gr-libs 0.1.7.post0__py3-none-any.whl → 0.2.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (86) hide show
  1. gr_libs/__init__.py +4 -1
  2. gr_libs/_evaluation/__init__.py +1 -0
  3. gr_libs/_evaluation/_analyze_results_cross_alg_cross_domain.py +260 -0
  4. gr_libs/_evaluation/_generate_experiments_results.py +141 -0
  5. gr_libs/_evaluation/_generate_task_specific_statistics_plots.py +497 -0
  6. gr_libs/_evaluation/_get_plans_images.py +61 -0
  7. gr_libs/_evaluation/_increasing_and_decreasing_.py +106 -0
  8. gr_libs/_version.py +2 -2
  9. gr_libs/all_experiments.py +294 -0
  10. gr_libs/environment/__init__.py +30 -9
  11. gr_libs/environment/_utils/utils.py +27 -0
  12. gr_libs/environment/environment.py +417 -54
  13. gr_libs/metrics/__init__.py +7 -0
  14. gr_libs/metrics/metrics.py +231 -54
  15. gr_libs/ml/__init__.py +2 -5
  16. gr_libs/ml/agent.py +21 -6
  17. gr_libs/ml/base/__init__.py +3 -1
  18. gr_libs/ml/base/rl_agent.py +81 -13
  19. gr_libs/ml/consts.py +1 -1
  20. gr_libs/ml/neural/__init__.py +1 -3
  21. gr_libs/ml/neural/deep_rl_learner.py +619 -378
  22. gr_libs/ml/neural/utils/__init__.py +1 -2
  23. gr_libs/ml/neural/utils/dictlist.py +3 -3
  24. gr_libs/ml/planner/mcts/{utils → _utils}/__init__.py +1 -1
  25. gr_libs/ml/planner/mcts/{utils → _utils}/node.py +11 -7
  26. gr_libs/ml/planner/mcts/{utils → _utils}/tree.py +15 -11
  27. gr_libs/ml/planner/mcts/mcts_model.py +571 -312
  28. gr_libs/ml/sequential/__init__.py +0 -1
  29. gr_libs/ml/sequential/_lstm_model.py +270 -0
  30. gr_libs/ml/tabular/__init__.py +1 -3
  31. gr_libs/ml/tabular/state.py +7 -7
  32. gr_libs/ml/tabular/tabular_q_learner.py +150 -82
  33. gr_libs/ml/tabular/tabular_rl_agent.py +42 -28
  34. gr_libs/ml/utils/__init__.py +2 -3
  35. gr_libs/ml/utils/format.py +28 -97
  36. gr_libs/ml/utils/math.py +5 -3
  37. gr_libs/ml/utils/other.py +3 -3
  38. gr_libs/ml/utils/storage.py +88 -81
  39. gr_libs/odgr_executor.py +268 -0
  40. gr_libs/problems/consts.py +1549 -1227
  41. gr_libs/recognizer/_utils/__init__.py +0 -0
  42. gr_libs/recognizer/_utils/format.py +18 -0
  43. gr_libs/recognizer/gr_as_rl/gr_as_rl_recognizer.py +233 -88
  44. gr_libs/recognizer/graml/_gr_dataset.py +233 -0
  45. gr_libs/recognizer/graml/graml_recognizer.py +586 -252
  46. gr_libs/recognizer/recognizer.py +90 -30
  47. gr_libs/tutorials/draco_panda_tutorial.py +58 -0
  48. gr_libs/tutorials/draco_parking_tutorial.py +56 -0
  49. gr_libs/tutorials/gcdraco_panda_tutorial.py +62 -0
  50. gr_libs/tutorials/gcdraco_parking_tutorial.py +57 -0
  51. gr_libs/tutorials/graml_minigrid_tutorial.py +64 -0
  52. gr_libs/tutorials/graml_panda_tutorial.py +57 -0
  53. gr_libs/tutorials/graml_parking_tutorial.py +52 -0
  54. gr_libs/tutorials/graml_point_maze_tutorial.py +60 -0
  55. gr_libs/tutorials/graql_minigrid_tutorial.py +50 -0
  56. {gr_libs-0.1.7.post0.dist-info → gr_libs-0.2.2.dist-info}/METADATA +84 -29
  57. gr_libs-0.2.2.dist-info/RECORD +71 -0
  58. {gr_libs-0.1.7.post0.dist-info → gr_libs-0.2.2.dist-info}/WHEEL +1 -1
  59. gr_libs-0.2.2.dist-info/top_level.txt +2 -0
  60. tests/test_draco.py +14 -0
  61. tests/test_gcdraco.py +10 -0
  62. tests/test_graml.py +12 -8
  63. tests/test_graql.py +3 -2
  64. evaluation/analyze_results_cross_alg_cross_domain.py +0 -277
  65. evaluation/create_minigrid_map_image.py +0 -34
  66. evaluation/file_system.py +0 -42
  67. evaluation/generate_experiments_results.py +0 -92
  68. evaluation/generate_experiments_results_new_ver1.py +0 -254
  69. evaluation/generate_experiments_results_new_ver2.py +0 -331
  70. evaluation/generate_task_specific_statistics_plots.py +0 -272
  71. evaluation/get_plans_images.py +0 -47
  72. evaluation/increasing_and_decreasing_.py +0 -63
  73. gr_libs/environment/utils/utils.py +0 -17
  74. gr_libs/ml/neural/utils/penv.py +0 -57
  75. gr_libs/ml/sequential/lstm_model.py +0 -192
  76. gr_libs/recognizer/graml/gr_dataset.py +0 -134
  77. gr_libs/recognizer/utils/__init__.py +0 -1
  78. gr_libs/recognizer/utils/format.py +0 -13
  79. gr_libs-0.1.7.post0.dist-info/RECORD +0 -67
  80. gr_libs-0.1.7.post0.dist-info/top_level.txt +0 -4
  81. tutorials/graml_minigrid_tutorial.py +0 -34
  82. tutorials/graml_panda_tutorial.py +0 -41
  83. tutorials/graml_parking_tutorial.py +0 -39
  84. tutorials/graml_point_maze_tutorial.py +0 -39
  85. tutorials/graql_minigrid_tutorial.py +0 -34
  86. /gr_libs/environment/{utils → _utils}/__init__.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: gr_libs
3
- Version: 0.1.7.post0
3
+ Version: 0.2.2
4
4
  Summary: Package with goal recognition frameworks baselines
5
5
  Author: Ben Nageris
6
6
  Author-email: Matan Shamir <matan.shamir@live.biu.ac.il>, Osher Elhadad <osher.elhadad@live.biu.ac.il>
@@ -106,6 +106,25 @@ If you prefer using Conda, follow these steps:
106
106
 
107
107
  For any issues or troubleshooting, please refer to the repository's issue tracker.
108
108
 
109
+ ## Supported Algorithms
110
+
111
+ Successors of algorithms that don't differ in their specifics are added in parentheses after the algorithm name. For example, since GC-DRACO and DRACO share the same column values, they're written on one line as DRACO (GC).
112
+
113
+ | **Algorithm** | **Supervised** | **Reinforcement Learning** | **Discrete States** | **Continuous States** | **Discrete Actions** | **Continuous Actions** | **Model-Based** | **Model-Free** | **Action-Only** |
114
+ |--------------|--------------|------------------------|------------------|------------------|--------------|--------------|--------------|--------------|--------------|
115
+ | GRAQL | ❌ | ✅ | ✅ | ❌ | ✅ | ❌ | ❌ | ✅ | ❌ |
116
+ | DRACO (GC) | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ❌ |
117
+ | GRAML (GC, BG) | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ |
118
+
119
+ ## Supported Domains
120
+
121
+ | **Domain** | **Action Space** | **State Space** |
122
+ |------------|----------------|----------------|
123
+ | Minigrid | Discrete | Discrete |
124
+ | PointMaze | Continuous | Continuous |
125
+ | Parking | Continuous | Continuous |
126
+ | Panda | Continuous | Continuous |
127
+
109
128
  ## Usage Guide
110
129
 
111
130
  After installing GRLib, you will have access to custom Gym environments, allowing you to set up and execute an Online Dynamic Goal Recognition (ODGR) scenario with the algorithm of your choice.
@@ -116,9 +135,10 @@ Tutorials demonstrating basic ODGR scenarios is available in the sub-package `tu
116
135
  gr_libs also includes a library of trained agents for the various supported environments within the package.
117
136
  To get the dataset of trained agents, you can run:
118
137
  ```sh
138
+ pip install gdown
119
139
  python download_dataset.py
120
140
  ```
121
-
141
+ Alternatively, you can visit the google-drive links where download_dataset.py points to and manually download the zipped folders, and unzip them into the project directory.
122
142
  An alternative is to use our docker image, which includes the dataset in it.
123
143
  You can:
124
144
  1. pull the image:
@@ -191,42 +211,77 @@ docker run -it ghcr.io/MatanShamir1/gr_test_base:latest bash
191
211
 
192
212
  The `consts.py` file contains predefined ODGR problem configurations. You can use existing configurations or define new ones.
193
213
 
194
- To execute a single task using the configuration file:
214
+ To execute an ODGR problem using the configuration file, you specify a recognizer, a domain, a gym environment within that domain and the task:
195
215
  ```sh
196
- python odgr_executor.py --recognizer MCTSBasedGraml --domain minigrid --task L1 --minigrid_env MinigridSimple
216
+ python odgr_executor.py --recognizer ExpertBasedGraml --domain minigrid --task L1 --env_name MiniGrid-SimpleCrossingS13N4
197
217
  ```
198
218
 
199
- ## Supported Algorithms
219
+ If you also add the flag:
220
+ ```sh
221
+ --collect_stats
222
+ ```
223
+ to the cmd, 3 kinds of outputs will be generated from the ODGR problem's execution:
224
+ a. Into:
225
+ ```sh
226
+ outputs\\minigrid\MiniGrid-SimpleCrossingS13N4\MiniGrid-SimpleCrossingS13N4\L1\experiment_results
227
+ ```
228
+ a .pkl and a .txt summary in a dictionary format will be generated, including the summary of all ODGR executions, including runtime and overall accuracies for all lengths and types of input sequences.
200
229
 
201
- Successors of algorithms that don't differ in their specifics are added in parentheses after the algorithm name. For example, since GC-DRACO and DRACO share the same column values, they're written on one line as DRACO (GC).
230
+ b. Into:
231
+ ```sh
232
+ outputs\ExpertBasedGraml\minigrid\MiniGrid-SimpleCrossingS13N4\policy_sequences\MiniGrid-SimpleCrossingS13N4-DynamicGoal-1x11-v0_inference_seq/plan_image.png
233
+ ```
234
+ a visulzation of the sequence the agent generated will be dumped, either in a png or an mp4 format, depending on the domain, for debugability.
202
235
 
203
- | **Algorithm** | **Supervised** | **Reinforcement Learning** | **Discrete States** | **Continuous States** | **Discrete Actions** | **Continuous Actions** | **Model-Based** | **Model-Free** | **Action-Only** |
204
- |--------------|--------------|------------------------|------------------|------------------|--------------|--------------|--------------|--------------|--------------|
205
- | GRAQL | ❌ | ✅ | ✅ | ❌ | ✅ | ❌ | ❌ | ✅ | ❌ |
206
- | DRACO (GC) | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ❌ |
207
- | GRAML (GC, BG) | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ |
236
+ c. Into:
237
+ either:
238
+ ```sh
239
+ outputs\ExpertBasedGraml\minigrid\MiniGrid-SimpleCrossingS13N4\goal_embeddings
240
+ ```
241
+ In Graml algorithms, or:
242
+ ```sh
243
+ outputs\Graql\minigrid\MiniGrid-SimpleCrossingS13N4\confidence
244
+ ```
245
+ In GRAsRL algorithms,
246
+ pickled results from which confidence of the results can be obtained, for offline analysis.
208
247
 
209
- ## Supported Domains
248
+ For GRAsRL outputs, for every possible goal, the likelihood of it being the true goal from the input sequence, based on the policy distance metric.
210
249
 
211
- | **Domain** | **Action Space** | **State Space** |
212
- |------------|----------------|----------------|
213
- | Minigrid | Discrete | Discrete |
214
- | PointMaze | Continuous | Continuous |
215
- | Parking | Continuous | Continuous |
216
- | Panda | Continuous | Continuous |
250
+ For GRAML outputs, the embeddings of the sequences are pickled for every goal-directed sequence. Offline, since, since in the embdding space of GRAML's metric model- sequences towards the same sequences are close and vice versa, one could reproduce the most likely goal by measuring the elementwise vector distance of the embeddings, and retrieve a confidence of it.
217
251
 
218
252
  ## Running Experiments
219
253
 
220
- The repository provides benchmark domains and scripts for analyzing experimental results. The `scripts` directory contains tools for processing and visualizing results.
254
+ In light of the previous section, the user should already know how to scale the experiments using odgr_executor, and they should also understand how to use the 3 types of outputs for offline analysis of the algorithms.
255
+ gr_libs also provides another scaling method to run odgr_executor on multiple domains and environments, for many ODGR problems, as well as python scripts for analysis of these results, to create plots and statistics over the executions.
256
+
257
+ ### Scaling odgr_executor runs
258
+ A part of the contribution of this package is standardizing the evaluations of MDP-based GR frameworks.
259
+ consts.py provides a set of ODGR problems on which the framework can be evaluated.
260
+ The 'evaluations' sub-package provides scripts to analyze the results of the all_experiments.py execution, done over the ODGR the problems defined at consts.py.
221
261
 
222
- 1. **`analyze_results_cross_alg_cross_domain.py`**
223
- - Runs without arguments.
224
- - Reads data from `get_experiment_results_path` (e.g., `dataset/graml/minigrid/continuing/.../experiment_results.pkl`).
225
- - Generates plots comparing algorithm performance across domains.
262
+ In order to parallelize executions of odgr_executor.py, you can edit all_experiments.py with your combination of domains, environments and tasks.
263
+ This script use multiprocessing to simultaniously execute many odgr_executor.py python executions as child processes.
226
264
 
227
- 2. **`generate_task_specific_statistics_plots.py`**
228
- - Produces task-specific accuracy and confidence plots.
229
- - Generates a confusion matrix displaying confidence levels.
230
- - Example output paths:
231
- - `figures/point_maze/obstacles/graql_point_maze_obstacles_fragmented_stats.png`
232
- - `figures/point_maze/obstacles/graml_point_maze_obstacles_conf_mat.png`
265
+ It logs failures and successful executions for debugability.
266
+
267
+ After execution, another level of abstraction for the results is created. For example, when running for Graql in the minigrid domain:
268
+ ```sh
269
+ outputs\summaries\detailed_summary_minigrid_Graql.txt
270
+ ```
271
+ Will show the accuracies for every ODGR problem, for every percentage and type of input in a table-like .txt format, whike:
272
+ ```sh
273
+ outputs\summaries\compiled_summary_minigrid_Graql.txt
274
+ ```
275
+ Will show the same results in a more compact summary.
276
+
277
+ ### Using analysis scripts
278
+ The repository provides benchmark domains and scripts for analyzing experimental results. The `evaluation` directory contains tools for processing and visualizing the results from odgr_executor.py and all_experiments.py.
279
+ Please follow the README.md file in the 'evaluation' directory for more details.
280
+
281
+ ## For Developers
282
+ Developers will need to work slightly different: instead of installing the packages, they need to clone the repos and either install them as editables or add their paths to PYTHONPATH so they will function as packages effectively.
283
+ Additional packages to install as a developer:
284
+ ```sh
285
+ pip install pre-commit
286
+ pre-commit install
287
+ ```
@@ -0,0 +1,71 @@
1
+ gr_libs/__init__.py,sha256=XGx0_nWGgy-1zEQUXHRBs3TTb13jX9yOxVvSaavCkBk,376
2
+ gr_libs/_version.py,sha256=OjGGK5TcHVG44Y62aAqeJH4CskkZoY9ydbHOtCDew50,511
3
+ gr_libs/all_experiments.py,sha256=0Xm1KZ1YDWGcAiYKc6IilZ-UyVuxm77iZNsUVzTURqY,11357
4
+ gr_libs/odgr_executor.py,sha256=AdO5qpQ6fZcVRxJg0O-mSKDXim3gVQbq8vSmfx0AjQk,10615
5
+ gr_libs/_evaluation/__init__.py,sha256=trZ-4PyOhzEEK_TvQLfbnNFcqYuN6SdRjDkkAdW6MW8,78
6
+ gr_libs/_evaluation/_analyze_results_cross_alg_cross_domain.py,sha256=ksguC1zeokjpd_ItC5e6MX8HE9qEtjw-uxCXzwGsO88,9863
7
+ gr_libs/_evaluation/_generate_experiments_results.py,sha256=Nj2XLDJ-g9Vn_3oA3tEDu8qWQcIT25Hf_tRySm00oGc,5163
8
+ gr_libs/_evaluation/_generate_task_specific_statistics_plots.py,sha256=Jgst3PW-XTu1JHWhyl73zi4mqoUI3U3dHLIUemKSx7c,19051
9
+ gr_libs/_evaluation/_get_plans_images.py,sha256=a_e97aOMiZ8toBiAIzJCx75lF9RLiVfxROYvcoNy6rM,2729
10
+ gr_libs/_evaluation/_increasing_and_decreasing_.py,sha256=1VOHrriv9mdhc1fxNjVAsu-sO77KRnscbmFXNUub0YU,3868
11
+ gr_libs/environment/__init__.py,sha256=xCCzTFDrj_ijdLoZ-PzGyyYDeU2aoW19X1da76_x9iM,1458
12
+ gr_libs/environment/environment.py,sha256=G3XXuhJDtduOtNeMCbwbMAygfP55AI07Aufs9QrggWQ,16389
13
+ gr_libs/environment/_utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
14
+ gr_libs/environment/_utils/utils.py,sha256=dKuWoUpyuGSJL6qHQfvvJnFf4g-Rh1t2ykuRNrsIvP8,614
15
+ gr_libs/metrics/__init__.py,sha256=dQo4cMqrOB2-VLDxTIGryCm14mUnmEXs4F8jqcgNsY4,145
16
+ gr_libs/metrics/metrics.py,sha256=tpjr4hKt5AGft5H2YxkbF0O8La5JZQaOmnkyjptD2M8,13430
17
+ gr_libs/ml/__init__.py,sha256=xX9InKnWhYm8e0Lhsnnm0H68yBPTNEfq756w95xv-98,83
18
+ gr_libs/ml/agent.py,sha256=ea1yRltKX0LSpRMnpAQLRKvvKoLMQz9MgMeWBPhQISw,2095
19
+ gr_libs/ml/consts.py,sha256=vsEB1nk5V_qP3FjNlv4vBKeTTFngV3RNaNp6fWnmEz0,366
20
+ gr_libs/ml/base/__init__.py,sha256=f63VN3Lv4tQp3dAZjtT78PGV5XuOD8WlU4svy43LZrU,123
21
+ gr_libs/ml/base/rl_agent.py,sha256=Ewqu583gUkgRmeGWCJgkyDBKxTqQnN4qa2vxq0-ydoE,3843
22
+ gr_libs/ml/neural/__init__.py,sha256=vGdjx1KzlB9UxNRwkAeYBEoYdVtRdhj0M4mtWuzqvU8,55
23
+ gr_libs/ml/neural/deep_rl_learner.py,sha256=iy0N0BaUW3jRttLYUteApNWBI5pIYZTjJn2v32UVUQ4,26950
24
+ gr_libs/ml/neural/utils/__init__.py,sha256=Av5wB2eSHR7spHqZFdgau_9EJV0FmijaYqXeyGMwktQ,69
25
+ gr_libs/ml/neural/utils/dictlist.py,sha256=ORFez_KmaCzraStF97hxdgCAAALP4Er8u3e9RcqlvhM,1030
26
+ gr_libs/ml/planner/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
27
+ gr_libs/ml/planner/mcts/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
28
+ gr_libs/ml/planner/mcts/mcts_model.py,sha256=Cv9hDrxTSK5tiaqPqp6-oO68EbETWlvRFweVRfwfjgg,27827
29
+ gr_libs/ml/planner/mcts/_utils/__init__.py,sha256=0ccEf23-6VIenUSrlVFCq0VNVDkCHHNzBw7jR09UiO4,46
30
+ gr_libs/ml/planner/mcts/_utils/node.py,sha256=LcbBjzURMDF4v_Lvz24dyhhW5xb1xQKWdPkue-2lNLM,1056
31
+ gr_libs/ml/planner/mcts/_utils/tree.py,sha256=ua_7pN00K7ECm6fk0TdRpDTe-z4J4iC6f84GCC0ceKc,3399
32
+ gr_libs/ml/sequential/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
33
+ gr_libs/ml/sequential/_lstm_model.py,sha256=3fXduJt1BkA2dPzA_jKInmZvUd1UpThHE8kqNCDCul0,10693
34
+ gr_libs/ml/tabular/__init__.py,sha256=yzHIPrn1lqVEDJbLbSz7RzNSr8IjU4TBdP0pqzQSFGU,32
35
+ gr_libs/ml/tabular/state.py,sha256=ImpIrYWF80PB-4EeQ2Q9nO7jMZ2s0hGbgsir1ZtsO88,700
36
+ gr_libs/ml/tabular/tabular_q_learner.py,sha256=eZ4Db-YgzQd4DIpFl4DvO7zVM-w2mHGFNk18-5ZmB4c,20122
37
+ gr_libs/ml/tabular/tabular_rl_agent.py,sha256=bL8Rk4dMY5HmeyVVmo986ZOizISfArskxLjf5DL87Uk,4205
38
+ gr_libs/ml/utils/__init__.py,sha256=-shnIzZCGBxZfcpep39bIoBKYED-SIN8I_HFUkVjay0,164
39
+ gr_libs/ml/utils/env.py,sha256=AWVN0OXYmFU-J3FUiwvEAIY93Suf1oL6VNcxtyWJraM,171
40
+ gr_libs/ml/utils/format.py,sha256=Vn2l7zmfqZ9Hq2pk2nlzQuVElmVyXr6nME6GsVNvVPE,1068
41
+ gr_libs/ml/utils/math.py,sha256=7Au9L-FHE7eB1ygLbbuR6AhZK6kq8D_9srVtu4iDMPk,429
42
+ gr_libs/ml/utils/other.py,sha256=93oaveiHUzWt_rCDVqybrpHdAfI3UBPCto31Nm5yT0Y,506
43
+ gr_libs/ml/utils/storage.py,sha256=CgZHWcC3GovKe-U3Cvwz0s5qCbBrYHY6w_CV-LnTquc,3791
44
+ gr_libs/problems/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
45
+ gr_libs/problems/consts.py,sha256=kgmaUi3wbHvcBfnIaXT8D79J_cD1yTrwgha6k3Y429Y,62096
46
+ gr_libs/recognizer/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
47
+ gr_libs/recognizer/recognizer.py,sha256=gtUttI1473co5ZHgO7-wQ7HL-aYJp0S4X6goqVYyT24,3091
48
+ gr_libs/recognizer/_utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
49
+ gr_libs/recognizer/_utils/format.py,sha256=eCoqEwv7YdLrF5nb-xAbDXxQ-ogvq_DHf9I2uwdfv-0,512
50
+ gr_libs/recognizer/gr_as_rl/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
51
+ gr_libs/recognizer/gr_as_rl/gr_as_rl_recognizer.py,sha256=ztucO7YRZ3mZDGdt98OUAu_DJHVgUhUEvIngL2swfCE,9705
52
+ gr_libs/recognizer/graml/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
53
+ gr_libs/recognizer/graml/_gr_dataset.py,sha256=JChqXOh7TP8yu-zQPCQ34ghw7iJFnAzd2FkeOyndvFk,10038
54
+ gr_libs/recognizer/graml/graml_recognizer.py,sha256=M-tvipAMn_tiWbM3M74D5zH8yKbPEwR-sKTQy3FZT3E,26058
55
+ gr_libs/tutorials/draco_panda_tutorial.py,sha256=9_scjcyMjkjw8l6g9E-GKOrFTxsIIndW_J1WKjE6-wo,2146
56
+ gr_libs/tutorials/draco_parking_tutorial.py,sha256=jjbNzSv5l4EvjydwslNYh51xHoIkNmcjPbi0YL6WAeA,1896
57
+ gr_libs/tutorials/gcdraco_panda_tutorial.py,sha256=KsYStJPk9vI7PUuJrwBaMcQ5a9GT-00-DGJgqRmYvgs,2230
58
+ gr_libs/tutorials/gcdraco_parking_tutorial.py,sha256=wvhwIwXw_h_VP4OBdsnv2rn9WTTaXJXA_xZ8mLHxcmg,2053
59
+ gr_libs/tutorials/graml_minigrid_tutorial.py,sha256=msw19nRKAFUJGZy0JNym1At3Zoe5cGxppt24xcElLTQ,2205
60
+ gr_libs/tutorials/graml_panda_tutorial.py,sha256=DC0AyiZswc5zOKFd0xTYU72ugaCLlf7xtnOGFsmv7MQ,2140
61
+ gr_libs/tutorials/graml_parking_tutorial.py,sha256=Qf39bdpF4lgppKlDO3qa1CfswmbubqKBXJlPMn2PfhI,1941
62
+ gr_libs/tutorials/graml_point_maze_tutorial.py,sha256=L95_2u1SA1aZJS-C4dQdq-97Sv6nFYNve2FAX2p5_Mc,2188
63
+ gr_libs/tutorials/graql_minigrid_tutorial.py,sha256=HT8kCFNbZXAraIau9wtgC_aW8xg-QNRZB2lcpGm3yWk,1941
64
+ tests/test_draco.py,sha256=oIeTDgn6pt3RfTC-RPX3Bw5cG4BThxRGH3z8en3TX0M,385
65
+ tests/test_gcdraco.py,sha256=vV6rp7PkJJk_WpAfRekb197QiMHjXXApqrBiLG9RTwo,308
66
+ tests/test_graml.py,sha256=amSikMWrGS9BNVSXGNKc1n5tfRl-FfgCsyHYsJtduD4,608
67
+ tests/test_graql.py,sha256=KxVKx6rcSCbN-PjxR2DFoKcILRUmMDz0dTM5SvJZMXg,154
68
+ gr_libs-0.2.2.dist-info/METADATA,sha256=0hqzG9XaGJmqfJ36sKLPnlU1lFUqHdOr7if1icu1sV0,12992
69
+ gr_libs-0.2.2.dist-info/WHEEL,sha256=Nw36Djuh_5VDukK0H78QzOX-_FQEo6V37m3nkm96gtU,91
70
+ gr_libs-0.2.2.dist-info/top_level.txt,sha256=Yzc_VSW3gzbVM7ZtlV4r6VXmfAC8WXqGVUgK1r6JcLs,14
71
+ gr_libs-0.2.2.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (80.1.0)
2
+ Generator: setuptools (80.7.1)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5
 
@@ -0,0 +1,2 @@
1
+ gr_libs
2
+ tests
tests/test_draco.py ADDED
@@ -0,0 +1,14 @@
1
+ from gr_libs.tutorials.draco_panda_tutorial import run_draco_panda_tutorial
2
+ from gr_libs.tutorials.draco_parking_tutorial import run_draco_parking_tutorial
3
+
4
+
5
+ def test_draco_panda_tutorial():
6
+ run_draco_panda_tutorial()
7
+
8
+
9
+ def test_draco_parking_tutorial():
10
+ run_draco_parking_tutorial()
11
+
12
+ if __name__ == "__main__":
13
+ test_draco_panda_tutorial()
14
+ test_draco_parking_tutorial()
tests/test_gcdraco.py ADDED
@@ -0,0 +1,10 @@
1
+ from gr_libs.tutorials.gcdraco_panda_tutorial import run_gcdraco_panda_tutorial
2
+ from gr_libs.tutorials.gcdraco_parking_tutorial import run_gcdraco_parking_tutorial
3
+
4
+
5
+ def test_gcdraco_panda_tutorial():
6
+ run_gcdraco_panda_tutorial()
7
+
8
+
9
+ def test_gcdraco_parking_tutorial():
10
+ run_gcdraco_parking_tutorial()
tests/test_graml.py CHANGED
@@ -1,16 +1,20 @@
1
- from tutorials.graml_minigrid_tutorial import run_graml_minigrid_tutorial
2
- from tutorials.graml_panda_tutorial import run_graml_panda_tutorial
3
- from tutorials.graml_parking_tutorial import run_graml_parking_tutorial
4
- from tutorials.graml_point_maze_tutorial import run_graml_point_maze_tutorial
1
+ from gr_libs.tutorials.graml_minigrid_tutorial import run_graml_minigrid_tutorial
2
+ from gr_libs.tutorials.graml_panda_tutorial import run_graml_panda_tutorial
3
+ from gr_libs.tutorials.graml_parking_tutorial import run_graml_parking_tutorial
4
+ from gr_libs.tutorials.graml_point_maze_tutorial import run_graml_point_maze_tutorial
5
+
5
6
 
6
7
  def test_graml_minigrid_tutorial():
7
- run_graml_minigrid_tutorial()
8
+ run_graml_minigrid_tutorial()
9
+
8
10
 
9
11
  def test_graml_panda_tutorial():
10
- run_graml_panda_tutorial()
12
+ run_graml_panda_tutorial()
13
+
11
14
 
12
15
  def test_graml_parking_tutorial():
13
- run_graml_parking_tutorial()
16
+ run_graml_parking_tutorial()
17
+
14
18
 
15
19
  def test_graml_point_maze_tutorial():
16
- run_graml_point_maze_tutorial()
20
+ run_graml_point_maze_tutorial()
tests/test_graql.py CHANGED
@@ -1,4 +1,5 @@
1
- from tutorials.graql_minigrid_tutorial import run_graql_minigrid_tutorial
1
+ from gr_libs.tutorials.graql_minigrid_tutorial import run_graql_minigrid_tutorial
2
+
2
3
 
3
4
  def test_graql_minigrid_tutorial():
4
- run_graql_minigrid_tutorial()
5
+ run_graql_minigrid_tutorial()
@@ -1,277 +0,0 @@
1
- import copy
2
- import sys
3
- import matplotlib.pyplot as plt
4
- import numpy as np
5
- import os
6
- import dill
7
- from scipy.interpolate import make_interp_spline
8
- from scipy.ndimage import gaussian_filter1d
9
- from gr_libs.ml.utils.storage import get_experiment_results_path, set_global_storage_configs
10
- from scripts.generate_task_specific_statistics_plots import get_figures_dir_path
11
-
12
- def smooth_line(x, y, num_points=300):
13
- x_smooth = np.linspace(np.min(x), np.max(x), num_points)
14
- spline = make_interp_spline(x, y, k=3) # Cubic spline
15
- y_smooth = spline(x_smooth)
16
- return x_smooth, y_smooth
17
-
18
- if __name__ == "__main__":
19
-
20
- fragmented_accuracies = {
21
- 'graml': {
22
- 'panda': {'gd_agent': {
23
- '0.3': [], # every list here should have number of tasks accuracies in it, since we done experiments for L111-L555. remember each accuracy is an average of #goals different tasks.
24
- '0.5': [],
25
- '0.7': [],
26
- '0.9': [],
27
- '1' : []
28
- },
29
- 'gc_agent': {
30
- '0.3': [],
31
- '0.5': [],
32
- '0.7': [],
33
- '0.9': [],
34
- '1' : []
35
- }},
36
- 'minigrid': {'obstacles': {
37
- '0.3': [],
38
- '0.5': [],
39
- '0.7': [],
40
- '0.9': [],
41
- '1' : []
42
- },
43
- 'lava_crossing': {
44
- '0.3': [],
45
- '0.5': [],
46
- '0.7': [],
47
- '0.9': [],
48
- '1' : []
49
- }},
50
- 'point_maze': {'obstacles': {
51
- '0.3': [],
52
- '0.5': [],
53
- '0.7': [],
54
- '0.9': [],
55
- '1' : []
56
- },
57
- 'four_rooms': {
58
- '0.3': [],
59
- '0.5': [],
60
- '0.7': [],
61
- '0.9': [],
62
- '1' : []
63
- }},
64
- 'parking': {'gd_agent': {
65
- '0.3': [],
66
- '0.5': [],
67
- '0.7': [],
68
- '0.9': [],
69
- '1' : []
70
- },
71
- 'gc_agent': {
72
- '0.3': [],
73
- '0.5': [],
74
- '0.7': [],
75
- '0.9': [],
76
- '1' : []
77
- }},
78
- },
79
- 'graql': {
80
- 'panda': {'gd_agent': {
81
- '0.3': [],
82
- '0.5': [],
83
- '0.7': [],
84
- '0.9': [],
85
- '1' : []
86
- },
87
- 'gc_agent': {
88
- '0.3': [],
89
- '0.5': [],
90
- '0.7': [],
91
- '0.9': [],
92
- '1' : []
93
- }},
94
- 'minigrid': {'obstacles': {
95
- '0.3': [],
96
- '0.5': [],
97
- '0.7': [],
98
- '0.9': [],
99
- '1' : []
100
- },
101
- 'lava_crossing': {
102
- '0.3': [],
103
- '0.5': [],
104
- '0.7': [],
105
- '0.9': [],
106
- '1' : []
107
- }},
108
- 'point_maze': {'obstacles': {
109
- '0.3': [],
110
- '0.5': [],
111
- '0.7': [],
112
- '0.9': [],
113
- '1' : []
114
- },
115
- 'four_rooms': {
116
- '0.3': [],
117
- '0.5': [],
118
- '0.7': [],
119
- '0.9': [],
120
- '1' : []
121
- }},
122
- 'parking': {'gd_agent': {
123
- '0.3': [],
124
- '0.5': [],
125
- '0.7': [],
126
- '0.9': [],
127
- '1' : []
128
- },
129
- 'gc_agent': {
130
- '0.3': [],
131
- '0.5': [],
132
- '0.7': [],
133
- '0.9': [],
134
- '1' : []
135
- }},
136
- }
137
- }
138
-
139
- continuing_accuracies = copy.deepcopy(fragmented_accuracies)
140
-
141
- #domains = ['panda', 'minigrid', 'point_maze', 'parking']
142
- domains = ['minigrid', 'point_maze', 'parking']
143
- tasks = ['L111', 'L222', 'L333', 'L444', 'L555']
144
- percentages = ['0.3', '0.5', '1']
145
-
146
- for partial_obs_type, accuracies, is_same_learn in zip(['fragmented', 'continuing'], [fragmented_accuracies, continuing_accuracies], [False, True]):
147
- for domain in domains:
148
- for env in accuracies['graml'][domain].keys():
149
- for task in tasks:
150
- set_global_storage_configs(recognizer_str='graml', is_fragmented=partial_obs_type,
151
- is_inference_same_length_sequences=True, is_learn_same_length_sequences=is_same_learn)
152
- graml_res_file_path = f'{get_experiment_results_path(domain, env, task)}.pkl'
153
- set_global_storage_configs(recognizer_str='graql', is_fragmented=partial_obs_type)
154
- graql_res_file_path = f'{get_experiment_results_path(domain, env, task)}.pkl'
155
- if os.path.exists(graml_res_file_path):
156
- with open(graml_res_file_path, 'rb') as results_file:
157
- results = dill.load(results_file)
158
- for percentage in accuracies['graml'][domain][env].keys():
159
- accuracies['graml'][domain][env][percentage].append(results[percentage]['accuracy'])
160
- else:
161
- assert(False, f"no file for {graml_res_file_path}")
162
- if os.path.exists(graql_res_file_path):
163
- with open(graql_res_file_path, 'rb') as results_file:
164
- results = dill.load(results_file)
165
- for percentage in accuracies['graml'][domain][env].keys():
166
- accuracies['graql'][domain][env][percentage].append(results[percentage]['accuracy'])
167
- else:
168
- assert(False, f"no file for {graql_res_file_path}")
169
-
170
- plot_styles = {
171
- ('graml', 'fragmented', 0.3): 'g--o', # Green dashed line with circle markers
172
- ('graml', 'fragmented', 0.5): 'g--s', # Green dashed line with square markers
173
- ('graml', 'fragmented', 0.7): 'g--^', # Green dashed line with triangle-up markers
174
- ('graml', 'fragmented', 0.9): 'g--d', # Green dashed line with diamond markers
175
- ('graml', 'fragmented', 1.0): 'g--*', # Green dashed line with star markers
176
-
177
- ('graml', 'continuing', 0.3): 'g-o', # Green solid line with circle markers
178
- ('graml', 'continuing', 0.5): 'g-s', # Green solid line with square markers
179
- ('graml', 'continuing', 0.7): 'g-^', # Green solid line with triangle-up markers
180
- ('graml', 'continuing', 0.9): 'g-d', # Green solid line with diamond markers
181
- ('graml', 'continuing', 1.0): 'g-*', # Green solid line with star markers
182
-
183
- ('graql', 'fragmented', 0.3): 'b--o', # Blue dashed line with circle markers
184
- ('graql', 'fragmented', 0.5): 'b--s', # Blue dashed line with square markers
185
- ('graql', 'fragmented', 0.7): 'b--^', # Blue dashed line with triangle-up markers
186
- ('graql', 'fragmented', 0.9): 'b--d', # Blue dashed line with diamond markers
187
- ('graql', 'fragmented', 1.0): 'b--*', # Blue dashed line with star markers
188
-
189
- ('graql', 'continuing', 0.3): 'b-o', # Blue solid line with circle markers
190
- ('graql', 'continuing', 0.5): 'b-s', # Blue solid line with square markers
191
- ('graql', 'continuing', 0.7): 'b-^', # Blue solid line with triangle-up markers
192
- ('graql', 'continuing', 0.9): 'b-d', # Blue solid line with diamond markers
193
- ('graql', 'continuing', 1.0): 'b-*', # Blue solid line with star markers
194
- }
195
-
196
- def average_accuracies(accuracies, domain):
197
- avg_acc = {algo: {perc: [] for perc in percentages}
198
- for algo in ['graml', 'graql']}
199
-
200
- for algo in avg_acc.keys():
201
- for perc in percentages:
202
- for env in accuracies[algo][domain].keys():
203
- env_acc = accuracies[algo][domain][env][perc] # list of 5, averages for L111 to L555.
204
- if env_acc:
205
- avg_acc[algo][perc].append(np.array(env_acc))
206
-
207
- for algo in avg_acc.keys():
208
- for perc in percentages:
209
- if avg_acc[algo][perc]:
210
- avg_acc[algo][perc] = np.mean(np.array(avg_acc[algo][perc]), axis=0)
211
-
212
- return avg_acc
213
-
214
- def plot_domain_accuracies(ax, fragmented_accuracies, continuing_accuracies, domain, sigma=1, line_width=1.5):
215
- fragmented_avg_acc = average_accuracies(fragmented_accuracies, domain)
216
- continuing_avg_acc = average_accuracies(continuing_accuracies, domain)
217
-
218
- x_vals = np.arange(1, 6) # Number of goals
219
-
220
- # Create "waves" (shaded regions) for each algorithm
221
- for algo in ['graml', 'graql']:
222
- fragmented_y_vals_by_percentage = []
223
- continuing_y_vals_by_percentage = []
224
-
225
- for perc in percentages:
226
- fragmented_y_vals = np.array(fragmented_avg_acc[algo][perc])
227
- continuing_y_vals = np.array(continuing_avg_acc[algo][perc])
228
-
229
- # Smooth the trends using Gaussian filtering
230
- fragmented_y_smoothed = gaussian_filter1d(fragmented_y_vals, sigma=sigma)
231
- continuing_y_smoothed = gaussian_filter1d(continuing_y_vals, sigma=sigma)
232
-
233
- fragmented_y_vals_by_percentage.append(fragmented_y_smoothed)
234
- continuing_y_vals_by_percentage.append(continuing_y_smoothed)
235
-
236
- ax.plot(
237
- x_vals, fragmented_y_smoothed,
238
- plot_styles[(algo, 'fragmented', float(perc))],
239
- label=f"{algo}, non-consecutive, {perc}",
240
- linewidth=0.5 # Control line thickness here
241
- )
242
- ax.plot(
243
- x_vals, continuing_y_smoothed,
244
- plot_styles[(algo, 'continuing', float(perc))],
245
- label=f"{algo}, consecutive, {perc}",
246
- linewidth=0.5 # Control line thickness here
247
- )
248
-
249
- ax.set_xticks(x_vals)
250
- ax.set_yticks(np.linspace(0, 1, 6))
251
- ax.set_ylim([0, 1])
252
- ax.set_title(f'{domain.capitalize()} Domain', fontsize=16)
253
- ax.grid(True)
254
-
255
- fig, axes = plt.subplots(1, 4, figsize=(24, 6)) # Increase the figure size for better spacing (width 24, height 6)
256
-
257
- # Generate each plot in a subplot, including both fragmented and continuing accuracies
258
- for i, domain in enumerate(domains):
259
- plot_domain_accuracies(axes[i], fragmented_accuracies, continuing_accuracies, domain)
260
-
261
- # Set a single x-axis and y-axis label for the entire figure
262
- fig.text(0.5, 0.04, 'Number of Goals', ha='center', fontsize=20) # Centered x-axis label
263
- fig.text(0.04, 0.5, 'Accuracy', va='center', rotation='vertical', fontsize=20) # Reduced spacing for y-axis label
264
-
265
- # Adjust subplot layout to avoid overlap
266
- plt.subplots_adjust(left=0.09, right=0.91, top=0.79, bottom=0.21, wspace=0.3) # More space on top (top=0.82)
267
-
268
- # Place the legend above the plots with more space between legend and plots
269
- handles, labels = axes[0].get_legend_handles_labels()
270
- fig.legend(handles, labels, loc='upper center', ncol=4, bbox_to_anchor=(0.5, 1.05), fontsize=12) # Moved above with bbox_to_anchor
271
-
272
- # Save the figure and show it
273
- save_dir = os.path.join('figures', 'all_domains_accuracy_plots')
274
- if not os.path.exists(save_dir):
275
- os.makedirs(save_dir)
276
- plt.savefig(os.path.join(save_dir, 'accuracy_plots_smooth.png'), dpi=300)
277
-
@@ -1,34 +0,0 @@
1
- from minigrid.wrappers import RGBImgPartialObsWrapper, ImgObsWrapper
2
- import numpy as np
3
- import gr_libs.ml as ml
4
- from minigrid.core.world_object import Wall
5
- #from q_table_plot import save_q_table_plot_image
6
- from gymnasium.envs.registration import register
7
-
8
- env_name = "MiniGrid-SimpleCrossingS13N4-DynamicGoal-5x9-v0"
9
- # create an agent and train it (if it is already trained, it will get q-table from cache)
10
- agent = ml.TabularQLearner(env_name='MiniGrid-Walls-13x13-v0',problem_name = "MiniGrid-SimpleCrossingS13N4-DynamicGoal-5x9-v0")
11
- # agent.learn()
12
-
13
- # save_q_table_plot_image(agent.q_table, 15, 15, (10,7))
14
-
15
- # add to the steps list the step the trained agent would take on the env in every state according to the q_table
16
- env = agent.env
17
- env = RGBImgPartialObsWrapper(env) # Get pixel observations
18
- env = ImgObsWrapper(env) # Get rid of the 'mission' field
19
- obs, _ = env.reset() # This now produces an RGB tensor only
20
-
21
- img = env.get_frame()
22
-
23
- ####### save image to file
24
- from PIL import Image
25
- import numpy as np
26
-
27
- image_pil = Image.fromarray(np.uint8(img)).convert('RGB')
28
- image_pil.save(r"{}.png".format(env_name))
29
-
30
- # ####### show image
31
- # from gym_minigrid.window import Window
32
- # window = Window(r"z")
33
- # window.show_img(img=img)
34
- # window.close()
evaluation/file_system.py DELETED
@@ -1,42 +0,0 @@
1
- import os
2
- import dill
3
- import random
4
- import hashlib
5
- from typing import List
6
-
7
- def get_observations_path(env_name: str):
8
- return f"dataset/{env_name}/observations"
9
-
10
- def get_observations_paths(path: str):
11
- return [os.path.join(path, file_name) for file_name in os.listdir(path)]
12
-
13
- def create_partial_observabilities_files(env_name: str, observabilities: List[float]):
14
- with open(r"dataset/{env_name}/observations/obs1.0.pkl".format(env_name=env_name), "rb") as f:
15
- step_1_0 = dill.load(f)
16
-
17
- number_of_items_to_randomize = [int(observability * len(step_1_0)) for observability in observabilities]
18
- obs = []
19
- for items_to_randomize in number_of_items_to_randomize:
20
- obs.append(random.sample(step_1_0, items_to_randomize))
21
- for index, observability in enumerate(observabilities):
22
- partial_steps = obs[index]
23
- file_path = r"dataset/{env_name}/observations/obs{obs}.pkl".format(env_name=env_name, obs=observability)
24
- with open(file_path, "wb+") as f:
25
- dill.dump(partial_steps, f)
26
-
27
- def md5(file_path: str):
28
- hash_md5 = hashlib.md5()
29
- with open(file_path, "rb") as f:
30
- for chunk in iter(lambda: f.read(4096), b""):
31
- hash_md5.update(chunk)
32
- return hash_md5.hexdigest()
33
-
34
- def get_md5(file_path_list: List[str]):
35
- return [(file_path, md5(file_path=file_path)) for file_path in file_path_list]
36
-
37
-
38
- def print_md5(file_path_list: List[str]):
39
- md5_of_observations = get_md5(file_path_list=file_path_list)
40
- for file_name, file_md5 in md5_of_observations:
41
- print(f"{file_name}:{file_md5}")
42
- print("")