha256=FLuZpGTABgcxuIDkx_IKH115nHEw0rIaFhcGlWveAMc,2357
35
39
  graphiti_core/py.typed,sha256=vlmmzQOt7bmeQl9L3XJP4W6Ry0iiELepnOrinKz5KQg,79
36
40
  graphiti_core/search/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
37
- graphiti_core/search/search.py,sha256=2YvUjOWnPYVa2DvZAqOuKbcdCxjX5bSynpQICqFqqGU,9040
38
- graphiti_core/search/search_config.py,sha256=dWcanEmMoL42RHF-jcZO9C2G9BdqjkI9w-5xe9Wd2Xg,2737
39
- graphiti_core/search/search_config_recipes.py,sha256=FpASZLdyMdTSwY4ISHrjRUnFKVCego7Wd3j5RPN-ris,4907
40
- graphiti_core/search/search_utils.py,sha256=4OChWhtJXAtiOUeyZ3AoEWROY5JKJzEi-TzhlkZZfoo,21020
41
+ graphiti_core/search/search.py,sha256=jhYIb7ERK-zGT9N0M8wXjIdFMyU0pUKzpnHmmBxdG3A,10710
42
+ graphiti_core/search/search_config.py,sha256=UZN8jFA4pBlw2O5N1cuhVRBdTwMLR9N3Oyo6sQ4MDVw,3117
43
+ graphiti_core/search/search_config_recipes.py,sha256=20jS7veJExDnXA-ovJSUJfyDHKt7GW-nng-eoiT7ATA,5810
44
+ graphiti_core/search/search_utils.py,sha256=gakgUHtWQ1hqtbtFXbZn59P0-v12PcBut72UiTL6ivs,22437
41
45
  graphiti_core/utils/__init__.py,sha256=cJAcMnBZdHBQmWrZdU1PQ1YmaL75bhVUkyVpIPuOyns,260
42
46
  graphiti_core/utils/bulk_utils.py,sha256=JtoYTZPCigPa3n2E43Oe7QhFZRTA_QKNGy1jVgklHag,12614
43
47
  graphiti_core/utils/maintenance/__init__.py,sha256=TRY3wWWu5kn3Oahk_KKhltrWnh0NACw0FskjqF6OtlA,314
@@ -47,7 +51,7 @@ graphiti_core/utils/maintenance/graph_data_operations.py,sha256=w66_SLlvPapuG91Y
47
51
  graphiti_core/utils/maintenance/node_operations.py,sha256=h5nlRojbXOGJs-alpv6z6WnZ1UCixVGlAQYBQUqz8Bs,9030
48
52
  graphiti_core/utils/maintenance/temporal_operations.py,sha256=MvaRLWrBlDeYw8CQrKish1xbYcY5ovpfdqA2hSX7v5k,3367
49
53
  graphiti_core/utils/maintenance/utils.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
50
- graphiti_core-0.3.16.dist-info/LICENSE,sha256=KCUwCyDXuVEgmDWkozHyniRyWjnWUWjkuDHfU6o3JlA,11325
51
- graphiti_core-0.3.16.dist-info/METADATA,sha256=CXX1YrYZICJQzNzufvTOCMIecS-i8I9ZnpGiuRiRhio,9437
52
- graphiti_core-0.3.16.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
53
- graphiti_core-0.3.16.dist-info/RECORD,,
54
+ graphiti_core-0.3.17.dist-info/LICENSE,sha256=KCUwCyDXuVEgmDWkozHyniRyWjnWUWjkuDHfU6o3JlA,11325
55
+ graphiti_core-0.3.17.dist-info/METADATA,sha256=bguHVSkpKofqo_zp-R195rg64568tOKJB0iaqyeKUHg,9396
56
+ graphiti_core-0.3.17.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
57
+ graphiti_core-0.3.17.dist-info/RECORD,,