graphembed-rs 0.1.0__cp310-cp310-macosx_11_0_arm64.whl → 0.1.1__cp310-cp310-macosx_11_0_arm64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,5 @@
1
+ from .graphembed_rs import *
2
+
3
+ __doc__ = graphembed_rs.__doc__
4
+ if hasattr(graphembed_rs, "__all__"):
5
+ __all__ = graphembed_rs.__all__
@@ -1,30 +1,86 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: graphembed_rs
3
- Version: 0.1.0
3
+ Version: 0.1.1
4
+ License-File: LICENSE-MIT
4
5
  Summary: Python bindings for the high‑performance Rust graph/network embedding library graphembed
5
6
  Keywords: graph,embedding,hash
6
7
  Author: Jianshu Zhao
7
- Author-email: jeanpierre.both@gmail.com, jianshuzhao@yahoo.com
8
+ Author-email: jeanpierre.both@gmail.com
8
9
  License: MIT OR Apache-2.0
9
10
  Requires-Python: >=3.8
10
11
  Description-Content-Type: text/markdown; charset=UTF-8; variant=GFM
11
12
  Project-URL: Source Code, https://github.com/jean-pierreBoth/graphembed
12
13
 
13
- # Graphembed
14
+ [![install with bioconda](https://img.shields.io/badge/install%20with-bioconda-brightgreen.svg?style=flat)](http://bioconda.github.io/recipes/graphembed/README.html)
15
+ ![](https://anaconda.org/bioconda/graphembed/badges/license.svg)
16
+ ![](https://anaconda.org/bioconda/graphembed/badges/version.svg)
17
+ ![](https://anaconda.org/bioconda/graphembed/badges/latest_release_relative_date.svg)
18
+ ![](https://anaconda.org/bioconda/graphembed/badges/platforms.svg)
19
+ [![install with conda](https://anaconda.org/bioconda/graphembed/badges/downloads.svg)](https://anaconda.org/bioconda/graphembed)
14
20
 
15
- This crate provides ,as a library and an executable,embedding of directed or undirected graphs with positively weighted edges.
16
21
 
22
+ # GraphEmbed: Efficient and Robust Network Embedding via High-Order Proximity Preservation or Recursive Sketching
17
23
 
18
- - For simple graphs, without data attached to nodes/labels, there are 2 (rust) modules **nodesketch** and **atp**. A simple executable with a validation option based on link prediction is also provided.
24
+ This crate provides an executable and a library for embedding of directed or undirected graphs with positively weighted edges. We engineered and optimized current network embedding algorithms for large-scale network embedding, especially biological network. This crate was developed by [Jianshu Zhao](https://gitlab.com/Jianshu_Zhao) and Jean-Pierre Both [jpboth](https://gitlab.com/jpboth). We have a copy here in [Github](https://github.com/jianshu93/graphembed)
19
25
 
20
- - To complement the embeddings we provide also core decomposition of graphs (see the module **structure**). We give try to analyze how Orkut communities are preserved through an embedding. (See Notebooks directory).
21
26
 
22
- - The module **gkernel** is dedicated to graphs with discrete labels attached to nodes/edges. We use the *petgraph* crate for graph description.
23
- The algorithm is based on an extension of the hashing strategy used in the module **nodesketch**.
24
- In the undirected case, this module also computes a global embedding vector for the whole graph. **It is still in an early version**.
27
+ - For simple graphs, without data attached to nodes, there are 2 modules **nodesketch** and **atp**. A simple executable with a validation option based on link prediction is also provided.
25
28
 
26
- ## Methods
29
+ ## Quick Install
30
+
31
+ ### Pre-built binaries on Linux
32
+ ```bash
33
+ wget https://gitlab.com/-/project/64961144/uploads/ea72ca007e9e4899e0c830e708f52939/graphembed_Linux_x86-64_v0.1.4.zip
34
+ unzip graphembed_Linux_x86-64_v0.1.4.zip
35
+ chmod a+x ./graphembed
36
+ ./graphembed -h
37
+ ```
38
+
39
+ ### Bioconda on Linux
40
+ ```bash
41
+ conda install -c conda-forge -c bioconda graphembed
42
+ ```
43
+
44
+ ### Homebrew on MacOS
45
+ ```bash
46
+ brew tap jianshu93/graphembed
47
+ brew update
48
+ brew install graphembed
49
+ ```
50
+
51
+
52
+ ### In Python (Please install python first)
53
+ ```bash
54
+ pip install graphembed_rs
55
+
56
+ ### or you can build from source (Linux) after installing maturin
57
+ git clone https://gitlab.com/Jianshu_Zhao/graphembed
58
+ cd graphembed
59
+ pip install maturin
60
+ ### note: for macOS, you need to change the line "features = ["pyo3/extension-module", "intel-mkl-static", "simdeez_f"]" in pyporject.toml to "features = ["pyo3/extension-module","openblas-system","stdsimd"]"
61
+ maturin develop --release
62
+
63
+ #### Prepare some data
64
+ wget https://gitlab.com/-/project/64961144/uploads/4e341383d62d86d1dd66e668e91b2c07/BlogCatalog.txt
65
+ ```
66
+
67
+ ```python
68
+ import os
69
+ os.environ["RUST_LOG"] = "graphembed=info"
70
+ import graphembed as ge
71
+ help(ge)
72
+ ### HOPE
73
+ ge.embed_hope_rank("BlogCatalog.txt", target_rank=128, nbiter=4)
74
+
75
+ ### Sketching
76
+ ### sketching only
77
+ ge.embed_sketching("BlogCatalog.txt", decay=0.3, dim=128, nbiter=5, symetric=True, output="embedding_output")
78
+ ### validate accuracy
79
+ auc_scores = ge.validate_sketching("BlogCatalog.txt",decay=0.3, dim=128, nbiter=3, nbpass=1, skip_frac=0.2,symetric=True, centric=True)
80
+ print("Standard AUC per pass:", auc_scores)
81
+ ```
27
82
 
83
+ ## Methods
28
84
  ### The embedding algorithms used in this crate are based on the following papers
29
85
 
30
86
  - **nodesketch**
@@ -57,29 +113,12 @@ Source node are related to left singular vectors and target nodes to the right o
57
113
  The similarity measure is the dot product, so it is not a norm.
58
114
  The svd is approximated by randomization as described in Halko-Tropp 2011 as implemented in the [annembed crate](https://crates.io/crates/annembed).
59
115
 
60
- ### The core decomposition algorithms
61
-
62
- - **Density-friendly decomposition**
63
-
64
- *Large Scale decomposition via convex programming 2017*
65
- M.Danisch T.H Hubert Chan and M.Sozio
66
-
67
- The decomposition of the graph in maximally dense groups of nodes is implemented and used to assess the quality of the embeddings in a structural way. See module *validation* and the comments on the embedding of the *Orkut* graph where we can use the community data provided with the graph to analyze the behaviour of embedded edge lengths.
68
-
69
- In particular it is shown that :
70
- - embedding of edges internal to a community are consistently smaller than embedded edges crossing a block frontier.
71
- - The transition probabilities of edge from one block to another are similar (low kullback divergence) in the original graph and in the embedded graph.
72
-
73
- See results in [orkut.md](./orkut.md) and examples directory together with a small Rust notebook in directory [Notebooks](./Notebooks/orkutrs.ipynb)
74
-
75
116
  ## Validation
76
117
 
77
118
  Validation of embeddings is assessed via standard Auc with random deletion of edges. See documentation in the *link* module and *embed* binary.
78
119
  We give also a variation based on centric quality assessment as explained at [cauc](http://github.com/jean-pierreBoth/linkauc)
79
120
  ## Some data sets
80
121
 
81
- ### Without labels
82
-
83
122
  Small datasets are given in the Data subdirectory (with 7z compression) to run tests.
84
123
  Larger datasets can be downloaded from the SNAP data collections <https://snap.stanford.edu/data>
85
124
 
@@ -132,13 +171,11 @@ A preliminary of node centric quality estimation is provided in the validation m
132
171
  - The munmun_twitter_social graph shows that treating a directed graph as an undirected graph give significantly different results in terms of link prediction AUC.
133
172
 
134
173
 
135
-
136
-
137
174
  ## Generalized Svd
138
175
 
139
176
  An implementation of Generalized Svd comes as a by-product in module [gsvd](./src/atp/gsvd.rs).
140
177
 
141
- ## Installation and Usage
178
+ ## Detailed Installation and Usage
142
179
 
143
180
  ### Installation
144
181
 
@@ -161,21 +198,21 @@ so to the required dimension to get a valid embedding in $R^{n}$.
161
198
  - The *embed* module takes embedding and possibly validation commands (link prediction task) in one directive.
162
199
  The general syntax is :
163
200
 
164
- embed file_description [validation_command --validation_arguments] sketching mode --embedding_arguments
201
+ graphembed file_description [validation_command --validation_arguments] sketching mode --embedding_arguments
165
202
  for example:
166
203
 
167
204
  For a symetric graph we get:
168
205
 
169
206
  - just embedding:
170
- embed --csv ./Data/Graphs/Orkut/com-orkut.ungraph.txt --symetric sketching --decay 0.2 --dim 200 --nbiter
207
+ graphembed --csv ./Data/Graphs/Orkut/com-orkut.ungraph.txt --symetric sketching --decay 0.2 --dim 200 --nbiter
171
208
 
172
209
  - embedding and validation:
173
210
 
174
- embed --csv ./Data/Graphs/Orkut/com-orkut.ungraph.txt --symetric validation --nbpass 5 --skip 0.15 sketching --decay 0.2 --dim 200 --nbiter 5
211
+ graphembed --csv ./Data/Graphs/Orkut/com-orkut.ungraph.txt --symetric validation --nbpass 5 --skip 0.15 sketching --decay 0.2 --dim 200 --nbiter 5
175
212
 
176
213
  For an asymetric graph we get
177
214
 
178
- embed --csv ./Data/Graphs/asymetric.csv validation --nbpass 5 --skip 0.15 sketching --decay 0.2 --dim 200 --nbiter 5
215
+ graphembed --csv ./Data/Graphs/asymetric.csv validation --nbpass 5 --skip 0.15 sketching --decay 0.2 --dim 200 --nbiter 5
179
216
 
180
217
 
181
218
  More details can be found in docs of the embed module. Use cargo doc --no-dep --bin embed (and cargo doc --no-dep) as usual.
@@ -0,0 +1,8 @@
1
+ graphembed_rs-0.1.1.dist-info/METADATA,sha256=uW8W9UwifiE6FViIKpp1I7d5e6ygVuo6AA2O72MogLU,10890
2
+ graphembed_rs-0.1.1.dist-info/WHEEL,sha256=pKyTkFbTEakJa6xy_GKYIZO6TnrTnUxcBEc6JAhr_7o,104
3
+ graphembed_rs-0.1.1.dist-info/licenses/LICENSE-MIT,sha256=ndZ12D28O4UkfOeoa6HP9E7IKyYG4iH79iQ6WiLs9bc,1077
4
+ graphembed_rs/__init__.py,sha256=R2D0If_-sN__21LBYNod0CNgVo2dCd2RqM11AStM3X0,135
5
+ graphembed_rs/__init__.pyi,sha256=3_KBFG4g9akylo32CHlm9bZStcLwxIY2X4si21ilD3w,1626
6
+ graphembed_rs/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
7
+ graphembed_rs/graphembed_rs.cpython-310-darwin.so,sha256=y_x9gQrzR40a3wGjdDfyIml9E_SwcgLixnyuW767B3g,5106976
8
+ graphembed_rs-0.1.1.dist-info/RECORD,,
@@ -0,0 +1,25 @@
1
+ Copyright (c) 2022 jean-pierre.both and Jianshu Zhao
2
+
3
+ Permission is hereby granted, free of charge, to any
4
+ person obtaining a copy of this software and associated
5
+ documentation files (the "Software"), to deal in the
6
+ Software without restriction, including without
7
+ limitation the rights to use, copy, modify, merge,
8
+ publish, distribute, sublicense, and/or sell copies of
9
+ the Software, and to permit persons to whom the Software
10
+ is furnished to do so, subject to the following
11
+ conditions:
12
+
13
+ The above copyright notice and this permission notice
14
+ shall be included in all copies or substantial portions
15
+ of the Software.
16
+
17
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF
18
+ ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
19
+ TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
20
+ PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
21
+ SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
22
+ CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23
+ OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
24
+ IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
25
+ DEALINGS IN THE SOFTWARE.
graphembed/__init__.py DELETED
@@ -1,5 +0,0 @@
1
- from .graphembed import *
2
-
3
- __doc__ = graphembed.__doc__
4
- if hasattr(graphembed, "__all__"):
5
- __all__ = graphembed.__all__
Binary file
@@ -1,7 +0,0 @@
1
- graphembed_rs-0.1.0.dist-info/METADATA,sha256=1bBA8fy75z8I6YGAsPAMoB-67zpAHW66cHywSb-hPj8,9901
2
- graphembed_rs-0.1.0.dist-info/WHEEL,sha256=pKyTkFbTEakJa6xy_GKYIZO6TnrTnUxcBEc6JAhr_7o,104
3
- graphembed/__init__.py,sha256=RCcLraveWf-myTsDQGePMYq-scNNfz-3Mv1baSbgAmM,123
4
- graphembed/__init__.pyi,sha256=3_KBFG4g9akylo32CHlm9bZStcLwxIY2X4si21ilD3w,1626
5
- graphembed/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
6
- graphembed/graphembed.cpython-310-darwin.so,sha256=rpwaeaP3bH7t93yRz2edb4HD8CDEgu7bkEMFO3waTGU,5158592
7
- graphembed_rs-0.1.0.dist-info/RECORD,,
File without changes
File without changes