gps-building-blocks 1.210.0__py3-none-any.whl → 1.213.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -59,8 +59,7 @@ def regressor_cv_default():
59
59
  l1_ratio=[.0001, .1, .5, .7, .9, .95, .99, 1],
60
60
  n_alphas=100,
61
61
  cv=10,
62
- random_state=30,
63
- normalize=True)
62
+ random_state=30)
64
63
 
65
64
 
66
65
  def resample(data: pd.DataFrame,
@@ -109,7 +108,7 @@ def resample(data: pd.DataFrame,
109
108
  return data.iloc[indices], target.iloc[indices]
110
109
 
111
110
 
112
- def regression_iterate(regressor: linear_model._base.LinearModel,
111
+ def regression_iterate(regressor: linear_model._base.LinearModel,# pytype: disable=annotation-type-mismatch
113
112
  data: pd.DataFrame,
114
113
  target: pd.Series,
115
114
  sample_frac: float = 1,
@@ -155,7 +154,7 @@ def regression_iterate(regressor: linear_model._base.LinearModel,
155
154
  def permutation_test(
156
155
  data: pd.DataFrame,
157
156
  target: pd.Series,
158
- regressor: linear_model._base.LinearModel = regressor_default(),
157
+ regressor: linear_model._base.LinearModel = regressor_default(),# pytype: disable=annotation-type-mismatch
159
158
  n_permutations: int = 100,
160
159
  n_jobs: int = 1,
161
160
  verbose: bool = True) -> pd.DataFrame:
@@ -195,9 +194,9 @@ def permutation_test(
195
194
  def regression_bootstrap(
196
195
  data: pd.DataFrame,
197
196
  target: pd.Series,
198
- regressor: linear_model._base.LinearModel = regressor_default(),
197
+ regressor: linear_model._base.LinearModel = regressor_default(),# pytype: disable=annotation-type-mismatch
199
198
  regressor_cv: Optional[linear_model._base.LinearModel] = \
200
- regressor_cv_default(),
199
+ regressor_cv_default(),# pytype: disable=annotation-type-mismatch
201
200
  bootstraps: Optional[int] = 1000,
202
201
  sample_frac: float = 1,
203
202
  replacement: bool = True,
@@ -294,7 +293,7 @@ def regression_bootstrap(
294
293
  def _tune_hyperparams(
295
294
  data: pd.DataFrame,
296
295
  target: pd.Series,
297
- regressor_cv: linear_model._base.LinearModel,
296
+ regressor_cv: linear_model._base.LinearModel,# pytype: disable=annotation-type-mismatch
298
297
  n_jobs: Optional[int] = 1) -> Dict[Text, float]:
299
298
  """Tunes the hyperparameters prior to bootstraping.
300
299
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: gps-building-blocks
3
- Version: 1.210.0
3
+ Version: 1.213.0
4
4
  Summary: Modules and tools useful for use with advanced data solutions on Google Ads, Google Marketing Platform and Google Cloud.
5
5
  Home-page: https://github.com/google/gps_building_blocks
6
6
  Author: gPS Team
@@ -127,7 +127,7 @@ gps_building_blocks/ml/data_prep/ml_windowing_pipeline/templates/stop_on_first_p
127
127
  gps_building_blocks/ml/diagnostics/__init__.py,sha256=qsAeQ42339LhQ9fD96pTg7Xgne4gvz0-Z6pwG8aMHBc,575
128
128
  gps_building_blocks/ml/diagnostics/binary_classification.py,sha256=VnUpVvWVyGTZcGpFWa0gY20Q_4EsIkfAbB-QO7QRxOk,24656
129
129
  gps_building_blocks/ml/diagnostics/binary_classification_test.py,sha256=rZyz-9rAW5BcULkoPe6Tlm-EZUByXrKoOgZpXKHccSs,13989
130
- gps_building_blocks/ml/diagnostics/bootstrap.py,sha256=esbm7ilQHdsYSkcJQ9sISWsanugXsAUnmCNoTmZuxco,14197
130
+ gps_building_blocks/ml/diagnostics/bootstrap.py,sha256=HgxZ-PlINfdYAk6MqamLb-N0GtSvTErzln-VXOnbdM4,14385
131
131
  gps_building_blocks/ml/diagnostics/bootstrap_test.py,sha256=y7X6eJpqrNVungWBCieLMAxo6Na8j8vJ5ycYbQqtLc0,13553
132
132
  gps_building_blocks/ml/diagnostics/feature_insights.py,sha256=dmO1658GzAkUotP7ds9UpKVpdqZZszxI01PVIqdQFyo,9256
133
133
  gps_building_blocks/ml/diagnostics/feature_insights_test.py,sha256=YF-Z1vgfQl3PU-7SuE9tO6K9DvL_trnbbOqWPjVGktc,4244
@@ -149,13 +149,13 @@ gps_building_blocks/ml/preprocessing/vif_test.py,sha256=Pt4DVBNkZjwh84nx6GexPfbo
149
149
  gps_building_blocks/ml/preprocessing/data/__init__.py,sha256=qsAeQ42339LhQ9fD96pTg7Xgne4gvz0-Z6pwG8aMHBc,575
150
150
  gps_building_blocks/ml/preprocessing/data/example_cluster_df.txt,sha256=pIlHiiDEsoZ6XwqWC_l9yTBt6i8obMrCyVK66uX69Gk,17171
151
151
  gps_building_blocks/ml/preprocessing/data/stopwords_eng.txt,sha256=IVyVg5gXwC74drzjQz2QW4VLa_y4BxpyXlqsbmmZzzQ,671
152
- gps_building_blocks/ml/preprocessing/data/__pycache__/__init__.cpython-310.pyc,sha256=k3gwmmraP-M4PMsc0wir-DEjLtXmCCLX7RicwdP3xac,187
152
+ gps_building_blocks/ml/preprocessing/data/__pycache__/__init__.cpython-310.pyc,sha256=G08r8BwKNW-GZpwOlVbYkUFvhdZtOF2E9gImGZzwaPk,187
153
153
  gps_building_blocks/ml/statistical_inference/__init__.py,sha256=qsAeQ42339LhQ9fD96pTg7Xgne4gvz0-Z6pwG8aMHBc,575
154
154
  gps_building_blocks/ml/statistical_inference/data_preparation.py,sha256=FjJGpI7bCTEZcoyCC1rD9DMzAiDFobCb7XrZZeAAgP4,49071
155
155
  gps_building_blocks/ml/statistical_inference/data_preparation_test.py,sha256=esWza5Mo7TaPtGsA3Hhry3l1dVzJzStFE8O-jGQ9r1I,35157
156
156
  gps_building_blocks/ml/statistical_inference/models.py,sha256=vGX7QIiXMOHedk9B1rw6CX4FyKzU_6Pvm3_Y-f4cSFo,19970
157
157
  gps_building_blocks/ml/statistical_inference/models_test.py,sha256=FOsBzSNkIqacQPqproThOGsv7MMl1xeC2GXvHdsl4Ac,9298
158
- gps_building_blocks-1.210.0.dist-info/METADATA,sha256=0cKUvA7n4giGTga6JLL66W58xF1LrDTw6HvxpbCjtAY,4780
159
- gps_building_blocks-1.210.0.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
160
- gps_building_blocks-1.210.0.dist-info/top_level.txt,sha256=FK77szG741-E_t3bPeWu4U6aMaqpOGguLc-6s1OQm3I,20
161
- gps_building_blocks-1.210.0.dist-info/RECORD,,
158
+ gps_building_blocks-1.213.0.dist-info/METADATA,sha256=CKW7L-FOI_PuHi3LkFnZ2avcstfjPEYBdbjINksTWus,4780
159
+ gps_building_blocks-1.213.0.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
160
+ gps_building_blocks-1.213.0.dist-info/top_level.txt,sha256=FK77szG741-E_t3bPeWu4U6aMaqpOGguLc-6s1OQm3I,20
161
+ gps_building_blocks-1.213.0.dist-info/RECORD,,