graphiti-core 0.12.0rc1__py3-none-any.whl → 0.24.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (68) hide show
  1. graphiti_core/cross_encoder/bge_reranker_client.py +12 -2
  2. graphiti_core/cross_encoder/gemini_reranker_client.py +161 -0
  3. graphiti_core/cross_encoder/openai_reranker_client.py +7 -5
  4. graphiti_core/decorators.py +110 -0
  5. graphiti_core/driver/__init__.py +19 -0
  6. graphiti_core/driver/driver.py +124 -0
  7. graphiti_core/driver/falkordb_driver.py +362 -0
  8. graphiti_core/driver/graph_operations/graph_operations.py +191 -0
  9. graphiti_core/driver/kuzu_driver.py +182 -0
  10. graphiti_core/driver/neo4j_driver.py +117 -0
  11. graphiti_core/driver/neptune_driver.py +305 -0
  12. graphiti_core/driver/search_interface/search_interface.py +89 -0
  13. graphiti_core/edges.py +287 -172
  14. graphiti_core/embedder/azure_openai.py +71 -0
  15. graphiti_core/embedder/client.py +2 -1
  16. graphiti_core/embedder/gemini.py +116 -22
  17. graphiti_core/embedder/voyage.py +13 -2
  18. graphiti_core/errors.py +8 -0
  19. graphiti_core/graph_queries.py +162 -0
  20. graphiti_core/graphiti.py +705 -193
  21. graphiti_core/graphiti_types.py +4 -2
  22. graphiti_core/helpers.py +87 -10
  23. graphiti_core/llm_client/__init__.py +16 -0
  24. graphiti_core/llm_client/anthropic_client.py +159 -56
  25. graphiti_core/llm_client/azure_openai_client.py +115 -0
  26. graphiti_core/llm_client/client.py +98 -21
  27. graphiti_core/llm_client/config.py +1 -1
  28. graphiti_core/llm_client/gemini_client.py +290 -41
  29. graphiti_core/llm_client/groq_client.py +14 -3
  30. graphiti_core/llm_client/openai_base_client.py +261 -0
  31. graphiti_core/llm_client/openai_client.py +56 -132
  32. graphiti_core/llm_client/openai_generic_client.py +91 -56
  33. graphiti_core/models/edges/edge_db_queries.py +259 -35
  34. graphiti_core/models/nodes/node_db_queries.py +311 -32
  35. graphiti_core/nodes.py +420 -205
  36. graphiti_core/prompts/dedupe_edges.py +46 -32
  37. graphiti_core/prompts/dedupe_nodes.py +67 -42
  38. graphiti_core/prompts/eval.py +4 -4
  39. graphiti_core/prompts/extract_edges.py +27 -16
  40. graphiti_core/prompts/extract_nodes.py +74 -31
  41. graphiti_core/prompts/prompt_helpers.py +39 -0
  42. graphiti_core/prompts/snippets.py +29 -0
  43. graphiti_core/prompts/summarize_nodes.py +23 -25
  44. graphiti_core/search/search.py +158 -82
  45. graphiti_core/search/search_config.py +39 -4
  46. graphiti_core/search/search_filters.py +126 -35
  47. graphiti_core/search/search_helpers.py +5 -6
  48. graphiti_core/search/search_utils.py +1405 -485
  49. graphiti_core/telemetry/__init__.py +9 -0
  50. graphiti_core/telemetry/telemetry.py +117 -0
  51. graphiti_core/tracer.py +193 -0
  52. graphiti_core/utils/bulk_utils.py +364 -285
  53. graphiti_core/utils/datetime_utils.py +13 -0
  54. graphiti_core/utils/maintenance/community_operations.py +67 -49
  55. graphiti_core/utils/maintenance/dedup_helpers.py +262 -0
  56. graphiti_core/utils/maintenance/edge_operations.py +339 -197
  57. graphiti_core/utils/maintenance/graph_data_operations.py +50 -114
  58. graphiti_core/utils/maintenance/node_operations.py +319 -238
  59. graphiti_core/utils/maintenance/temporal_operations.py +11 -3
  60. graphiti_core/utils/ontology_utils/entity_types_utils.py +1 -1
  61. graphiti_core/utils/text_utils.py +53 -0
  62. graphiti_core-0.24.3.dist-info/METADATA +726 -0
  63. graphiti_core-0.24.3.dist-info/RECORD +86 -0
  64. {graphiti_core-0.12.0rc1.dist-info → graphiti_core-0.24.3.dist-info}/WHEEL +1 -1
  65. graphiti_core-0.12.0rc1.dist-info/METADATA +0 -350
  66. graphiti_core-0.12.0rc1.dist-info/RECORD +0 -66
  67. /graphiti_core/{utils/maintenance/utils.py → migrations/__init__.py} +0 -0
  68. {graphiti_core-0.12.0rc1.dist-info → graphiti_core-0.24.3.dist-info/licenses}/LICENSE +0 -0
@@ -0,0 +1,71 @@
1
+ """
2
+ Copyright 2024, Zep Software, Inc.
3
+
4
+ Licensed under the Apache License, Version 2.0 (the "License");
5
+ you may not use this file except in compliance with the License.
6
+ You may obtain a copy of the License at
7
+
8
+ http://www.apache.org/licenses/LICENSE-2.0
9
+
10
+ Unless required by applicable law or agreed to in writing, software
11
+ distributed under the License is distributed on an "AS IS" BASIS,
12
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ See the License for the specific language governing permissions and
14
+ limitations under the License.
15
+ """
16
+
17
+ import logging
18
+ from typing import Any
19
+
20
+ from openai import AsyncAzureOpenAI, AsyncOpenAI
21
+
22
+ from .client import EmbedderClient
23
+
24
+ logger = logging.getLogger(__name__)
25
+
26
+
27
+ class AzureOpenAIEmbedderClient(EmbedderClient):
28
+ """Wrapper class for Azure OpenAI that implements the EmbedderClient interface.
29
+
30
+ Supports both AsyncAzureOpenAI and AsyncOpenAI (with Azure v1 API endpoint).
31
+ """
32
+
33
+ def __init__(
34
+ self,
35
+ azure_client: AsyncAzureOpenAI | AsyncOpenAI,
36
+ model: str = 'text-embedding-3-small',
37
+ ):
38
+ self.azure_client = azure_client
39
+ self.model = model
40
+
41
+ async def create(self, input_data: str | list[str] | Any) -> list[float]:
42
+ """Create embeddings using Azure OpenAI client."""
43
+ try:
44
+ # Handle different input types
45
+ if isinstance(input_data, str):
46
+ text_input = [input_data]
47
+ elif isinstance(input_data, list) and all(isinstance(item, str) for item in input_data):
48
+ text_input = input_data
49
+ else:
50
+ # Convert to string list for other types
51
+ text_input = [str(input_data)]
52
+
53
+ response = await self.azure_client.embeddings.create(model=self.model, input=text_input)
54
+
55
+ # Return the first embedding as a list of floats
56
+ return response.data[0].embedding
57
+ except Exception as e:
58
+ logger.error(f'Error in Azure OpenAI embedding: {e}')
59
+ raise
60
+
61
+ async def create_batch(self, input_data_list: list[str]) -> list[list[float]]:
62
+ """Create batch embeddings using Azure OpenAI client."""
63
+ try:
64
+ response = await self.azure_client.embeddings.create(
65
+ model=self.model, input=input_data_list
66
+ )
67
+
68
+ return [embedding.embedding for embedding in response.data]
69
+ except Exception as e:
70
+ logger.error(f'Error in Azure OpenAI batch embedding: {e}')
71
+ raise
@@ -14,12 +14,13 @@ See the License for the specific language governing permissions and
14
14
  limitations under the License.
15
15
  """
16
16
 
17
+ import os
17
18
  from abc import ABC, abstractmethod
18
19
  from collections.abc import Iterable
19
20
 
20
21
  from pydantic import BaseModel, Field
21
22
 
22
- EMBEDDING_DIM = 1024
23
+ EMBEDDING_DIM = int(os.getenv('EMBEDDING_DIM', 1024))
23
24
 
24
25
 
25
26
  class EmbedderConfig(BaseModel):
@@ -14,15 +14,32 @@ See the License for the specific language governing permissions and
14
14
  limitations under the License.
15
15
  """
16
16
 
17
+ import logging
17
18
  from collections.abc import Iterable
19
+ from typing import TYPE_CHECKING
20
+
21
+ if TYPE_CHECKING:
22
+ from google import genai
23
+ from google.genai import types
24
+ else:
25
+ try:
26
+ from google import genai
27
+ from google.genai import types
28
+ except ImportError:
29
+ raise ImportError(
30
+ 'google-genai is required for GeminiEmbedder. '
31
+ 'Install it with: pip install graphiti-core[google-genai]'
32
+ ) from None
18
33
 
19
- from google import genai # type: ignore
20
- from google.genai import types # type: ignore
21
34
  from pydantic import Field
22
35
 
23
36
  from .client import EmbedderClient, EmbedderConfig
24
37
 
25
- DEFAULT_EMBEDDING_MODEL = 'embedding-001'
38
+ logger = logging.getLogger(__name__)
39
+
40
+ DEFAULT_EMBEDDING_MODEL = 'text-embedding-001' # gemini-embedding-001 or text-embedding-005
41
+
42
+ DEFAULT_BATCH_SIZE = 100
26
43
 
27
44
 
28
45
  class GeminiEmbedderConfig(EmbedderConfig):
@@ -35,15 +52,38 @@ class GeminiEmbedder(EmbedderClient):
35
52
  Google Gemini Embedder Client
36
53
  """
37
54
 
38
- def __init__(self, config: GeminiEmbedderConfig | None = None):
55
+ def __init__(
56
+ self,
57
+ config: GeminiEmbedderConfig | None = None,
58
+ client: 'genai.Client | None' = None,
59
+ batch_size: int | None = None,
60
+ ):
61
+ """
62
+ Initialize the GeminiEmbedder with the provided configuration and client.
63
+
64
+ Args:
65
+ config (GeminiEmbedderConfig | None): The configuration for the GeminiEmbedder, including API key, model, base URL, temperature, and max tokens.
66
+ client (genai.Client | None): An optional async client instance to use. If not provided, a new genai.Client is created.
67
+ batch_size (int | None): An optional batch size to use. If not provided, the default batch size will be used.
68
+ """
39
69
  if config is None:
40
70
  config = GeminiEmbedderConfig()
71
+
41
72
  self.config = config
42
73
 
43
- # Configure the Gemini API
44
- self.client = genai.Client(
45
- api_key=config.api_key,
46
- )
74
+ if client is None:
75
+ self.client = genai.Client(api_key=config.api_key)
76
+ else:
77
+ self.client = client
78
+
79
+ if batch_size is None and self.config.embedding_model == 'gemini-embedding-001':
80
+ # Gemini API has a limit on the number of instances per request
81
+ # https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/text-embeddings-api
82
+ self.batch_size = 1
83
+ elif batch_size is None:
84
+ self.batch_size = DEFAULT_BATCH_SIZE
85
+ else:
86
+ self.batch_size = batch_size
47
87
 
48
88
  async def create(
49
89
  self, input_data: str | list[str] | Iterable[int] | Iterable[Iterable[int]]
@@ -71,19 +111,73 @@ class GeminiEmbedder(EmbedderClient):
71
111
  return result.embeddings[0].values
72
112
 
73
113
  async def create_batch(self, input_data_list: list[str]) -> list[list[float]]:
74
- # Generate embeddings
75
- result = await self.client.aio.models.embed_content(
76
- model=self.config.embedding_model or DEFAULT_EMBEDDING_MODEL,
77
- contents=input_data_list, # type: ignore[arg-type] # mypy fails on broad union type
78
- config=types.EmbedContentConfig(output_dimensionality=self.config.embedding_dim),
79
- )
114
+ """
115
+ Create embeddings for a batch of input data using Google's Gemini embedding model.
80
116
 
81
- if not result.embeddings or len(result.embeddings) == 0:
82
- raise Exception('No embeddings returned')
117
+ This method handles batching to respect the Gemini API's limits on the number
118
+ of instances that can be processed in a single request.
83
119
 
84
- embeddings = []
85
- for embedding in result.embeddings:
86
- if not embedding.values:
87
- raise ValueError('Empty embedding values returned')
88
- embeddings.append(embedding.values)
89
- return embeddings
120
+ Args:
121
+ input_data_list: A list of strings to create embeddings for.
122
+
123
+ Returns:
124
+ A list of embedding vectors (each vector is a list of floats).
125
+ """
126
+ if not input_data_list:
127
+ return []
128
+
129
+ batch_size = self.batch_size
130
+ all_embeddings = []
131
+
132
+ # Process inputs in batches
133
+ for i in range(0, len(input_data_list), batch_size):
134
+ batch = input_data_list[i : i + batch_size]
135
+
136
+ try:
137
+ # Generate embeddings for this batch
138
+ result = await self.client.aio.models.embed_content(
139
+ model=self.config.embedding_model or DEFAULT_EMBEDDING_MODEL,
140
+ contents=batch, # type: ignore[arg-type] # mypy fails on broad union type
141
+ config=types.EmbedContentConfig(
142
+ output_dimensionality=self.config.embedding_dim
143
+ ),
144
+ )
145
+
146
+ if not result.embeddings or len(result.embeddings) == 0:
147
+ raise Exception('No embeddings returned')
148
+
149
+ # Process embeddings from this batch
150
+ for embedding in result.embeddings:
151
+ if not embedding.values:
152
+ raise ValueError('Empty embedding values returned')
153
+ all_embeddings.append(embedding.values)
154
+
155
+ except Exception as e:
156
+ # If batch processing fails, fall back to individual processing
157
+ logger.warning(
158
+ f'Batch embedding failed for batch {i // batch_size + 1}, falling back to individual processing: {e}'
159
+ )
160
+
161
+ for item in batch:
162
+ try:
163
+ # Process each item individually
164
+ result = await self.client.aio.models.embed_content(
165
+ model=self.config.embedding_model or DEFAULT_EMBEDDING_MODEL,
166
+ contents=[item], # type: ignore[arg-type] # mypy fails on broad union type
167
+ config=types.EmbedContentConfig(
168
+ output_dimensionality=self.config.embedding_dim
169
+ ),
170
+ )
171
+
172
+ if not result.embeddings or len(result.embeddings) == 0:
173
+ raise ValueError('No embeddings returned from Gemini API')
174
+ if not result.embeddings[0].values:
175
+ raise ValueError('Empty embedding values returned')
176
+
177
+ all_embeddings.append(result.embeddings[0].values)
178
+
179
+ except Exception as individual_error:
180
+ logger.error(f'Failed to embed individual item: {individual_error}')
181
+ raise individual_error
182
+
183
+ return all_embeddings
@@ -15,8 +15,19 @@ limitations under the License.
15
15
  """
16
16
 
17
17
  from collections.abc import Iterable
18
+ from typing import TYPE_CHECKING
19
+
20
+ if TYPE_CHECKING:
21
+ import voyageai
22
+ else:
23
+ try:
24
+ import voyageai
25
+ except ImportError:
26
+ raise ImportError(
27
+ 'voyageai is required for VoyageAIEmbedderClient. '
28
+ 'Install it with: pip install graphiti-core[voyageai]'
29
+ ) from None
18
30
 
19
- import voyageai # type: ignore
20
31
  from pydantic import Field
21
32
 
22
33
  from .client import EmbedderClient, EmbedderConfig
@@ -38,7 +49,7 @@ class VoyageAIEmbedder(EmbedderClient):
38
49
  if config is None:
39
50
  config = VoyageAIEmbedderConfig()
40
51
  self.config = config
41
- self.client = voyageai.AsyncClient(api_key=config.api_key)
52
+ self.client = voyageai.AsyncClient(api_key=config.api_key) # type: ignore[reportUnknownMemberType]
42
53
 
43
54
  async def create(
44
55
  self, input_data: str | list[str] | Iterable[int] | Iterable[Iterable[int]]
graphiti_core/errors.py CHANGED
@@ -73,3 +73,11 @@ class EntityTypeValidationError(GraphitiError):
73
73
  def __init__(self, entity_type: str, entity_type_attribute: str):
74
74
  self.message = f'{entity_type_attribute} cannot be used as an attribute for {entity_type} as it is a protected attribute name.'
75
75
  super().__init__(self.message)
76
+
77
+
78
+ class GroupIdValidationError(GraphitiError):
79
+ """Raised when a group_id contains invalid characters."""
80
+
81
+ def __init__(self, group_id: str):
82
+ self.message = f'group_id "{group_id}" must contain only alphanumeric characters, dashes, or underscores'
83
+ super().__init__(self.message)
@@ -0,0 +1,162 @@
1
+ """
2
+ Database query utilities for different graph database backends.
3
+
4
+ This module provides database-agnostic query generation for Neo4j and FalkorDB,
5
+ supporting index creation, fulltext search, and bulk operations.
6
+ """
7
+
8
+ from typing_extensions import LiteralString
9
+
10
+ from graphiti_core.driver.driver import GraphProvider
11
+
12
+ # Mapping from Neo4j fulltext index names to FalkorDB node labels
13
+ NEO4J_TO_FALKORDB_MAPPING = {
14
+ 'node_name_and_summary': 'Entity',
15
+ 'community_name': 'Community',
16
+ 'episode_content': 'Episodic',
17
+ 'edge_name_and_fact': 'RELATES_TO',
18
+ }
19
+ # Mapping from fulltext index names to Kuzu node labels
20
+ INDEX_TO_LABEL_KUZU_MAPPING = {
21
+ 'node_name_and_summary': 'Entity',
22
+ 'community_name': 'Community',
23
+ 'episode_content': 'Episodic',
24
+ 'edge_name_and_fact': 'RelatesToNode_',
25
+ }
26
+
27
+
28
+ def get_range_indices(provider: GraphProvider) -> list[LiteralString]:
29
+ if provider == GraphProvider.FALKORDB:
30
+ return [
31
+ # Entity node
32
+ 'CREATE INDEX FOR (n:Entity) ON (n.uuid, n.group_id, n.name, n.created_at)',
33
+ # Episodic node
34
+ 'CREATE INDEX FOR (n:Episodic) ON (n.uuid, n.group_id, n.created_at, n.valid_at)',
35
+ # Community node
36
+ 'CREATE INDEX FOR (n:Community) ON (n.uuid)',
37
+ # RELATES_TO edge
38
+ 'CREATE INDEX FOR ()-[e:RELATES_TO]-() ON (e.uuid, e.group_id, e.name, e.created_at, e.expired_at, e.valid_at, e.invalid_at)',
39
+ # MENTIONS edge
40
+ 'CREATE INDEX FOR ()-[e:MENTIONS]-() ON (e.uuid, e.group_id)',
41
+ # HAS_MEMBER edge
42
+ 'CREATE INDEX FOR ()-[e:HAS_MEMBER]-() ON (e.uuid)',
43
+ ]
44
+
45
+ if provider == GraphProvider.KUZU:
46
+ return []
47
+
48
+ return [
49
+ 'CREATE INDEX entity_uuid IF NOT EXISTS FOR (n:Entity) ON (n.uuid)',
50
+ 'CREATE INDEX episode_uuid IF NOT EXISTS FOR (n:Episodic) ON (n.uuid)',
51
+ 'CREATE INDEX community_uuid IF NOT EXISTS FOR (n:Community) ON (n.uuid)',
52
+ 'CREATE INDEX relation_uuid IF NOT EXISTS FOR ()-[e:RELATES_TO]-() ON (e.uuid)',
53
+ 'CREATE INDEX mention_uuid IF NOT EXISTS FOR ()-[e:MENTIONS]-() ON (e.uuid)',
54
+ 'CREATE INDEX has_member_uuid IF NOT EXISTS FOR ()-[e:HAS_MEMBER]-() ON (e.uuid)',
55
+ 'CREATE INDEX entity_group_id IF NOT EXISTS FOR (n:Entity) ON (n.group_id)',
56
+ 'CREATE INDEX episode_group_id IF NOT EXISTS FOR (n:Episodic) ON (n.group_id)',
57
+ 'CREATE INDEX community_group_id IF NOT EXISTS FOR (n:Community) ON (n.group_id)',
58
+ 'CREATE INDEX relation_group_id IF NOT EXISTS FOR ()-[e:RELATES_TO]-() ON (e.group_id)',
59
+ 'CREATE INDEX mention_group_id IF NOT EXISTS FOR ()-[e:MENTIONS]-() ON (e.group_id)',
60
+ 'CREATE INDEX name_entity_index IF NOT EXISTS FOR (n:Entity) ON (n.name)',
61
+ 'CREATE INDEX created_at_entity_index IF NOT EXISTS FOR (n:Entity) ON (n.created_at)',
62
+ 'CREATE INDEX created_at_episodic_index IF NOT EXISTS FOR (n:Episodic) ON (n.created_at)',
63
+ 'CREATE INDEX valid_at_episodic_index IF NOT EXISTS FOR (n:Episodic) ON (n.valid_at)',
64
+ 'CREATE INDEX name_edge_index IF NOT EXISTS FOR ()-[e:RELATES_TO]-() ON (e.name)',
65
+ 'CREATE INDEX created_at_edge_index IF NOT EXISTS FOR ()-[e:RELATES_TO]-() ON (e.created_at)',
66
+ 'CREATE INDEX expired_at_edge_index IF NOT EXISTS FOR ()-[e:RELATES_TO]-() ON (e.expired_at)',
67
+ 'CREATE INDEX valid_at_edge_index IF NOT EXISTS FOR ()-[e:RELATES_TO]-() ON (e.valid_at)',
68
+ 'CREATE INDEX invalid_at_edge_index IF NOT EXISTS FOR ()-[e:RELATES_TO]-() ON (e.invalid_at)',
69
+ ]
70
+
71
+
72
+ def get_fulltext_indices(provider: GraphProvider) -> list[LiteralString]:
73
+ if provider == GraphProvider.FALKORDB:
74
+ from typing import cast
75
+
76
+ from graphiti_core.driver.falkordb_driver import STOPWORDS
77
+
78
+ # Convert to string representation for embedding in queries
79
+ stopwords_str = str(STOPWORDS)
80
+
81
+ # Use type: ignore to satisfy LiteralString requirement while maintaining single source of truth
82
+ return cast(
83
+ list[LiteralString],
84
+ [
85
+ f"""CALL db.idx.fulltext.createNodeIndex(
86
+ {{
87
+ label: 'Episodic',
88
+ stopwords: {stopwords_str}
89
+ }},
90
+ 'content', 'source', 'source_description', 'group_id'
91
+ )""",
92
+ f"""CALL db.idx.fulltext.createNodeIndex(
93
+ {{
94
+ label: 'Entity',
95
+ stopwords: {stopwords_str}
96
+ }},
97
+ 'name', 'summary', 'group_id'
98
+ )""",
99
+ f"""CALL db.idx.fulltext.createNodeIndex(
100
+ {{
101
+ label: 'Community',
102
+ stopwords: {stopwords_str}
103
+ }},
104
+ 'name', 'group_id'
105
+ )""",
106
+ """CREATE FULLTEXT INDEX FOR ()-[e:RELATES_TO]-() ON (e.name, e.fact, e.group_id)""",
107
+ ],
108
+ )
109
+
110
+ if provider == GraphProvider.KUZU:
111
+ return [
112
+ "CALL CREATE_FTS_INDEX('Episodic', 'episode_content', ['content', 'source', 'source_description']);",
113
+ "CALL CREATE_FTS_INDEX('Entity', 'node_name_and_summary', ['name', 'summary']);",
114
+ "CALL CREATE_FTS_INDEX('Community', 'community_name', ['name']);",
115
+ "CALL CREATE_FTS_INDEX('RelatesToNode_', 'edge_name_and_fact', ['name', 'fact']);",
116
+ ]
117
+
118
+ return [
119
+ """CREATE FULLTEXT INDEX episode_content IF NOT EXISTS
120
+ FOR (e:Episodic) ON EACH [e.content, e.source, e.source_description, e.group_id]""",
121
+ """CREATE FULLTEXT INDEX node_name_and_summary IF NOT EXISTS
122
+ FOR (n:Entity) ON EACH [n.name, n.summary, n.group_id]""",
123
+ """CREATE FULLTEXT INDEX community_name IF NOT EXISTS
124
+ FOR (n:Community) ON EACH [n.name, n.group_id]""",
125
+ """CREATE FULLTEXT INDEX edge_name_and_fact IF NOT EXISTS
126
+ FOR ()-[e:RELATES_TO]-() ON EACH [e.name, e.fact, e.group_id]""",
127
+ ]
128
+
129
+
130
+ def get_nodes_query(name: str, query: str, limit: int, provider: GraphProvider) -> str:
131
+ if provider == GraphProvider.FALKORDB:
132
+ label = NEO4J_TO_FALKORDB_MAPPING[name]
133
+ return f"CALL db.idx.fulltext.queryNodes('{label}', {query})"
134
+
135
+ if provider == GraphProvider.KUZU:
136
+ label = INDEX_TO_LABEL_KUZU_MAPPING[name]
137
+ return f"CALL QUERY_FTS_INDEX('{label}', '{name}', {query}, TOP := $limit)"
138
+
139
+ return f'CALL db.index.fulltext.queryNodes("{name}", {query}, {{limit: $limit}})'
140
+
141
+
142
+ def get_vector_cosine_func_query(vec1, vec2, provider: GraphProvider) -> str:
143
+ if provider == GraphProvider.FALKORDB:
144
+ # FalkorDB uses a different syntax for regular cosine similarity and Neo4j uses normalized cosine similarity
145
+ return f'(2 - vec.cosineDistance({vec1}, vecf32({vec2})))/2'
146
+
147
+ if provider == GraphProvider.KUZU:
148
+ return f'array_cosine_similarity({vec1}, {vec2})'
149
+
150
+ return f'vector.similarity.cosine({vec1}, {vec2})'
151
+
152
+
153
+ def get_relationships_query(name: str, limit: int, provider: GraphProvider) -> str:
154
+ if provider == GraphProvider.FALKORDB:
155
+ label = NEO4J_TO_FALKORDB_MAPPING[name]
156
+ return f"CALL db.idx.fulltext.queryRelationships('{label}', $query)"
157
+
158
+ if provider == GraphProvider.KUZU:
159
+ label = INDEX_TO_LABEL_KUZU_MAPPING[name]
160
+ return f"CALL QUERY_FTS_INDEX('{label}', '{name}', cast($query AS STRING), TOP := $limit)"
161
+
162
+ return f'CALL db.index.fulltext.queryRelationships("{name}", $query, {{limit: $limit}})'