graphiti-core 0.17.4__py3-none-any.whl → 0.25.3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- graphiti_core/cross_encoder/gemini_reranker_client.py +1 -1
- graphiti_core/cross_encoder/openai_reranker_client.py +1 -1
- graphiti_core/decorators.py +110 -0
- graphiti_core/driver/driver.py +62 -2
- graphiti_core/driver/falkordb_driver.py +215 -23
- graphiti_core/driver/graph_operations/graph_operations.py +191 -0
- graphiti_core/driver/kuzu_driver.py +182 -0
- graphiti_core/driver/neo4j_driver.py +70 -8
- graphiti_core/driver/neptune_driver.py +305 -0
- graphiti_core/driver/search_interface/search_interface.py +89 -0
- graphiti_core/edges.py +264 -132
- graphiti_core/embedder/azure_openai.py +10 -3
- graphiti_core/embedder/client.py +2 -1
- graphiti_core/graph_queries.py +114 -101
- graphiti_core/graphiti.py +635 -260
- graphiti_core/graphiti_types.py +2 -0
- graphiti_core/helpers.py +37 -15
- graphiti_core/llm_client/anthropic_client.py +142 -52
- graphiti_core/llm_client/azure_openai_client.py +57 -19
- graphiti_core/llm_client/client.py +83 -21
- graphiti_core/llm_client/config.py +1 -1
- graphiti_core/llm_client/gemini_client.py +75 -57
- graphiti_core/llm_client/openai_base_client.py +92 -48
- graphiti_core/llm_client/openai_client.py +39 -9
- graphiti_core/llm_client/openai_generic_client.py +91 -56
- graphiti_core/models/edges/edge_db_queries.py +259 -35
- graphiti_core/models/nodes/node_db_queries.py +311 -32
- graphiti_core/nodes.py +388 -164
- graphiti_core/prompts/dedupe_edges.py +42 -31
- graphiti_core/prompts/dedupe_nodes.py +56 -39
- graphiti_core/prompts/eval.py +4 -4
- graphiti_core/prompts/extract_edges.py +24 -15
- graphiti_core/prompts/extract_nodes.py +76 -35
- graphiti_core/prompts/prompt_helpers.py +39 -0
- graphiti_core/prompts/snippets.py +29 -0
- graphiti_core/prompts/summarize_nodes.py +23 -25
- graphiti_core/search/search.py +154 -74
- graphiti_core/search/search_config.py +39 -4
- graphiti_core/search/search_filters.py +110 -31
- graphiti_core/search/search_helpers.py +5 -6
- graphiti_core/search/search_utils.py +1360 -473
- graphiti_core/tracer.py +193 -0
- graphiti_core/utils/bulk_utils.py +216 -90
- graphiti_core/utils/content_chunking.py +702 -0
- graphiti_core/utils/datetime_utils.py +13 -0
- graphiti_core/utils/maintenance/community_operations.py +62 -38
- graphiti_core/utils/maintenance/dedup_helpers.py +262 -0
- graphiti_core/utils/maintenance/edge_operations.py +306 -156
- graphiti_core/utils/maintenance/graph_data_operations.py +44 -74
- graphiti_core/utils/maintenance/node_operations.py +466 -206
- graphiti_core/utils/maintenance/temporal_operations.py +11 -3
- graphiti_core/utils/ontology_utils/entity_types_utils.py +1 -1
- graphiti_core/utils/text_utils.py +53 -0
- {graphiti_core-0.17.4.dist-info → graphiti_core-0.25.3.dist-info}/METADATA +221 -87
- graphiti_core-0.25.3.dist-info/RECORD +87 -0
- {graphiti_core-0.17.4.dist-info → graphiti_core-0.25.3.dist-info}/WHEEL +1 -1
- graphiti_core-0.17.4.dist-info/RECORD +0 -77
- /graphiti_core/{utils/maintenance/utils.py → migrations/__init__.py} +0 -0
- {graphiti_core-0.17.4.dist-info → graphiti_core-0.25.3.dist-info}/licenses/LICENSE +0 -0
|
@@ -14,12 +14,15 @@ See the License for the specific language governing permissions and
|
|
|
14
14
|
limitations under the License.
|
|
15
15
|
"""
|
|
16
16
|
|
|
17
|
-
import json
|
|
18
17
|
from typing import Any, Protocol, TypedDict
|
|
19
18
|
|
|
20
19
|
from pydantic import BaseModel, Field
|
|
21
20
|
|
|
21
|
+
from graphiti_core.utils.text_utils import MAX_SUMMARY_CHARS
|
|
22
|
+
|
|
22
23
|
from .models import Message, PromptFunction, PromptVersion
|
|
24
|
+
from .prompt_helpers import to_prompt_json
|
|
25
|
+
from .snippets import summary_instructions
|
|
23
26
|
|
|
24
27
|
|
|
25
28
|
class ExtractedEntity(BaseModel):
|
|
@@ -42,7 +45,8 @@ class EntityClassificationTriple(BaseModel):
|
|
|
42
45
|
uuid: str = Field(description='UUID of the entity')
|
|
43
46
|
name: str = Field(description='Name of the entity')
|
|
44
47
|
entity_type: str | None = Field(
|
|
45
|
-
default=None,
|
|
48
|
+
default=None,
|
|
49
|
+
description='Type of the entity. Must be one of the provided types or None',
|
|
46
50
|
)
|
|
47
51
|
|
|
48
52
|
|
|
@@ -52,6 +56,13 @@ class EntityClassification(BaseModel):
|
|
|
52
56
|
)
|
|
53
57
|
|
|
54
58
|
|
|
59
|
+
class EntitySummary(BaseModel):
|
|
60
|
+
summary: str = Field(
|
|
61
|
+
...,
|
|
62
|
+
description=f'Summary containing the important information about the entity. Under {MAX_SUMMARY_CHARS} characters.',
|
|
63
|
+
)
|
|
64
|
+
|
|
65
|
+
|
|
55
66
|
class Prompt(Protocol):
|
|
56
67
|
extract_message: PromptVersion
|
|
57
68
|
extract_json: PromptVersion
|
|
@@ -59,6 +70,7 @@ class Prompt(Protocol):
|
|
|
59
70
|
reflexion: PromptVersion
|
|
60
71
|
classify_nodes: PromptVersion
|
|
61
72
|
extract_attributes: PromptVersion
|
|
73
|
+
extract_summary: PromptVersion
|
|
62
74
|
|
|
63
75
|
|
|
64
76
|
class Versions(TypedDict):
|
|
@@ -68,6 +80,7 @@ class Versions(TypedDict):
|
|
|
68
80
|
reflexion: PromptFunction
|
|
69
81
|
classify_nodes: PromptFunction
|
|
70
82
|
extract_attributes: PromptFunction
|
|
83
|
+
extract_summary: PromptFunction
|
|
71
84
|
|
|
72
85
|
|
|
73
86
|
def extract_message(context: dict[str, Any]) -> list[Message]:
|
|
@@ -75,23 +88,23 @@ def extract_message(context: dict[str, Any]) -> list[Message]:
|
|
|
75
88
|
Your primary task is to extract and classify the speaker and other significant entities mentioned in the conversation."""
|
|
76
89
|
|
|
77
90
|
user_prompt = f"""
|
|
91
|
+
<ENTITY TYPES>
|
|
92
|
+
{context['entity_types']}
|
|
93
|
+
</ENTITY TYPES>
|
|
94
|
+
|
|
78
95
|
<PREVIOUS MESSAGES>
|
|
79
|
-
{
|
|
96
|
+
{to_prompt_json([ep for ep in context['previous_episodes']])}
|
|
80
97
|
</PREVIOUS MESSAGES>
|
|
81
98
|
|
|
82
99
|
<CURRENT MESSAGE>
|
|
83
100
|
{context['episode_content']}
|
|
84
101
|
</CURRENT MESSAGE>
|
|
85
102
|
|
|
86
|
-
<ENTITY TYPES>
|
|
87
|
-
{context['entity_types']}
|
|
88
|
-
</ENTITY TYPES>
|
|
89
|
-
|
|
90
103
|
Instructions:
|
|
91
104
|
|
|
92
105
|
You are given a conversation context and a CURRENT MESSAGE. Your task is to extract **entity nodes** mentioned **explicitly or implicitly** in the CURRENT MESSAGE.
|
|
93
106
|
Pronoun references such as he/she/they or this/that/those should be disambiguated to the names of the
|
|
94
|
-
reference entities.
|
|
107
|
+
reference entities. Only extract distinct entities from the CURRENT MESSAGE. Don't extract pronouns like you, me, he/she/they, we/us as entities.
|
|
95
108
|
|
|
96
109
|
1. **Speaker Extraction**: Always extract the speaker (the part before the colon `:` in each dialogue line) as the first entity node.
|
|
97
110
|
- If the speaker is mentioned again in the message, treat both mentions as a **single entity**.
|
|
@@ -111,7 +124,7 @@ reference entities.
|
|
|
111
124
|
5. **Formatting**:
|
|
112
125
|
- Be **explicit and unambiguous** in naming entities (e.g., use full names when available).
|
|
113
126
|
|
|
114
|
-
{context['
|
|
127
|
+
{context['custom_extraction_instructions']}
|
|
115
128
|
"""
|
|
116
129
|
return [
|
|
117
130
|
Message(role='system', content=sys_prompt),
|
|
@@ -124,25 +137,27 @@ def extract_json(context: dict[str, Any]) -> list[Message]:
|
|
|
124
137
|
Your primary task is to extract and classify relevant entities from JSON files"""
|
|
125
138
|
|
|
126
139
|
user_prompt = f"""
|
|
140
|
+
<ENTITY TYPES>
|
|
141
|
+
{context['entity_types']}
|
|
142
|
+
</ENTITY TYPES>
|
|
143
|
+
|
|
127
144
|
<SOURCE DESCRIPTION>:
|
|
128
145
|
{context['source_description']}
|
|
129
146
|
</SOURCE DESCRIPTION>
|
|
130
147
|
<JSON>
|
|
131
148
|
{context['episode_content']}
|
|
132
149
|
</JSON>
|
|
133
|
-
<ENTITY TYPES>
|
|
134
|
-
{context['entity_types']}
|
|
135
|
-
</ENTITY TYPES>
|
|
136
150
|
|
|
137
|
-
{context['
|
|
151
|
+
{context['custom_extraction_instructions']}
|
|
138
152
|
|
|
139
153
|
Given the above source description and JSON, extract relevant entities from the provided JSON.
|
|
140
154
|
For each entity extracted, also determine its entity type based on the provided ENTITY TYPES and their descriptions.
|
|
141
155
|
Indicate the classified entity type by providing its entity_type_id.
|
|
142
156
|
|
|
143
157
|
Guidelines:
|
|
144
|
-
1.
|
|
145
|
-
2.
|
|
158
|
+
1. Extract all entities that the JSON represents. This will often be something like a "name" or "user" field
|
|
159
|
+
2. Extract all entities mentioned in all other properties throughout the JSON structure
|
|
160
|
+
3. Do NOT extract any properties that contain dates
|
|
146
161
|
"""
|
|
147
162
|
return [
|
|
148
163
|
Message(role='system', content=sys_prompt),
|
|
@@ -155,18 +170,19 @@ def extract_text(context: dict[str, Any]) -> list[Message]:
|
|
|
155
170
|
Your primary task is to extract and classify the speaker and other significant entities mentioned in the provided text."""
|
|
156
171
|
|
|
157
172
|
user_prompt = f"""
|
|
158
|
-
<TEXT>
|
|
159
|
-
{context['episode_content']}
|
|
160
|
-
</TEXT>
|
|
161
173
|
<ENTITY TYPES>
|
|
162
174
|
{context['entity_types']}
|
|
163
175
|
</ENTITY TYPES>
|
|
164
176
|
|
|
177
|
+
<TEXT>
|
|
178
|
+
{context['episode_content']}
|
|
179
|
+
</TEXT>
|
|
180
|
+
|
|
165
181
|
Given the above text, extract entities from the TEXT that are explicitly or implicitly mentioned.
|
|
166
182
|
For each entity extracted, also determine its entity type based on the provided ENTITY TYPES and their descriptions.
|
|
167
183
|
Indicate the classified entity type by providing its entity_type_id.
|
|
168
184
|
|
|
169
|
-
{context['
|
|
185
|
+
{context['custom_extraction_instructions']}
|
|
170
186
|
|
|
171
187
|
Guidelines:
|
|
172
188
|
1. Extract significant entities, concepts, or actors mentioned in the conversation.
|
|
@@ -185,7 +201,7 @@ def reflexion(context: dict[str, Any]) -> list[Message]:
|
|
|
185
201
|
|
|
186
202
|
user_prompt = f"""
|
|
187
203
|
<PREVIOUS MESSAGES>
|
|
188
|
-
{
|
|
204
|
+
{to_prompt_json([ep for ep in context['previous_episodes']])}
|
|
189
205
|
</PREVIOUS MESSAGES>
|
|
190
206
|
<CURRENT MESSAGE>
|
|
191
207
|
{context['episode_content']}
|
|
@@ -209,22 +225,22 @@ def classify_nodes(context: dict[str, Any]) -> list[Message]:
|
|
|
209
225
|
|
|
210
226
|
user_prompt = f"""
|
|
211
227
|
<PREVIOUS MESSAGES>
|
|
212
|
-
{
|
|
228
|
+
{to_prompt_json([ep for ep in context['previous_episodes']])}
|
|
213
229
|
</PREVIOUS MESSAGES>
|
|
214
230
|
<CURRENT MESSAGE>
|
|
215
231
|
{context['episode_content']}
|
|
216
232
|
</CURRENT MESSAGE>
|
|
217
|
-
|
|
233
|
+
|
|
218
234
|
<EXTRACTED ENTITIES>
|
|
219
235
|
{context['extracted_entities']}
|
|
220
236
|
</EXTRACTED ENTITIES>
|
|
221
|
-
|
|
237
|
+
|
|
222
238
|
<ENTITY TYPES>
|
|
223
239
|
{context['entity_types']}
|
|
224
240
|
</ENTITY TYPES>
|
|
225
|
-
|
|
241
|
+
|
|
226
242
|
Given the above conversation, extracted entities, and provided entity types and their descriptions, classify the extracted entities.
|
|
227
|
-
|
|
243
|
+
|
|
228
244
|
Guidelines:
|
|
229
245
|
1. Each entity must have exactly one type
|
|
230
246
|
2. Only use the provided ENTITY TYPES as types, do not use additional types to classify entities.
|
|
@@ -245,21 +261,45 @@ def extract_attributes(context: dict[str, Any]) -> list[Message]:
|
|
|
245
261
|
Message(
|
|
246
262
|
role='user',
|
|
247
263
|
content=f"""
|
|
248
|
-
|
|
249
|
-
<MESSAGES>
|
|
250
|
-
{json.dumps(context['previous_episodes'], indent=2)}
|
|
251
|
-
{json.dumps(context['episode_content'], indent=2)}
|
|
252
|
-
</MESSAGES>
|
|
253
|
-
|
|
254
|
-
Given the above MESSAGES and the following ENTITY, update any of its attributes based on the information provided
|
|
264
|
+
Given the MESSAGES and the following ENTITY, update any of its attributes based on the information provided
|
|
255
265
|
in MESSAGES. Use the provided attribute descriptions to better understand how each attribute should be determined.
|
|
256
266
|
|
|
257
267
|
Guidelines:
|
|
258
268
|
1. Do not hallucinate entity property values if they cannot be found in the current context.
|
|
259
269
|
2. Only use the provided MESSAGES and ENTITY to set attribute values.
|
|
260
|
-
|
|
261
|
-
|
|
262
|
-
|
|
270
|
+
|
|
271
|
+
<MESSAGES>
|
|
272
|
+
{to_prompt_json(context['previous_episodes'])}
|
|
273
|
+
{to_prompt_json(context['episode_content'])}
|
|
274
|
+
</MESSAGES>
|
|
275
|
+
|
|
276
|
+
<ENTITY>
|
|
277
|
+
{context['node']}
|
|
278
|
+
</ENTITY>
|
|
279
|
+
""",
|
|
280
|
+
),
|
|
281
|
+
]
|
|
282
|
+
|
|
283
|
+
|
|
284
|
+
def extract_summary(context: dict[str, Any]) -> list[Message]:
|
|
285
|
+
return [
|
|
286
|
+
Message(
|
|
287
|
+
role='system',
|
|
288
|
+
content='You are a helpful assistant that extracts entity summaries from the provided text.',
|
|
289
|
+
),
|
|
290
|
+
Message(
|
|
291
|
+
role='user',
|
|
292
|
+
content=f"""
|
|
293
|
+
Given the MESSAGES and the ENTITY, update the summary that combines relevant information about the entity
|
|
294
|
+
from the messages and relevant information from the existing summary.
|
|
295
|
+
|
|
296
|
+
{summary_instructions}
|
|
297
|
+
|
|
298
|
+
<MESSAGES>
|
|
299
|
+
{to_prompt_json(context['previous_episodes'])}
|
|
300
|
+
{to_prompt_json(context['episode_content'])}
|
|
301
|
+
</MESSAGES>
|
|
302
|
+
|
|
263
303
|
<ENTITY>
|
|
264
304
|
{context['node']}
|
|
265
305
|
</ENTITY>
|
|
@@ -273,6 +313,7 @@ versions: Versions = {
|
|
|
273
313
|
'extract_json': extract_json,
|
|
274
314
|
'extract_text': extract_text,
|
|
275
315
|
'reflexion': reflexion,
|
|
316
|
+
'extract_summary': extract_summary,
|
|
276
317
|
'classify_nodes': classify_nodes,
|
|
277
318
|
'extract_attributes': extract_attributes,
|
|
278
319
|
}
|
|
@@ -1 +1,40 @@
|
|
|
1
|
+
"""
|
|
2
|
+
Copyright 2024, Zep Software, Inc.
|
|
3
|
+
|
|
4
|
+
Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
you may not use this file except in compliance with the License.
|
|
6
|
+
You may obtain a copy of the License at
|
|
7
|
+
|
|
8
|
+
http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
|
|
10
|
+
Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
See the License for the specific language governing permissions and
|
|
14
|
+
limitations under the License.
|
|
15
|
+
"""
|
|
16
|
+
|
|
17
|
+
import json
|
|
18
|
+
from typing import Any
|
|
19
|
+
|
|
1
20
|
DO_NOT_ESCAPE_UNICODE = '\nDo not escape unicode characters.\n'
|
|
21
|
+
|
|
22
|
+
|
|
23
|
+
def to_prompt_json(data: Any, ensure_ascii: bool = False, indent: int | None = None) -> str:
|
|
24
|
+
"""
|
|
25
|
+
Serialize data to JSON for use in prompts.
|
|
26
|
+
|
|
27
|
+
Args:
|
|
28
|
+
data: The data to serialize
|
|
29
|
+
ensure_ascii: If True, escape non-ASCII characters. If False (default), preserve them.
|
|
30
|
+
indent: Number of spaces for indentation. Defaults to None (minified).
|
|
31
|
+
|
|
32
|
+
Returns:
|
|
33
|
+
JSON string representation of the data
|
|
34
|
+
|
|
35
|
+
Notes:
|
|
36
|
+
By default (ensure_ascii=False), non-ASCII characters (e.g., Korean, Japanese, Chinese)
|
|
37
|
+
are preserved in their original form in the prompt, making them readable
|
|
38
|
+
in LLM logs and improving model understanding.
|
|
39
|
+
"""
|
|
40
|
+
return json.dumps(data, ensure_ascii=ensure_ascii, indent=indent)
|
|
@@ -0,0 +1,29 @@
|
|
|
1
|
+
"""
|
|
2
|
+
Copyright 2024, Zep Software, Inc.
|
|
3
|
+
|
|
4
|
+
Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
you may not use this file except in compliance with the License.
|
|
6
|
+
You may obtain a copy of the License at
|
|
7
|
+
|
|
8
|
+
http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
|
|
10
|
+
Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
See the License for the specific language governing permissions and
|
|
14
|
+
limitations under the License.
|
|
15
|
+
"""
|
|
16
|
+
|
|
17
|
+
summary_instructions = """Guidelines:
|
|
18
|
+
1. Output only factual content. Never explain what you're doing, why, or mention limitations/constraints.
|
|
19
|
+
2. Only use the provided messages, entity, and entity context to set attribute values.
|
|
20
|
+
3. Keep the summary concise and to the point. STATE FACTS DIRECTLY IN UNDER 250 CHARACTERS.
|
|
21
|
+
|
|
22
|
+
Example summaries:
|
|
23
|
+
BAD: "This is the only activity in the context. The user listened to this song. No other details were provided to include in this summary."
|
|
24
|
+
GOOD: "User played 'Blue Monday' by New Order (electronic genre) on 2024-12-03 at 14:22 UTC."
|
|
25
|
+
BAD: "Based on the messages provided, the user attended a meeting. This summary focuses on that event as it was the main topic discussed."
|
|
26
|
+
GOOD: "User attended Q3 planning meeting with sales team on March 15."
|
|
27
|
+
BAD: "The context shows John ordered pizza. Due to length constraints, other details are omitted from this summary."
|
|
28
|
+
GOOD: "John ordered pepperoni pizza from Mario's at 7:30 PM, delivered to office."
|
|
29
|
+
"""
|
|
@@ -14,18 +14,19 @@ See the License for the specific language governing permissions and
|
|
|
14
14
|
limitations under the License.
|
|
15
15
|
"""
|
|
16
16
|
|
|
17
|
-
import json
|
|
18
17
|
from typing import Any, Protocol, TypedDict
|
|
19
18
|
|
|
20
19
|
from pydantic import BaseModel, Field
|
|
21
20
|
|
|
22
21
|
from .models import Message, PromptFunction, PromptVersion
|
|
22
|
+
from .prompt_helpers import to_prompt_json
|
|
23
|
+
from .snippets import summary_instructions
|
|
23
24
|
|
|
24
25
|
|
|
25
26
|
class Summary(BaseModel):
|
|
26
27
|
summary: str = Field(
|
|
27
28
|
...,
|
|
28
|
-
description='Summary containing the important information about the entity. Under 250
|
|
29
|
+
description='Summary containing the important information about the entity. Under 250 characters',
|
|
29
30
|
)
|
|
30
31
|
|
|
31
32
|
|
|
@@ -55,11 +56,11 @@ def summarize_pair(context: dict[str, Any]) -> list[Message]:
|
|
|
55
56
|
role='user',
|
|
56
57
|
content=f"""
|
|
57
58
|
Synthesize the information from the following two summaries into a single succinct summary.
|
|
58
|
-
|
|
59
|
-
|
|
59
|
+
|
|
60
|
+
IMPORTANT: Keep the summary concise and to the point. SUMMARIES MUST BE LESS THAN 250 CHARACTERS.
|
|
60
61
|
|
|
61
62
|
Summaries:
|
|
62
|
-
{
|
|
63
|
+
{to_prompt_json(context['node_summaries'])}
|
|
63
64
|
""",
|
|
64
65
|
),
|
|
65
66
|
]
|
|
@@ -69,38 +70,35 @@ def summarize_context(context: dict[str, Any]) -> list[Message]:
|
|
|
69
70
|
return [
|
|
70
71
|
Message(
|
|
71
72
|
role='system',
|
|
72
|
-
content='You are a helpful assistant that
|
|
73
|
+
content='You are a helpful assistant that generates a summary and attributes from provided text.',
|
|
73
74
|
),
|
|
74
75
|
Message(
|
|
75
76
|
role='user',
|
|
76
77
|
content=f"""
|
|
77
|
-
|
|
78
|
-
<MESSAGES>
|
|
79
|
-
{json.dumps(context['previous_episodes'], indent=2)}
|
|
80
|
-
{json.dumps(context['episode_content'], indent=2)}
|
|
81
|
-
</MESSAGES>
|
|
82
|
-
|
|
83
|
-
Given the above MESSAGES and the following ENTITY name, create a summary for the ENTITY. Your summary must only use
|
|
78
|
+
Given the MESSAGES and the ENTITY name, create a summary for the ENTITY. Your summary must only use
|
|
84
79
|
information from the provided MESSAGES. Your summary should also only contain information relevant to the
|
|
85
|
-
provided ENTITY.
|
|
86
|
-
|
|
80
|
+
provided ENTITY.
|
|
81
|
+
|
|
87
82
|
In addition, extract any values for the provided entity properties based on their descriptions.
|
|
88
83
|
If the value of the entity property cannot be found in the current context, set the value of the property to the Python value None.
|
|
89
|
-
|
|
90
|
-
|
|
91
|
-
|
|
92
|
-
|
|
93
|
-
|
|
84
|
+
|
|
85
|
+
{summary_instructions}
|
|
86
|
+
|
|
87
|
+
<MESSAGES>
|
|
88
|
+
{to_prompt_json(context['previous_episodes'])}
|
|
89
|
+
{to_prompt_json(context['episode_content'])}
|
|
90
|
+
</MESSAGES>
|
|
91
|
+
|
|
94
92
|
<ENTITY>
|
|
95
93
|
{context['node_name']}
|
|
96
94
|
</ENTITY>
|
|
97
|
-
|
|
95
|
+
|
|
98
96
|
<ENTITY CONTEXT>
|
|
99
97
|
{context['node_summary']}
|
|
100
98
|
</ENTITY CONTEXT>
|
|
101
|
-
|
|
99
|
+
|
|
102
100
|
<ATTRIBUTES>
|
|
103
|
-
{
|
|
101
|
+
{to_prompt_json(context['attributes'])}
|
|
104
102
|
</ATTRIBUTES>
|
|
105
103
|
""",
|
|
106
104
|
),
|
|
@@ -117,10 +115,10 @@ def summary_description(context: dict[str, Any]) -> list[Message]:
|
|
|
117
115
|
role='user',
|
|
118
116
|
content=f"""
|
|
119
117
|
Create a short one sentence description of the summary that explains what kind of information is summarized.
|
|
120
|
-
Summaries must be under 250
|
|
118
|
+
Summaries must be under 250 characters.
|
|
121
119
|
|
|
122
120
|
Summary:
|
|
123
|
-
{
|
|
121
|
+
{to_prompt_json(context['summary'])}
|
|
124
122
|
""",
|
|
125
123
|
),
|
|
126
124
|
]
|