graft-pytorch 0.1.7__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- graft/__init__.py +20 -0
- graft/cli.py +62 -0
- graft/config.py +36 -0
- graft/decompositions.py +54 -0
- graft/genindices.py +122 -0
- graft/grad_dist.py +20 -0
- graft/models/BERT_model.py +40 -0
- graft/models/MobilenetV2.py +111 -0
- graft/models/ResNeXt.py +154 -0
- graft/models/__init__.py +22 -0
- graft/models/efficientnet.py +197 -0
- graft/models/efficientnetb7.py +268 -0
- graft/models/fashioncnn.py +69 -0
- graft/models/mobilenet.py +83 -0
- graft/models/resnet.py +564 -0
- graft/models/resnet9.py +72 -0
- graft/scheduler.py +63 -0
- graft/trainer.py +467 -0
- graft/utils/__init__.py +5 -0
- graft/utils/extras.py +37 -0
- graft/utils/generate.py +33 -0
- graft/utils/imagenetselloader.py +54 -0
- graft/utils/loader.py +293 -0
- graft/utils/model_mapper.py +45 -0
- graft/utils/pickler.py +27 -0
- graft_pytorch-0.1.7.dist-info/METADATA +302 -0
- graft_pytorch-0.1.7.dist-info/RECORD +31 -0
- graft_pytorch-0.1.7.dist-info/WHEEL +5 -0
- graft_pytorch-0.1.7.dist-info/entry_points.txt +2 -0
- graft_pytorch-0.1.7.dist-info/licenses/LICENSE +21 -0
- graft_pytorch-0.1.7.dist-info/top_level.txt +1 -0
graft/models/resnet.py
ADDED
@@ -0,0 +1,564 @@
|
|
1
|
+
'''ResNet in PyTorch.
|
2
|
+
Reference
|
3
|
+
Deep Residual Learning for Image Recognition
|
4
|
+
https://arxiv.org/abs/1512.03385
|
5
|
+
'''
|
6
|
+
from typing import Any, Callable, List, Optional, Type, Union, TypeVar, Dict
|
7
|
+
import torch
|
8
|
+
import torch.nn as nn
|
9
|
+
from torch import Tensor
|
10
|
+
|
11
|
+
|
12
|
+
__all__ = [
|
13
|
+
"ResNet",
|
14
|
+
"ResNet18",
|
15
|
+
"ResNet34",
|
16
|
+
"ResNet50",
|
17
|
+
"ResNet101",
|
18
|
+
"ResNet152",
|
19
|
+
"ResNext50_32x4d",
|
20
|
+
"ResNext101_32x8d",
|
21
|
+
"ResNext101_64x4d",
|
22
|
+
"wide_resnet50_2",
|
23
|
+
"wide_resnet101_2",
|
24
|
+
]
|
25
|
+
|
26
|
+
|
27
|
+
V = TypeVar("V")
|
28
|
+
def _ovewrite_value_param(param: str, actual: Optional[V], expected: V) -> V:
|
29
|
+
if actual is not None:
|
30
|
+
if actual != expected:
|
31
|
+
raise ValueError(f"The parameter '{param}' expected value {expected} but got {actual} instead.")
|
32
|
+
return expected
|
33
|
+
|
34
|
+
|
35
|
+
def _ovewrite_named_param(kwargs: Dict[str, Any], param: str, new_value: V) -> None:
|
36
|
+
if param in kwargs:
|
37
|
+
if kwargs[param] != new_value:
|
38
|
+
raise ValueError(f"The parameter '{param}' expected value {new_value} but got {kwargs[param]} instead.")
|
39
|
+
else:
|
40
|
+
kwargs[param] = new_value
|
41
|
+
|
42
|
+
|
43
|
+
def conv3x3(in_planes: int, out_planes: int, stride: int = 1, groups: int = 1, dilation: int = 1) -> nn.Conv2d:
|
44
|
+
"""3x3 convolution with padding"""
|
45
|
+
return nn.Conv2d(
|
46
|
+
in_planes,
|
47
|
+
out_planes,
|
48
|
+
kernel_size=3,
|
49
|
+
stride=stride,
|
50
|
+
padding=dilation,
|
51
|
+
groups=groups,
|
52
|
+
bias=False,
|
53
|
+
dilation=dilation,
|
54
|
+
)
|
55
|
+
|
56
|
+
|
57
|
+
def conv1x1(in_planes: int, out_planes: int, stride: int = 1) -> nn.Conv2d:
|
58
|
+
"""1x1 convolution"""
|
59
|
+
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
|
60
|
+
|
61
|
+
|
62
|
+
class BasicBlock(nn.Module):
|
63
|
+
expansion: int = 1
|
64
|
+
|
65
|
+
def __init__(
|
66
|
+
self,
|
67
|
+
inplanes: int,
|
68
|
+
planes: int,
|
69
|
+
stride: int = 1,
|
70
|
+
downsample: Optional[nn.Module] = None,
|
71
|
+
groups: int = 1,
|
72
|
+
base_width: int = 64,
|
73
|
+
dilation: int = 1,
|
74
|
+
norm_layer: Optional[Callable[..., nn.Module]] = None,
|
75
|
+
) -> None:
|
76
|
+
super().__init__()
|
77
|
+
if norm_layer is None:
|
78
|
+
norm_layer = nn.BatchNorm2d
|
79
|
+
if groups != 1 or base_width != 64:
|
80
|
+
raise ValueError("BasicBlock only supports groups=1 and base_width=64")
|
81
|
+
if dilation > 1:
|
82
|
+
raise NotImplementedError("Dilation > 1 not supported in BasicBlock")
|
83
|
+
# Both self.conv1 and self.downsample layers downsample the input when stride != 1
|
84
|
+
self.conv1 = conv3x3(inplanes, planes, stride)
|
85
|
+
self.bn1 = norm_layer(planes)
|
86
|
+
self.relu = nn.ReLU(inplace=True)
|
87
|
+
self.conv2 = conv3x3(planes, planes)
|
88
|
+
self.bn2 = norm_layer(planes)
|
89
|
+
self.downsample = downsample
|
90
|
+
self.stride = stride
|
91
|
+
|
92
|
+
def forward(self, x: Tensor) -> Tensor:
|
93
|
+
identity = x
|
94
|
+
|
95
|
+
out = self.conv1(x)
|
96
|
+
out = self.bn1(out)
|
97
|
+
out = self.relu(out)
|
98
|
+
|
99
|
+
out = self.conv2(out)
|
100
|
+
out = self.bn2(out)
|
101
|
+
|
102
|
+
if self.downsample is not None:
|
103
|
+
identity = self.downsample(x)
|
104
|
+
|
105
|
+
out += identity
|
106
|
+
out = self.relu(out)
|
107
|
+
|
108
|
+
return out
|
109
|
+
|
110
|
+
|
111
|
+
class Bottleneck(nn.Module):
|
112
|
+
# Bottleneck in torchvision places the stride for downsampling at 3x3 convolution(self.conv2)
|
113
|
+
# while original implementation places the stride at the first 1x1 convolution(self.conv1)
|
114
|
+
# according to "Deep residual learning for image recognition"https://arxiv.org/abs/1512.03385.
|
115
|
+
# This variant is also known as ResNet V1.5 and improves accuracy according to
|
116
|
+
# https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch.
|
117
|
+
|
118
|
+
expansion: int = 4
|
119
|
+
|
120
|
+
def __init__(
|
121
|
+
self,
|
122
|
+
inplanes: int,
|
123
|
+
planes: int,
|
124
|
+
stride: int = 1,
|
125
|
+
downsample: Optional[nn.Module] = None,
|
126
|
+
groups: int = 1,
|
127
|
+
base_width: int = 64,
|
128
|
+
dilation: int = 1,
|
129
|
+
norm_layer: Optional[Callable[..., nn.Module]] = None,
|
130
|
+
) -> None:
|
131
|
+
super().__init__()
|
132
|
+
if norm_layer is None:
|
133
|
+
norm_layer = nn.BatchNorm2d
|
134
|
+
width = int(planes * (base_width / 64.0)) * groups
|
135
|
+
# Both self.conv2 and self.downsample layers downsample the input when stride != 1
|
136
|
+
self.conv1 = conv1x1(inplanes, width)
|
137
|
+
self.bn1 = norm_layer(width)
|
138
|
+
self.conv2 = conv3x3(width, width, stride, groups, dilation)
|
139
|
+
self.bn2 = norm_layer(width)
|
140
|
+
self.conv3 = conv1x1(width, planes * self.expansion)
|
141
|
+
self.bn3 = norm_layer(planes * self.expansion)
|
142
|
+
self.relu = nn.ReLU(inplace=True)
|
143
|
+
self.downsample = downsample
|
144
|
+
self.stride = stride
|
145
|
+
|
146
|
+
def forward(self, x: Tensor) -> Tensor:
|
147
|
+
identity = x
|
148
|
+
|
149
|
+
out = self.conv1(x)
|
150
|
+
out = self.bn1(out)
|
151
|
+
out = self.relu(out)
|
152
|
+
|
153
|
+
out = self.conv2(out)
|
154
|
+
out = self.bn2(out)
|
155
|
+
out = self.relu(out)
|
156
|
+
|
157
|
+
out = self.conv3(out)
|
158
|
+
out = self.bn3(out)
|
159
|
+
|
160
|
+
if self.downsample is not None:
|
161
|
+
identity = self.downsample(x)
|
162
|
+
|
163
|
+
out += identity
|
164
|
+
out = self.relu(out)
|
165
|
+
|
166
|
+
return out
|
167
|
+
|
168
|
+
|
169
|
+
class ResNet(nn.Module):
|
170
|
+
def __init__(
|
171
|
+
self,
|
172
|
+
block: Type[Union[BasicBlock, Bottleneck]],
|
173
|
+
layers: List[int],
|
174
|
+
num_classes: int = 1000,
|
175
|
+
zero_init_residual: bool = False,
|
176
|
+
groups: int = 1,
|
177
|
+
width_per_group: int = 64,
|
178
|
+
replace_stride_with_dilation: Optional[List[bool]] = None,
|
179
|
+
norm_layer: Optional[Callable[..., nn.Module]] = None,
|
180
|
+
) -> None:
|
181
|
+
super().__init__()
|
182
|
+
# _log_api_usage_once(self)
|
183
|
+
if norm_layer is None:
|
184
|
+
norm_layer = nn.BatchNorm2d
|
185
|
+
self._norm_layer = norm_layer
|
186
|
+
|
187
|
+
self.inplanes = 64
|
188
|
+
self.dilation = 1
|
189
|
+
if replace_stride_with_dilation is None:
|
190
|
+
# each element in the tuple indicates if we should replace
|
191
|
+
# the 2x2 stride with a dilated convolution instead
|
192
|
+
replace_stride_with_dilation = [False, False, False]
|
193
|
+
if len(replace_stride_with_dilation) != 3:
|
194
|
+
raise ValueError(
|
195
|
+
"replace_stride_with_dilation should be None "
|
196
|
+
f"or a 3-element tuple, got {replace_stride_with_dilation}"
|
197
|
+
)
|
198
|
+
self.groups = groups
|
199
|
+
self.base_width = width_per_group
|
200
|
+
self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3, bias=False)
|
201
|
+
self.bn1 = norm_layer(self.inplanes)
|
202
|
+
self.relu = nn.ReLU(inplace=True)
|
203
|
+
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
204
|
+
self.layer1 = self._make_layer(block, 64, layers[0])
|
205
|
+
self.layer2 = self._make_layer(block, 128, layers[1], stride=2, dilate=replace_stride_with_dilation[0])
|
206
|
+
self.layer3 = self._make_layer(block, 256, layers[2], stride=2, dilate=replace_stride_with_dilation[1])
|
207
|
+
self.layer4 = self._make_layer(block, 512, layers[3], stride=2, dilate=replace_stride_with_dilation[2])
|
208
|
+
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
|
209
|
+
self.fc = nn.Linear(512 * block.expansion, num_classes)
|
210
|
+
self.embDim = 512 * block.expansion
|
211
|
+
for m in self.modules():
|
212
|
+
if isinstance(m, nn.Conv2d):
|
213
|
+
nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")
|
214
|
+
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
|
215
|
+
nn.init.constant_(m.weight, 1)
|
216
|
+
nn.init.constant_(m.bias, 0)
|
217
|
+
|
218
|
+
# Zero-initialize the last BN in each residual branch,
|
219
|
+
# so that the residual branch starts with zeros, and each residual block behaves like an identity.
|
220
|
+
# This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
|
221
|
+
if zero_init_residual:
|
222
|
+
for m in self.modules():
|
223
|
+
if isinstance(m, Bottleneck) and m.bn3.weight is not None:
|
224
|
+
nn.init.constant_(m.bn3.weight, 0) # type: ignore[arg-type]
|
225
|
+
elif isinstance(m, BasicBlock) and m.bn2.weight is not None:
|
226
|
+
nn.init.constant_(m.bn2.weight, 0) # type: ignore[arg-type]
|
227
|
+
|
228
|
+
def _make_layer(
|
229
|
+
self,
|
230
|
+
block: Type[Union[BasicBlock, Bottleneck]],
|
231
|
+
planes: int,
|
232
|
+
blocks: int,
|
233
|
+
stride: int = 1,
|
234
|
+
dilate: bool = False,
|
235
|
+
) -> nn.Sequential:
|
236
|
+
norm_layer = self._norm_layer
|
237
|
+
downsample = None
|
238
|
+
previous_dilation = self.dilation
|
239
|
+
if dilate:
|
240
|
+
self.dilation *= stride
|
241
|
+
stride = 1
|
242
|
+
if stride != 1 or self.inplanes != planes * block.expansion:
|
243
|
+
downsample = nn.Sequential(
|
244
|
+
conv1x1(self.inplanes, planes * block.expansion, stride),
|
245
|
+
norm_layer(planes * block.expansion),
|
246
|
+
)
|
247
|
+
|
248
|
+
layers = []
|
249
|
+
layers.append(
|
250
|
+
block(
|
251
|
+
self.inplanes, planes, stride, downsample, self.groups, self.base_width, previous_dilation, norm_layer
|
252
|
+
)
|
253
|
+
)
|
254
|
+
self.inplanes = planes * block.expansion
|
255
|
+
for _ in range(1, blocks):
|
256
|
+
layers.append(
|
257
|
+
block(
|
258
|
+
self.inplanes,
|
259
|
+
planes,
|
260
|
+
groups=self.groups,
|
261
|
+
base_width=self.base_width,
|
262
|
+
dilation=self.dilation,
|
263
|
+
norm_layer=norm_layer,
|
264
|
+
)
|
265
|
+
)
|
266
|
+
|
267
|
+
return nn.Sequential(*layers)
|
268
|
+
|
269
|
+
def _forward_impl(self, x: Tensor, last=False, freeze=False) -> Tensor:
|
270
|
+
# See note [TorchScript super()]
|
271
|
+
if freeze:
|
272
|
+
with torch.no_grad():
|
273
|
+
self.eval()
|
274
|
+
x = self.conv1(x)
|
275
|
+
x = self.bn1(x)
|
276
|
+
x = self.relu(x)
|
277
|
+
x = self.maxpool(x)
|
278
|
+
x = self.layer1(x)
|
279
|
+
x = self.layer2(x)
|
280
|
+
x = self.layer3(x)
|
281
|
+
x = self.layer4(x)
|
282
|
+
x = self.avgpool(x)
|
283
|
+
features = torch.flatten(x, 1)
|
284
|
+
self.train()
|
285
|
+
else:
|
286
|
+
x = self.conv1(x)
|
287
|
+
x = self.bn1(x)
|
288
|
+
x = self.relu(x)
|
289
|
+
x = self.maxpool(x)
|
290
|
+
x = self.layer1(x)
|
291
|
+
x = self.layer2(x)
|
292
|
+
x = self.layer3(x)
|
293
|
+
x = self.layer4(x)
|
294
|
+
x = self.avgpool(x)
|
295
|
+
features = torch.flatten(x, 1)
|
296
|
+
|
297
|
+
out = self.fc(features)
|
298
|
+
if last:
|
299
|
+
return out, features
|
300
|
+
else:
|
301
|
+
return out
|
302
|
+
|
303
|
+
def forward(self, x: Tensor, last=False, freeze=False) -> Tensor:
|
304
|
+
return self._forward_impl(x, last, freeze)
|
305
|
+
|
306
|
+
def get_embedding_dim(self):
|
307
|
+
return self.embDim
|
308
|
+
|
309
|
+
def get_grads(self) -> torch.Tensor:
|
310
|
+
"""
|
311
|
+
Returns all the gradients concatenated in a single tensor.
|
312
|
+
:return: gradients tensor (??)
|
313
|
+
"""
|
314
|
+
grads = []
|
315
|
+
for pp in list(self.parameters()):
|
316
|
+
if pp.requires_grad: # only using the parameter that require the gradient
|
317
|
+
grads.append(pp.grad.view(-1))
|
318
|
+
return torch.cat(grads)
|
319
|
+
|
320
|
+
|
321
|
+
def _resnet(
|
322
|
+
block: Type[Union[BasicBlock, Bottleneck]],
|
323
|
+
layers: List[int],
|
324
|
+
**kwargs: Any,
|
325
|
+
) -> ResNet:
|
326
|
+
model = ResNet(block, layers, **kwargs)
|
327
|
+
return model
|
328
|
+
|
329
|
+
|
330
|
+
|
331
|
+
def ResNet18(num_classes: int, **kwargs: Any) -> ResNet:
|
332
|
+
"""ResNet-18 from `Deep Residual Learning for Image Recognition <https://arxiv.org/pdf/1512.03385.pdf>`__.
|
333
|
+
Args:
|
334
|
+
weights (:class:`~torchvision.models.ResNet18_Weights`, optional): The
|
335
|
+
pretrained weights to use. See
|
336
|
+
:class:`~torchvision.models.ResNet18_Weights` below for
|
337
|
+
more details, and possible values. By default, no pre-trained
|
338
|
+
weights are used.
|
339
|
+
progress (bool, optional): If True, displays a progress bar of the
|
340
|
+
download to stderr. Default is True.
|
341
|
+
**kwargs: parameters passed to the ``torchvision.models.resnet.ResNet``
|
342
|
+
base class. Please refer to the `source code
|
343
|
+
<https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py>`_
|
344
|
+
for more details about this class.
|
345
|
+
.. autoclass:: torchvision.models.ResNet18_Weights
|
346
|
+
:members:
|
347
|
+
"""
|
348
|
+
return _resnet(BasicBlock, [2, 2, 2, 2], num_classes=num_classes, **kwargs)
|
349
|
+
|
350
|
+
def ResNet34(num_classes: int, **kwargs: Any) -> ResNet:
|
351
|
+
"""ResNet-34 from `Deep Residual Learning for Image Recognition <https://arxiv.org/pdf/1512.03385.pdf>`__.
|
352
|
+
Args:
|
353
|
+
weights (:class:`~torchvision.models.ResNet34_Weights`, optional): The
|
354
|
+
pretrained weights to use. See
|
355
|
+
:class:`~torchvision.models.ResNet34_Weights` below for
|
356
|
+
more details, and possible values. By default, no pre-trained
|
357
|
+
weights are used.
|
358
|
+
progress (bool, optional): If True, displays a progress bar of the
|
359
|
+
download to stderr. Default is True.
|
360
|
+
**kwargs: parameters passed to the ``torchvision.models.resnet.ResNet``
|
361
|
+
base class. Please refer to the `source code
|
362
|
+
<https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py>`_
|
363
|
+
for more details about this class.
|
364
|
+
.. autoclass:: torchvision.models.ResNet34_Weights
|
365
|
+
:members:
|
366
|
+
"""
|
367
|
+
return _resnet(BasicBlock, [3, 4, 6, 3], num_classes=num_classes, **kwargs)
|
368
|
+
|
369
|
+
|
370
|
+
def ResNet50(num_classes: int, **kwargs: Any) -> ResNet:
|
371
|
+
"""ResNet-50 from `Deep Residual Learning for Image Recognition <https://arxiv.org/pdf/1512.03385.pdf>`__.
|
372
|
+
.. note::
|
373
|
+
The bottleneck of TorchVision places the stride for downsampling to the second 3x3
|
374
|
+
convolution while the original paper places it to the first 1x1 convolution.
|
375
|
+
This variant improves the accuracy and is known as `ResNet V1.5
|
376
|
+
<https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch>`_.
|
377
|
+
Args:
|
378
|
+
weights (:class:`~torchvision.models.ResNet50_Weights`, optional): The
|
379
|
+
pretrained weights to use. See
|
380
|
+
:class:`~torchvision.models.ResNet50_Weights` below for
|
381
|
+
more details, and possible values. By default, no pre-trained
|
382
|
+
weights are used.
|
383
|
+
progress (bool, optional): If True, displays a progress bar of the
|
384
|
+
download to stderr. Default is True.
|
385
|
+
**kwargs: parameters passed to the ``torchvision.models.resnet.ResNet``
|
386
|
+
base class. Please refer to the `source code
|
387
|
+
<https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py>`_
|
388
|
+
for more details about this class.
|
389
|
+
.. autoclass:: torchvision.models.ResNet50_Weights
|
390
|
+
:members:
|
391
|
+
"""
|
392
|
+
return _resnet(Bottleneck, [3, 4, 6, 3], num_classes=num_classes, **kwargs)
|
393
|
+
|
394
|
+
|
395
|
+
|
396
|
+
def ResNet101(num_classes: int, **kwargs: Any) -> ResNet:
|
397
|
+
"""ResNet-101 from `Deep Residual Learning for Image Recognition <https://arxiv.org/pdf/1512.03385.pdf>`__.
|
398
|
+
.. note::
|
399
|
+
The bottleneck of TorchVision places the stride for downsampling to the second 3x3
|
400
|
+
convolution while the original paper places it to the first 1x1 convolution.
|
401
|
+
This variant improves the accuracy and is known as `ResNet V1.5
|
402
|
+
<https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch>`_.
|
403
|
+
Args:
|
404
|
+
weights (:class:`~torchvision.models.ResNet101_Weights`, optional): The
|
405
|
+
pretrained weights to use. See
|
406
|
+
:class:`~torchvision.models.ResNet101_Weights` below for
|
407
|
+
more details, and possible values. By default, no pre-trained
|
408
|
+
weights are used.
|
409
|
+
progress (bool, optional): If True, displays a progress bar of the
|
410
|
+
download to stderr. Default is True.
|
411
|
+
**kwargs: parameters passed to the ``torchvision.models.resnet.ResNet``
|
412
|
+
base class. Please refer to the `source code
|
413
|
+
<https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py>`_
|
414
|
+
for more details about this class.
|
415
|
+
.. autoclass:: torchvision.models.ResNet101_Weights
|
416
|
+
:members:
|
417
|
+
"""
|
418
|
+
return _resnet(Bottleneck, [3, 4, 23, 3], num_classes=num_classes, **kwargs)
|
419
|
+
|
420
|
+
|
421
|
+
def ResNet152(num_classes: int, **kwargs: Any) -> ResNet:
|
422
|
+
"""ResNet-152 from `Deep Residual Learning for Image Recognition <https://arxiv.org/pdf/1512.03385.pdf>`__.
|
423
|
+
.. note::
|
424
|
+
The bottleneck of TorchVision places the stride for downsampling to the second 3x3
|
425
|
+
convolution while the original paper places it to the first 1x1 convolution.
|
426
|
+
This variant improves the accuracy and is known as `ResNet V1.5
|
427
|
+
<https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch>`_.
|
428
|
+
Args:
|
429
|
+
weights (:class:`~torchvision.models.ResNet152_Weights`, optional): The
|
430
|
+
pretrained weights to use. See
|
431
|
+
:class:`~torchvision.models.ResNet152_Weights` below for
|
432
|
+
more details, and possible values. By default, no pre-trained
|
433
|
+
weights are used.
|
434
|
+
progress (bool, optional): If True, displays a progress bar of the
|
435
|
+
download to stderr. Default is True.
|
436
|
+
**kwargs: parameters passed to the ``torchvision.models.resnet.ResNet``
|
437
|
+
base class. Please refer to the `source code
|
438
|
+
<https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py>`_
|
439
|
+
for more details about this class.
|
440
|
+
.. autoclass:: torchvision.models.ResNet152_Weights
|
441
|
+
:members:
|
442
|
+
"""
|
443
|
+
return _resnet(Bottleneck, [3, 8, 36, 3], num_classes=num_classes, **kwargs)
|
444
|
+
|
445
|
+
|
446
|
+
def ResNext50_32x4d(num_classes: int, **kwargs: Any) -> ResNet:
|
447
|
+
"""ResNeXt-50 32x4d model from
|
448
|
+
`Aggregated Residual Transformation for Deep Neural Networks <https://arxiv.org/abs/1611.05431>`_.
|
449
|
+
Args:
|
450
|
+
weights (:class:`~torchvision.models.ResNeXt50_32X4D_Weights`, optional): The
|
451
|
+
pretrained weights to use. See
|
452
|
+
:class:`~torchvision.models.ResNext50_32X4D_Weights` below for
|
453
|
+
more details, and possible values. By default, no pre-trained
|
454
|
+
weights are used.
|
455
|
+
progress (bool, optional): If True, displays a progress bar of the
|
456
|
+
download to stderr. Default is True.
|
457
|
+
**kwargs: parameters passed to the ``torchvision.models.resnet.ResNet``
|
458
|
+
base class. Please refer to the `source code
|
459
|
+
<https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py>`_
|
460
|
+
for more details about this class.
|
461
|
+
.. autoclass:: torchvision.models.ResNeXt50_32X4D_Weights
|
462
|
+
:members:
|
463
|
+
"""
|
464
|
+
_ovewrite_named_param(kwargs, "groups", 32)
|
465
|
+
_ovewrite_named_param(kwargs, "width_per_group", 4)
|
466
|
+
return _resnet(Bottleneck, [3, 4, 6, 3], num_classes=num_classes, **kwargs)
|
467
|
+
|
468
|
+
|
469
|
+
def ResNext101_32x8d(num_classes: int, **kwargs: Any) -> ResNet:
|
470
|
+
"""ResNeXt-101 32x8d model from
|
471
|
+
`Aggregated Residual Transformation for Deep Neural Networks <https://arxiv.org/abs/1611.05431>`_.
|
472
|
+
Args:
|
473
|
+
weights (:class:`~torchvision.models.ResNeXt101_32X8D_Weights`, optional): The
|
474
|
+
pretrained weights to use. See
|
475
|
+
:class:`~torchvision.models.ResNeXt101_32X8D_Weights` below for
|
476
|
+
more details, and possible values. By default, no pre-trained
|
477
|
+
weights are used.
|
478
|
+
progress (bool, optional): If True, displays a progress bar of the
|
479
|
+
download to stderr. Default is True.
|
480
|
+
**kwargs: parameters passed to the ``torchvision.models.resnet.ResNet``
|
481
|
+
base class. Please refer to the `source code
|
482
|
+
<https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py>`_
|
483
|
+
for more details about this class.
|
484
|
+
.. autoclass:: torchvision.models.ResNeXt101_32X8D_Weights
|
485
|
+
:members:
|
486
|
+
"""
|
487
|
+
_ovewrite_named_param(kwargs, "groups", 32)
|
488
|
+
_ovewrite_named_param(kwargs, "width_per_group", 8)
|
489
|
+
return _resnet(Bottleneck, [3, 4, 23, 3], num_classes=num_classes, **kwargs)
|
490
|
+
|
491
|
+
|
492
|
+
def ResNext101_64x4d(num_classes: int, **kwargs: Any) -> ResNet:
|
493
|
+
"""ResNeXt-101 64x4d model from
|
494
|
+
`Aggregated Residual Transformation for Deep Neural Networks <https://arxiv.org/abs/1611.05431>`_.
|
495
|
+
Args:
|
496
|
+
weights (:class:`~torchvision.models.ResNeXt101_64X4D_Weights`, optional): The
|
497
|
+
pretrained weights to use. See
|
498
|
+
:class:`~torchvision.models.ResNeXt101_64X4D_Weights` below for
|
499
|
+
more details, and possible values. By default, no pre-trained
|
500
|
+
weights are used.
|
501
|
+
progress (bool, optional): If True, displays a progress bar of the
|
502
|
+
download to stderr. Default is True.
|
503
|
+
**kwargs: parameters passed to the ``torchvision.models.resnet.ResNet``
|
504
|
+
base class. Please refer to the `source code
|
505
|
+
<https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py>`_
|
506
|
+
for more details about this class.
|
507
|
+
.. autoclass:: torchvision.models.ResNeXt101_64X4D_Weights
|
508
|
+
:members:
|
509
|
+
"""
|
510
|
+
_ovewrite_named_param(kwargs, "groups", 64)
|
511
|
+
_ovewrite_named_param(kwargs, "width_per_group", 4)
|
512
|
+
return _resnet(Bottleneck, [3, 4, 23, 3], num_classes=num_classes, **kwargs)
|
513
|
+
|
514
|
+
|
515
|
+
def wide_resnet50_2(num_classes: int, **kwargs: Any) -> ResNet:
|
516
|
+
"""Wide ResNet-50-2 model from
|
517
|
+
`Wide Residual Networks <https://arxiv.org/abs/1605.07146>`_.
|
518
|
+
The model is the same as ResNet except for the bottleneck number of channels
|
519
|
+
which is twice larger in every block. The number of channels in outer 1x1
|
520
|
+
convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048
|
521
|
+
channels, and in Wide ResNet-50-2 has 2048-1024-2048.
|
522
|
+
Args:
|
523
|
+
weights (:class:`~torchvision.models.Wide_ResNet50_2_Weights`, optional): The
|
524
|
+
pretrained weights to use. See
|
525
|
+
:class:`~torchvision.models.Wide_ResNet50_2_Weights` below for
|
526
|
+
more details, and possible values. By default, no pre-trained
|
527
|
+
weights are used.
|
528
|
+
progress (bool, optional): If True, displays a progress bar of the
|
529
|
+
download to stderr. Default is True.
|
530
|
+
**kwargs: parameters passed to the ``torchvision.models.resnet.ResNet``
|
531
|
+
base class. Please refer to the `source code
|
532
|
+
<https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py>`_
|
533
|
+
for more details about this class.
|
534
|
+
.. autoclass:: torchvision.models.Wide_ResNet50_2_Weights
|
535
|
+
:members:
|
536
|
+
"""
|
537
|
+
_ovewrite_named_param(kwargs, "width_per_group", 64 * 2)
|
538
|
+
return _resnet(Bottleneck, [3, 4, 6, 3], num_classes=num_classes, **kwargs)
|
539
|
+
|
540
|
+
|
541
|
+
def wide_resnet101_2(num_classes: int, **kwargs: Any) -> ResNet:
|
542
|
+
"""Wide ResNet-101-2 model from
|
543
|
+
`Wide Residual Networks <https://arxiv.org/abs/1605.07146>`_.
|
544
|
+
The model is the same as ResNet except for the bottleneck number of channels
|
545
|
+
which is twice larger in every block. The number of channels in outer 1x1
|
546
|
+
convolutions is the same, e.g. last block in ResNet-101 has 2048-512-2048
|
547
|
+
channels, and in Wide ResNet-101-2 has 2048-1024-2048.
|
548
|
+
Args:
|
549
|
+
weights (:class:`~torchvision.models.Wide_ResNet101_2_Weights`, optional): The
|
550
|
+
pretrained weights to use. See
|
551
|
+
:class:`~torchvision.models.Wide_ResNet101_2_Weights` below for
|
552
|
+
more details, and possible values. By default, no pre-trained
|
553
|
+
weights are used.
|
554
|
+
progress (bool, optional): If True, displays a progress bar of the
|
555
|
+
download to stderr. Default is True.
|
556
|
+
**kwargs: parameters passed to the ``torchvision.models.resnet.ResNet``
|
557
|
+
base class. Please refer to the `source code
|
558
|
+
<https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py>`_
|
559
|
+
for more details about this class.
|
560
|
+
.. autoclass:: torchvision.models.Wide_ResNet101_2_Weights
|
561
|
+
:members:
|
562
|
+
"""
|
563
|
+
_ovewrite_named_param(kwargs, "width_per_group", 64 * 2)
|
564
|
+
return _resnet(Bottleneck, [3, 4, 23, 3], num_classes=num_classes, **kwargs)
|
graft/models/resnet9.py
ADDED
@@ -0,0 +1,72 @@
|
|
1
|
+
import torch.nn as nn
|
2
|
+
import torch
|
3
|
+
from torch import Tensor
|
4
|
+
|
5
|
+
|
6
|
+
def conv_block(in_channels, out_channels, pool=False):
|
7
|
+
layers = [nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1),
|
8
|
+
nn.BatchNorm2d(out_channels),
|
9
|
+
nn.ReLU(inplace=True)]
|
10
|
+
if pool: layers.append(nn.MaxPool2d(2))
|
11
|
+
return nn.Sequential(*layers)
|
12
|
+
|
13
|
+
class ResNet9(nn.Module):
|
14
|
+
def __init__(self, in_channels, num_classes):
|
15
|
+
super().__init__()
|
16
|
+
|
17
|
+
self.conv1 = conv_block(in_channels, 64)
|
18
|
+
self.conv2 = conv_block(64, 128, pool=True)
|
19
|
+
self.res1 = nn.Sequential(conv_block(128, 128), conv_block(128, 128))
|
20
|
+
|
21
|
+
self.conv3 = conv_block(128, 256, pool=True)
|
22
|
+
self.conv4 = conv_block(256, 512, pool=True)
|
23
|
+
self.res2 = nn.Sequential(conv_block(512, 512), conv_block(512, 512))
|
24
|
+
|
25
|
+
self.pool = nn.MaxPool2d(4)
|
26
|
+
self.fc = nn.Linear(512, num_classes)
|
27
|
+
# self.classifier = nn.Sequential(nn.MaxPool2d(4),
|
28
|
+
# nn.Flatten(),
|
29
|
+
# nn.Linear(512, num_classes))
|
30
|
+
|
31
|
+
# def forward(self, xb):
|
32
|
+
# out = self.conv1(xb)
|
33
|
+
# out = self.conv2(out)
|
34
|
+
# out = self.res1(out) + out
|
35
|
+
# out = self.conv3(out)
|
36
|
+
# out = self.conv4(out)
|
37
|
+
# out = self.res2(out) + out
|
38
|
+
# out = self.classifier(out)
|
39
|
+
# return out
|
40
|
+
|
41
|
+
def _forward_impl(self, x: Tensor, last=False, freeze=False) -> Tensor:
|
42
|
+
# See note [TorchScript super()]
|
43
|
+
if freeze:
|
44
|
+
with torch.no_grad():
|
45
|
+
self.eval()
|
46
|
+
x = self.conv1(x)
|
47
|
+
x = self.conv2(x)
|
48
|
+
x = self.res1(x) + x
|
49
|
+
x = self.conv3(x)
|
50
|
+
x = self.conv4(x)
|
51
|
+
x = self.res2(x) + x
|
52
|
+
x = self.pool(x)
|
53
|
+
features = torch.flatten(x, 1)
|
54
|
+
self.train()
|
55
|
+
else:
|
56
|
+
x = self.conv1(x)
|
57
|
+
x = self.conv2(x)
|
58
|
+
x = self.res1(x) + x
|
59
|
+
x = self.conv3(x)
|
60
|
+
x = self.conv4(x)
|
61
|
+
x = self.res2(x) + x
|
62
|
+
x = self.pool(x)
|
63
|
+
features = torch.flatten(x, 1)
|
64
|
+
|
65
|
+
out = self.fc(features)
|
66
|
+
if last:
|
67
|
+
return out, features
|
68
|
+
else:
|
69
|
+
return out
|
70
|
+
|
71
|
+
def forward(self, x: Tensor, last=False, freeze=False) -> Tensor:
|
72
|
+
return self._forward_impl(x, last, freeze)
|