gov-uk-dashboards 13.4.2__py3-none-any.whl → 13.5.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -3,6 +3,9 @@
3
3
  import polars as pl
4
4
  import plotly.graph_objects as go
5
5
  from dash import dcc
6
+
7
+ from constants import DEFAULT_COLOURSCALE
8
+
6
9
  from gov_uk_dashboards import colours
7
10
  from gov_uk_dashboards.components.display_chart_or_table_with_header import (
8
11
  display_chart_or_table_with_header,
@@ -11,8 +14,10 @@ from gov_uk_dashboards.components.display_chart_or_table_with_header import (
11
14
 
12
15
  class ChoroplethMap:
13
16
  """Class for generating choropleth map charts.
14
- Note: dataframe_function must contain columns: 'Region', 'Area_Code', 'Local authority',
15
- category_column, column_to_plot, custom_data"""
17
+ Note: dataframe_function must contain columns: 'Region', 'Area_Code',
18
+ discrete_category_column, column_to_plot, hover_data_list
19
+ If discrete_category_column & discrete_category_order are None,
20
+ the choropleth map will be a continuos one, otherwise discrete"""
16
21
 
17
22
  # pylint: disable=too-many-instance-attributes
18
23
  # pylint: disable=too-many-arguments
@@ -20,34 +25,42 @@ class ChoroplethMap:
20
25
  # pylint: disable=too-few-public-methods
21
26
  def __init__(
22
27
  self,
23
- dataframe_function,
24
- region,
25
- get_geos_function,
26
- category_column,
27
- column_to_plot,
28
- desired_category_order,
29
- custom_data,
30
- hover_header_list,
31
- download_data_button_id,
32
- legend_title_text=None,
28
+ map_name: str, # used for the id in the choropleth map and the data download button
29
+ get_dataframe: callable,
30
+ get_geos: callable,
31
+ region: str,
32
+ area_focus_level: str,
33
+ column_to_plot: str,
34
+ hover_header_list: list[str],
35
+ hover_data_list: list[str],
36
+ discrete_category_column: str = None,
37
+ discrete_category_order: list[str] = None,
38
+ legend_title_text: str = None,
33
39
  **choropleth_properties,
34
40
  ):
35
- self.dataframe = dataframe_function()
41
+ self.map_name = map_name
42
+ self.dataframe = get_dataframe()
43
+ self.geographic_boundaries = get_geos()
36
44
  self.region = region
37
- self.geographic_boundaries = get_geos_function()
38
- self.boundaries_by_area = self._get_boundaries_by_area(self.dataframe)
39
- self.category_column = category_column
45
+ self.area_focus_level = area_focus_level
40
46
  self.column_to_plot = column_to_plot
41
- self.df_dict = self._get_dataframe_dict_by_category()
42
- self.desired_category_order = desired_category_order
43
- self.colours_list = self._get_colour_list()
44
- self.custom_data = custom_data
45
47
  self.hover_header_list = hover_header_list
46
- self.download_data_button_id = download_data_button_id
48
+ self.hover_data_list = hover_data_list
49
+
50
+ self.discrete_category_column = discrete_category_column
47
51
  self.legend_title_text = legend_title_text
48
- self.fig = go.Figure()
52
+ self.discrete_category_order = discrete_category_order
49
53
  self.choropleth_properties = choropleth_properties
50
54
 
55
+ self.fig = go.Figure()
56
+ self.discrete_map = (
57
+ self.discrete_category_column is not None
58
+ and self.discrete_category_order is not None
59
+ )
60
+ if self.discrete_map:
61
+ self.df_dict = self._get_dataframe_dict_by_category()
62
+ self.colours_list = self._get_colour_list()
63
+
51
64
  def get_choropleth_map(self):
52
65
  """Creates and returns choropleth map chart for display on application.
53
66
 
@@ -56,7 +69,7 @@ class ChoroplethMap:
56
69
  """
57
70
  self._update_fig()
58
71
  choropleth_map = dcc.Graph(
59
- id="local-authority-choropleth",
72
+ id=f"{self.map_name}-choropleth",
60
73
  responsive=True,
61
74
  config={"topojsonURL": "/assets/topojson/", "displayModeBar": False},
62
75
  figure=self.fig,
@@ -66,7 +79,7 @@ class ChoroplethMap:
66
79
  }, # height hard-coded so that map always displays within tab
67
80
  )
68
81
  return display_chart_or_table_with_header(
69
- choropleth_map, download_data_button_id=self.download_data_button_id
82
+ choropleth_map, download_data_button_id=self.map_name
70
83
  )
71
84
 
72
85
  def _update_fig(self):
@@ -75,61 +88,10 @@ class ChoroplethMap:
75
88
  self._crop_to_region()
76
89
  self._remove_background_map()
77
90
 
78
- def _get_dataframe_dict_by_category(self):
79
- if self.region is not None and self.region != "England":
80
- self.dataframe = self.dataframe.filter(pl.col("Region") == self.region)
81
- else:
82
- self.dataframe = self.dataframe
83
- grouped_dfs_dict_keys_as_tuples = self.dataframe.partition_by(
84
- self.category_column, as_dict=True
85
- )
86
- grouped_dfs_dict = {
87
- key[0]: value for key, value in grouped_dfs_dict_keys_as_tuples.items()
88
- }
89
- return grouped_dfs_dict
90
-
91
- def _get_boundaries_by_area(self, dataframe):
92
- las_to_display = dataframe["Area_Code"].to_list()
93
- filtered_boundaries = {
94
- key: (
95
- value
96
- if key != "features"
97
- else [
98
- features
99
- for features in value
100
- if features["properties"]["geo_id"] in las_to_display
101
- ]
102
- )
103
- for key, value in self.geographic_boundaries.items()
104
- }
105
- return filtered_boundaries
106
-
107
- def _add_traces(self):
108
- for count, category in enumerate(self.desired_category_order):
109
- if category not in self.df_dict:
110
- df = self._create_df_for_empty_trace(category)
111
- else:
112
- df = self.df_dict[category]
113
- colour = self.colours_list[count % len(self.colours_list)]
114
- self.fig.add_trace(
115
- self._create_choropleth_trace(
116
- df,
117
- colour,
118
- )
119
- )
120
-
121
- def _create_df_for_empty_trace(self, category):
122
- """Method to create df where all columns are empty except for the category column to force
123
- all legend items to always appear"""
124
- columns = next(iter(self.df_dict.values())).columns
125
- data = {col: [None] for col in columns}
126
- data[self.category_column] = [category]
127
- return pl.DataFrame(data)
128
-
129
91
  def _create_choropleth_trace(
130
92
  self,
131
93
  dataframe,
132
- colour,
94
+ colourscale,
133
95
  column_to_plot=None,
134
96
  is_missing_data=False,
135
97
  marker=None,
@@ -151,6 +113,7 @@ class ChoroplethMap:
151
113
  hovertemplate = (
152
114
  "<b>%{customdata[0]}</b><br>" + "%{hovertext}<extra></extra>"
153
115
  )
116
+
154
117
  return go.Choropleth(
155
118
  geojson=self.geographic_boundaries,
156
119
  featureidkey="properties.geo_id",
@@ -158,48 +121,79 @@ class ChoroplethMap:
158
121
  locationmode="geojson-id",
159
122
  z=dataframe[column_to_plot],
160
123
  hovertext=(
161
- dataframe["Local authority"]
124
+ dataframe[self.area_focus_level]
162
125
  if not is_missing_data
163
- else ["No data available"] * len(dataframe["Local authority"])
126
+ else ["No data available"] * len(dataframe[self.area_focus_level])
164
127
  ),
165
128
  customdata=(
166
- dataframe[self.custom_data]
129
+ dataframe[self.hover_data_list]
167
130
  if not is_missing_data
168
- else dataframe[["Local authority"]]
131
+ else dataframe[[self.area_focus_level]]
169
132
  ),
133
+ colorbar=self._get_color_bar(),
170
134
  hovertemplate=hovertemplate,
171
135
  marker=marker,
172
136
  marker_line_color=colours.GovUKColours.DARK_GREY.value,
173
- showscale=False,
174
- showlegend=True,
175
- colorscale=[
176
- [0, colour],
177
- [1, colour],
178
- ], # dataframe is grouped by column_to_plot, hence only
179
- # contains one value for column_to_plot- this ensures a discrete categorical colourscale
180
- # for trace
181
- name=(
182
- dataframe[self.category_column][0]
183
- if not is_missing_data
184
- else "No data available"
185
- ),
137
+ showscale=self._get_scale(),
138
+ showlegend=self._get_legend(),
139
+ colorscale=colourscale,
140
+ name=self._get_trace_name(dataframe, is_missing_data),
186
141
  **self.choropleth_properties,
187
142
  )
188
143
 
144
+ def _add_traces(self):
145
+ if not self.discrete_map:
146
+ self.fig.add_trace(
147
+ self._create_choropleth_trace(self.dataframe, DEFAULT_COLOURSCALE)
148
+ )
149
+ else:
150
+ for count, category in enumerate(self.discrete_category_order):
151
+ if category not in self.df_dict:
152
+ df = self._create_df_for_empty_trace(category)
153
+ else:
154
+ df = self.df_dict[category]
155
+ colour = [
156
+ [0, self.colours_list[count % len(self.colours_list)]],
157
+ [1, self.colours_list[count % len(self.colours_list)]],
158
+ ]
159
+ self.fig.add_trace(
160
+ self._create_choropleth_trace(
161
+ df,
162
+ colour,
163
+ )
164
+ )
165
+
189
166
  def _handle_missing_data(self):
190
167
  missing_data = self.dataframe.filter(pl.col(self.column_to_plot).is_null())
191
168
  missing_data = missing_data.with_columns(pl.lit(0).alias("data"))
192
169
 
170
+ colour = [
171
+ [0, colours.GovUKColours.MID_GREY.value],
172
+ [1, colours.GovUKColours.MID_GREY.value],
173
+ ]
193
174
  if not missing_data.is_empty():
194
175
  self.fig.add_trace(
195
176
  self._create_choropleth_trace(
196
177
  missing_data,
197
- colours.GovUKColours.MID_GREY.value,
178
+ colour,
198
179
  column_to_plot="data",
199
180
  is_missing_data=True,
200
181
  )
201
182
  )
202
183
 
184
+ def _get_dataframe_dict_by_category(self):
185
+ if self.region is not None and self.region != "England":
186
+ self.dataframe = self.dataframe.filter(pl.col("Region") == self.region)
187
+ else:
188
+ self.dataframe = self.dataframe
189
+ grouped_dfs_dict_keys_as_tuples = self.dataframe.partition_by(
190
+ self.discrete_category_column, as_dict=True
191
+ )
192
+ grouped_dfs_dict = {
193
+ key[0]: value for key, value in grouped_dfs_dict_keys_as_tuples.items()
194
+ }
195
+ return grouped_dfs_dict
196
+
203
197
  def _crop_to_region(self):
204
198
  self.fig.update_layout(
205
199
  {
@@ -216,6 +210,33 @@ class ChoroplethMap:
216
210
  },
217
211
  )
218
212
 
213
+ def _get_color_bar(self):
214
+ if self.discrete_map:
215
+ return None
216
+
217
+ return {
218
+ "title": self.column_to_plot,
219
+ "thickness": 20,
220
+ "len": 0.8,
221
+ "x": 0.9,
222
+ "y": 0.5,
223
+ }
224
+
225
+ def _get_scale(self):
226
+ return not self.discrete_map
227
+
228
+ def _get_legend(self):
229
+ return self.discrete_map
230
+
231
+ def _get_trace_name(self, dataframe, missing_data=False):
232
+ if self.discrete_category_column is None:
233
+ return None
234
+
235
+ if not missing_data:
236
+ return dataframe[self.discrete_category_column][0]
237
+
238
+ return "No data available"
239
+
219
240
  def _remove_background_map(self):
220
241
  self.fig.update_geos(
221
242
  center={"lat": 53, "lon": -2},
@@ -226,6 +247,15 @@ class ChoroplethMap:
226
247
  def _get_colour_list(self):
227
248
  """Amends colour list based on the number of categories"""
228
249
  colour_list = ["#217847", "#23BBBE", "#8CCE69", "#FFEA80"]
229
- if len(self.desired_category_order) == 3:
250
+
251
+ if self.discrete_map and len(self.discrete_category_order) == 3:
230
252
  colour_list.pop(1)
231
253
  return colour_list
254
+
255
+ def _create_df_for_empty_trace(self, category):
256
+ """Method to create df where all columns are empty except for the category column to force
257
+ all legend items to always appear"""
258
+ columns = next(iter(self.df_dict.values())).columns
259
+ data = {col: [None] for col in columns}
260
+ data[self.discrete_category_column] = [category]
261
+ return pl.DataFrame(data)
@@ -0,0 +1,49 @@
1
+ """Creates a Dash Graph component from a given Plotly figure"""
2
+
3
+ from typing import Any, Dict, Union
4
+ import plotly.graph_objects as Figure
5
+ from dash import dcc
6
+
7
+
8
+ def generate_dash_graph_from_figure(
9
+ figure: Figure,
10
+ graph_name: str,
11
+ graph_style: Union[Dict[str, Any], None] = None,
12
+ double_click_attribute: Union[str, bool] = False,
13
+ class_name: str = "",
14
+ ) -> dcc.Graph:
15
+ """
16
+ Creates a Dash Graph component from a given Plotly figure. This function allows for the
17
+ customisation of the graph's appearance and behavior, and includes default pointer cursor,
18
+ from "default-cursor-graph" class.
19
+ Args:
20
+ - figure: Plotly.graph_objects.Figure instance to be displayed within the Dash Graph component.
21
+ - graph_name: A name for the id of the graph component.
22
+ - graph_style: An optional dictionary specifying CSS styles to apply to the graph component.
23
+ - double_click_attribute: Determines the action taken on double-clicking the graph.
24
+ Can be a boolean or a string specifying the mode.
25
+ - className (str): A string containing one or more CSS class names to apply to the graph.
26
+ Returns:
27
+ - A dash.dcc.Graph component configured with the provided parameters and styles.
28
+ """
29
+
30
+ if not graph_style:
31
+ graph_style = {}
32
+
33
+ if "height" not in graph_style.keys():
34
+ graph_style["height"] = "450px"
35
+
36
+ figure.update_layout(dragmode=False)
37
+ # pylint: disable=duplicate-code
38
+ return dcc.Graph(
39
+ id=f"{graph_name}-graph",
40
+ responsive=True,
41
+ figure=figure,
42
+ style=graph_style,
43
+ config={
44
+ "displayModeBar": False,
45
+ "doubleClick": double_click_attribute,
46
+ "scrollZoom": False,
47
+ },
48
+ className="default-cursor-graph " + class_name,
49
+ )
@@ -0,0 +1,354 @@
1
+ """stacked_barchart function"""
2
+
3
+ from enum import Enum
4
+ import math
5
+ from typing import Optional, TypedDict
6
+ from dash import html
7
+ import polars as pl
8
+
9
+ import plotly.graph_objects as go
10
+
11
+ from constants import (
12
+ CHART_LABEL_FONT_SIZE,
13
+ CUSTOM_DATA,
14
+ DATE_VALID,
15
+ FINANCIAL_YEAR_ENDING,
16
+ HOVER_TEXT_HEADERS,
17
+ MAIN_TITLE,
18
+ MEASURE,
19
+ SUBTITLE,
20
+ VALUE,
21
+ )
22
+ from gov_uk_dashboards.colours import AFAccessibleColours
23
+ from gov_uk_dashboards.components.display_chart_or_table_with_header import (
24
+ display_chart_or_table_with_header,
25
+ )
26
+ from gov_uk_dashboards.components.plotly.generate_dash_graph_from_figure import (
27
+ generate_dash_graph_from_figure,
28
+ )
29
+ from gov_uk_dashboards.lib.plotting_helper_functions import get_legend_configuration
30
+ from gov_uk_dashboards.formatting.human_readable import format_as_human_readable
31
+
32
+ from gov_uk_dashboards.lib.update_layout_bgcolor_margin import (
33
+ update_layout_bgcolor_margin,
34
+ )
35
+
36
+
37
+ class XAxisFormat(Enum):
38
+ """Enum for date format on x axis"""
39
+
40
+ YEAR = "year"
41
+ MONTH_YEAR = "month_year"
42
+ FINANCIAL_QUARTER = "financial_quarter"
43
+
44
+
45
+ class TitleDataStructure(TypedDict):
46
+ """A TypedDict representing the structure of title_data"""
47
+
48
+ MAIN_TITLE: str
49
+ SUBTITLE: str
50
+
51
+
52
+ class HoverDataStructure(TypedDict):
53
+ """A TypedDict representing the structure of hover_data"""
54
+
55
+ CUSTOM_DATA: list[str]
56
+ HOVER_TEXT_HEADERS: list[str]
57
+
58
+
59
+ class HoverDataByTrace(TypedDict):
60
+ """A TypedDict representing hover_data organized by tracename"""
61
+
62
+ tracename: dict[
63
+ str, HoverDataStructure
64
+ ] # Each tracename maps to a HoverDataStructure
65
+
66
+
67
+ class StackedBarChart:
68
+ """Class for use in generating stacked bar charts."""
69
+
70
+ # pylint: disable=too-many-instance-attributes
71
+ # pylint: disable=too-many-arguments
72
+ # pylint: disable=too-many-locals
73
+ # pylint: disable = too-many-positional-arguments
74
+ def __init__(
75
+ self,
76
+ title_data: TitleDataStructure,
77
+ y_column: str,
78
+ hover_data: HoverDataByTrace,
79
+ df: pl.DataFrame,
80
+ trace_name_list: list[str],
81
+ trace_name_column: Optional[str] = None,
82
+ xaxis_tick_text_format: XAxisFormat = XAxisFormat.YEAR.value,
83
+ line_trace_name: Optional[str] = None,
84
+ x_axis_column=DATE_VALID,
85
+ download_chart_button_id: Optional[str] = None,
86
+ download_data_button_id: Optional[str] = None,
87
+ ):
88
+ """Initializes the StackedBarChart instance.
89
+ To display the chart, call the `get_stacked_bar_chart()` method.
90
+
91
+ Args:
92
+ title_data (TitleDataStructure): Data structure containing the chart title information.
93
+ y_column (str): The column name representing the Y-axis data.
94
+ hover_data (HoverDataByTrace): Data structure for hover information.
95
+ df (pl.DataFrame): The dataset for the chart.
96
+ trace_name_list (list[str]): List of trace names for the stacked bars.
97
+ trace_name_column (Optional[str], optional): Column name representing trace categories,
98
+ if applicable. Defaults to None.
99
+ xaxis_tick_text_format (XAxisFormat, optional): Format for X-axis tick labels.
100
+ Defaults to XAxisFormat.YEAR.value.
101
+ line_trace_name (Optional[str], optional): Name for an optional line trace overlay,
102
+ must be in MEASURE column of df, line_trace_name will display in legend.
103
+ Defaults to None.
104
+ x_axis_column (_type_, optional): The column used for the X-axis values.
105
+ Defaults to DATE_VALID.
106
+ download_chart_button_id (Optional[str], optional): ID for the chart download button,
107
+ if applicable. Defaults to None.
108
+ download_data_button_id (Optional[str], optional): ID for the data download button, if
109
+ applicable. Defaults to None.
110
+ """
111
+ self.title_data = title_data
112
+ self.y_axis_column = y_column
113
+ self.hover_data = hover_data
114
+ self.df = df
115
+ self.trace_name_list = trace_name_list
116
+ self.trace_name_column = trace_name_column
117
+ self.xaxis_tick_text_format = xaxis_tick_text_format
118
+ self.line_trace_name = line_trace_name
119
+ self.x_axis_column = x_axis_column
120
+ self.download_chart_button_id = download_chart_button_id
121
+ self.download_data_button_id = download_data_button_id
122
+ self.fig = self.create_stacked_bar_chart()
123
+
124
+ def get_stacked_bar_chart(self) -> html.Div:
125
+ """Creates and returns stacked bar chart for display on application.
126
+
127
+ Returns:
128
+ html.Div: Styled div containing title, subtile and chart.
129
+ """
130
+ graph_name = self.title_data[MAIN_TITLE].replace(" ", "-")
131
+ return display_chart_or_table_with_header(
132
+ generate_dash_graph_from_figure(
133
+ self.fig,
134
+ graph_name,
135
+ class_name="default-cursor-graph non-interactive-legend-cursor",
136
+ ),
137
+ self.title_data[MAIN_TITLE],
138
+ self.title_data[SUBTITLE],
139
+ self.download_chart_button_id,
140
+ self.download_data_button_id,
141
+ )
142
+
143
+ def create_stacked_bar_chart(
144
+ self,
145
+ ):
146
+ """generates a stacked bar chart"""
147
+ # pylint: disable=too-many-locals
148
+ fig = go.Figure()
149
+ colour_list = (
150
+ AFAccessibleColours.CATEGORICAL.value
151
+ if len(self.trace_name_list) != 2
152
+ else [
153
+ AFAccessibleColours.DARK_BLUE.value,
154
+ AFAccessibleColours.ORANGE.value,
155
+ ] # if 2 lines should use dark blue & orange as have highest contrast ratio
156
+ )
157
+ for _, (df, trace_name, colour) in enumerate(
158
+ zip(
159
+ self._get_df_list_for_time_series(),
160
+ self.trace_name_list,
161
+ colour_list,
162
+ )
163
+ ):
164
+ fig.add_trace(
165
+ self.create_bar_chart_trace(
166
+ df.sort(self.x_axis_column),
167
+ trace_name,
168
+ hover_label=None,
169
+ colour=colour,
170
+ )
171
+ )
172
+
173
+ if self.line_trace_name is not None:
174
+ colour = AFAccessibleColours.CATEGORICAL.value[len(self.trace_name_list)]
175
+ df = self.df.filter(pl.col(MEASURE) == self.line_trace_name)
176
+
177
+ fig.add_trace(
178
+ go.Scatter(
179
+ x=df[FINANCIAL_YEAR_ENDING],
180
+ y=df[VALUE],
181
+ customdata=self._get_custom_data(self.line_trace_name, df),
182
+ mode="lines",
183
+ line={"color": colour, "width": 3},
184
+ name=self.line_trace_name,
185
+ hovertemplate=self._get_hover_template(self.line_trace_name),
186
+ legendrank=99999, # a high number to ensure it is bottom of the legend
187
+ )
188
+ )
189
+
190
+ max_y, min_y, tickvals, ticktext = _get_y_range_tickvals_and_ticktext(
191
+ self.df, "£", self.trace_name_list
192
+ )
193
+ update_layout_bgcolor_margin(fig, "#FFFFFF")
194
+
195
+ fig.update_layout(
196
+ legend=get_legend_configuration(),
197
+ font={"size": CHART_LABEL_FONT_SIZE},
198
+ yaxis={
199
+ "range": [min_y * 1.1, max_y * 1.1],
200
+ "tickmode": "array",
201
+ "tickvals": tickvals,
202
+ "ticktext": ticktext,
203
+ },
204
+ showlegend=True,
205
+ barmode="relative",
206
+ xaxis={"categoryorder": "category ascending"},
207
+ )
208
+ return fig
209
+
210
+ def _format_x_axis(self, fig):
211
+ tick_text, tick_values, range_x = self._get_x_axis_content()
212
+ fig.update_xaxes(
213
+ tickvals=tick_values,
214
+ ticktext=tick_text,
215
+ tickmode="array",
216
+ range=range_x,
217
+ )
218
+
219
+ return tick_values
220
+
221
+ def create_bar_chart_trace(
222
+ self,
223
+ df: pl.DataFrame,
224
+ trace_name: str,
225
+ hover_label: dict[str, str],
226
+ colour: str,
227
+ ):
228
+ """Creates a trace for the plot.
229
+
230
+ Args:
231
+ df (pl.DataFrame): Dataframe to use to create trace. Must contain x and y columns,
232
+ and columns defined in self.hover_data[CUSTOM_DATA].
233
+ trace_name (str): Name of trace.
234
+ hover_label (dict[str,str]): Properties for hoverlabel parameter.
235
+ colour (str): Colour for bar.
236
+ """
237
+
238
+ return go.Bar(
239
+ x=df[self.x_axis_column],
240
+ y=df[self.y_axis_column],
241
+ name=trace_name,
242
+ hovertemplate=[
243
+ self._get_hover_template(trace_name) for i in range(df.shape[0])
244
+ ],
245
+ customdata=self._get_custom_data(trace_name, df),
246
+ hoverlabel=hover_label,
247
+ marker={"color": colour},
248
+ )
249
+
250
+ def _get_hover_template(self, trace_name):
251
+ hover_text_headers = self.hover_data[trace_name][HOVER_TEXT_HEADERS]
252
+ hover_template = (
253
+ f"{trace_name}<br>"
254
+ f"{hover_text_headers[0]}"
255
+ ": %{customdata[0]}<br>"
256
+ f"{hover_text_headers[1]}"
257
+ ": %{customdata[1]}<extra></extra>"
258
+ )
259
+ return hover_template
260
+
261
+ def _get_custom_data(self, trace_name, df):
262
+ customdata = df[self.hover_data[trace_name][CUSTOM_DATA]]
263
+ return customdata
264
+
265
+ def _get_x_axis_content(self):
266
+ """Generates tick text and values for the x-axis based on the unique years calculated from
267
+ the FINANCIAL_YEAR_ENDING column in the dataframe.
268
+ Returns:
269
+ tuple: A tuple containing tick_text, tick_values and range_x.
270
+ """
271
+ if self.xaxis_tick_text_format == XAxisFormat.YEAR.value:
272
+ year_list = self.df[FINANCIAL_YEAR_ENDING].unique().to_list()
273
+ int_min_year = int(min(year_list))
274
+ int_max_year = int(max(year_list))
275
+
276
+ tick_text = []
277
+ year = int_min_year
278
+ while year <= int_max_year:
279
+ tick_text.append(str(year + 1))
280
+ year = year + 1
281
+
282
+ tick_values = tick_text
283
+
284
+ range_x = [
285
+ tick_values[0],
286
+ tick_values[-1],
287
+ ]
288
+ else:
289
+ raise ValueError(
290
+ f"Invalid xaxis_tick_text_format: {self.xaxis_tick_text_format}"
291
+ )
292
+ return tick_text, tick_values, range_x
293
+
294
+ def _get_df_list_for_time_series(self) -> list[pl.DataFrame]:
295
+ if self.trace_name_column is not None:
296
+ df_list = [
297
+ self.df.filter(pl.col(self.trace_name_column) == trace_name)
298
+ for trace_name in self.trace_name_list
299
+ ]
300
+ else:
301
+ df_list = [self.df]
302
+ return df_list
303
+
304
+
305
+ def _get_y_range_tickvals_and_ticktext(
306
+ dataframe: pl.DataFrame, tick_prefix: str, yaxis_with_values: list[str]
307
+ ):
308
+ barchart_df = dataframe.pivot(
309
+ index=FINANCIAL_YEAR_ENDING, columns=MEASURE, values=VALUE
310
+ )
311
+ positive_sum = sum(
312
+ pl.when(pl.col(col) > 0).then(pl.col(col)).otherwise(0)
313
+ for col in yaxis_with_values
314
+ )
315
+ negative_sum = sum(
316
+ pl.when(pl.col(col) < 0).then(pl.col(col)).otherwise(0)
317
+ for col in yaxis_with_values
318
+ )
319
+ barchart_df = barchart_df.with_columns(positive_sum.alias("Positive sum"))
320
+ barchart_df = barchart_df.with_columns(negative_sum.alias("Negative sum"))
321
+ maxy = barchart_df.select([pl.col("Positive sum").max()]).item()
322
+ miny = barchart_df.select([pl.col("Negative sum").min()]).item()
323
+ tickvals = _generate_tickvals(maxy, miny)
324
+ ticktext = [format_as_human_readable(val, prefix=tick_prefix) for val in tickvals]
325
+ return tickvals[-1], tickvals[0], tickvals, ticktext
326
+
327
+
328
+ def _generate_tickvals(maxy, miny):
329
+ range_size = maxy - miny
330
+
331
+ # Determine the order of magnitude of the range
332
+ order = int(math.log10(range_size))
333
+
334
+ # Start with an initial step size
335
+ step_size = 10**order
336
+
337
+ # Calculate the number of ticks based on the step size
338
+ num_ticks = math.ceil(range_size / step_size)
339
+
340
+ # Adjust step size to ensure the number of ticks is between 6 and 10
341
+ while num_ticks < 6 or num_ticks > 10:
342
+ if num_ticks < 6: # Too few ticks -> decrease step size
343
+ step_size /= 2
344
+ elif num_ticks > 10: # Too many ticks -> increase step size
345
+ step_size *= 2
346
+ num_ticks = math.ceil(range_size / step_size)
347
+
348
+ # Adjust the start and end of the range to align with the step size
349
+ start = math.floor(miny / step_size) * step_size
350
+ end = math.ceil(maxy / step_size) * step_size
351
+
352
+ # Generate tick values
353
+ tickvals = list(range(int(start), int(end) + 1, int(step_size)))
354
+ return tickvals
@@ -0,0 +1,29 @@
1
+ """Helper functions for use to plot charts"""
2
+
3
+
4
+ from constants import (
5
+ CHART_LABEL_FONT_SIZE,
6
+ )
7
+
8
+
9
+ def get_legend_configuration(itemclick=True, itemdoubleclick=True):
10
+ """
11
+ Returns the legend configuration for charts with customizable interaction settings.
12
+ Args:
13
+ itemclick (bool): Determines whether clicking on a legend item toggles its visibility.
14
+ Set to True by default, allowing click interactions.
15
+ itemdoubleclick (bool): Determines the behavior when double-clicking on a legend item.
16
+ Set to True by default, allowing double-click interactions.
17
+ Returns:
18
+ dict: A dictionary containing the configuration settings for the legend.
19
+ """
20
+ return {
21
+ "x": 0,
22
+ "y": -0.22,
23
+ "yanchor": "top",
24
+ "traceorder": "normal",
25
+ "orientation": "v",
26
+ "font": {"size": CHART_LABEL_FONT_SIZE},
27
+ "itemclick": "toggle" if itemclick else False,
28
+ "itemdoubleclick": "toggle" if itemdoubleclick else False,
29
+ }
@@ -0,0 +1,24 @@
1
+ """Function to update the background colour and margin for plots"""
2
+
3
+ import plotly.graph_objects as go
4
+ from gov_uk_dashboards import colours
5
+
6
+
7
+ def update_layout_bgcolor_margin(fig: go.Figure, colour: str):
8
+ """update background colour and margin for plot"""
9
+ fig.update_layout(
10
+ plot_bgcolor=colour,
11
+ paper_bgcolor=colour,
12
+ yaxis_zerolinecolor=colour,
13
+ margin={"l": 0, "r": 0, "b": 0, "t": 0},
14
+ )
15
+ fig.update_xaxes(
16
+ gridcolor=colour,
17
+ zerolinecolor=colour,
18
+ ticks="outside",
19
+ tickcolor=colours.GovUKColours.MID_GREY.value,
20
+ )
21
+ fig.update_yaxes(
22
+ gridcolor=colours.GovUKColours.MID_GREY.value,
23
+ zerolinecolor=colours.GovUKColours.MID_GREY.value,
24
+ )
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: gov_uk_dashboards
3
- Version: 13.4.2
3
+ Version: 13.5.1
4
4
  Summary: Provides access to functionality common to creating a data dashboard.
5
5
  Author: Department for Levelling Up, Housing and Communities
6
6
  Description-Content-Type: text/markdown
@@ -42,7 +42,7 @@ gov_uk_dashboards/components/plotly/banners.py,sha256=TDHdJQSb7mCqtmM6ylSnVh_Qpd
42
42
  gov_uk_dashboards/components/plotly/captioned_figure.py,sha256=T0sbtGTiJ79FXxVdPb__hqISuyTc3Dl11cKhgcuW-5U,2804
43
43
  gov_uk_dashboards/components/plotly/card.py,sha256=aErz9h536nYvpp9LZsFHo_Rn5rRXXfyGh358VcLksaE,420
44
44
  gov_uk_dashboards/components/plotly/card_full_width.py,sha256=ItwNgb5YQ1n6Fznvy_ngQ70gy0QqtgAmWFh8Dw3QmHQ,412
45
- gov_uk_dashboards/components/plotly/choropleth_map.py,sha256=h2ZKxBxkCYF6mzwPAHTqgFE9wYZQ5N_pkhz-IrOzp6o,8417
45
+ gov_uk_dashboards/components/plotly/choropleth_map.py,sha256=zbXD6BmpR4UKPowyO2x9KUoeYspZ4TmMFy5ZY5EWzu0,9266
46
46
  gov_uk_dashboards/components/plotly/collapsible_panel.py,sha256=WrC5IFzM9mNavPfeSpBvMvYQfrmfhpTPCG1Ay70Jtw8,1191
47
47
  gov_uk_dashboards/components/plotly/comparison_la_filter_button.py,sha256=mhtmYVyToabuYzal00cB07YfKSx_wjDfjB8W-IKDXPc,670
48
48
  gov_uk_dashboards/components/plotly/context_banner.py,sha256=2o44AzS0pTYTY0r3OVbKW7dJg2lA1J8PW4RCeGQ15gg,1010
@@ -51,6 +51,7 @@ gov_uk_dashboards/components/plotly/details.py,sha256=-Rgat95pCnU3fF4O0MkyymzMQP
51
51
  gov_uk_dashboards/components/plotly/download_button.py,sha256=8jGAadB3f_wVYWz5wIkObh0Q4NeFESM6kNRUYx0TIRs,1882
52
52
  gov_uk_dashboards/components/plotly/filter_panel.py,sha256=ejcDQK1bgEtNJSF_GG0iY9mQ_RwV-Ipvq6_z1abrZ_Q,1998
53
53
  gov_uk_dashboards/components/plotly/footer.py,sha256=RnJKN1YTP88GuJ4e7ci2T-jDqIe0-jDuHAQ8OhSCK50,3155
54
+ gov_uk_dashboards/components/plotly/generate_dash_graph_from_figure.py,sha256=sdhC6Mjfw6kqs1MDRDoMuOt8dNS9Bl1WEoJX9S5AssA,1813
54
55
  gov_uk_dashboards/components/plotly/graph.py,sha256=bd49W5sVyhtWd4lNBfQST1RyLNlTLA0KRxS7jTgVMwE,886
55
56
  gov_uk_dashboards/components/plotly/header.py,sha256=ncwPcrGLLSpEL2E1NzSh6qtVW92B5JgAmA-qcTnNBhE,2886
56
57
  gov_uk_dashboards/components/plotly/heading.py,sha256=VjyBng591B_366vnan96PukpCDBTTj-2iJWuq0s0CLw,766
@@ -64,6 +65,7 @@ gov_uk_dashboards/components/plotly/paragraph.py,sha256=yoWa_B6RLiebBX2QaszY3lyZ
64
65
  gov_uk_dashboards/components/plotly/phase_banner.py,sha256=7XIk_y-kStSaptXnk9yHVu8S0n-ypwWehDqOwjb5l-c,1787
65
66
  gov_uk_dashboards/components/plotly/row_component.py,sha256=SdmJqyFJA1Kngyzxy0ooZUegIOiN6Bz1wRq6jGigfII,687
66
67
  gov_uk_dashboards/components/plotly/side_navbar.py,sha256=pupA0FdjSbPbzdX9up6wEoIKWIuk3zGRun4opnBieCU,1332
68
+ gov_uk_dashboards/components/plotly/stacked_barchart.py,sha256=J4-8nRf-OBBJCR9jLFSs5fkWz9uZu1ZUKMyjV89mApI,12700
67
69
  gov_uk_dashboards/components/plotly/table.py,sha256=JkrH51znqAKTy-b5p3gXhOzvPwFmc2LcCQiaKuKwMu4,13753
68
70
  gov_uk_dashboards/components/plotly/tooltip.py,sha256=qTkRWQanhG535Yi4NiaLlEMJqqzjubgRdKJDIhxXzd4,978
69
71
  gov_uk_dashboards/components/plotly/tooltip_title.py,sha256=2exMYItzR17yOu3gTL77DyUU4Hi3CIB-ZPS8ftetqZg,874
@@ -85,11 +87,13 @@ gov_uk_dashboards/lib/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3h
85
87
  gov_uk_dashboards/lib/enable_basic_auth.py,sha256=Ul2tnopTJm6_UQ1ljKGwk-Ay3Z8KnPNKNjwiBOf1yd0,749
86
88
  gov_uk_dashboards/lib/http_headers.py,sha256=Hur3R0_hAsWz8PntBhD66w4kgdW6EvwHNNugnA0DIJM,1592
87
89
  gov_uk_dashboards/lib/logging.py,sha256=osLxh5KDsEgAsaGQSM05h8MBJgLG-RFy8gLtWSivEik,354
90
+ gov_uk_dashboards/lib/plotting_helper_functions.py,sha256=X5rJ63DaADOXcZ2GpK_ZesRRwKjiMCA-D7wpNAhdptk,1052
91
+ gov_uk_dashboards/lib/update_layout_bgcolor_margin.py,sha256=i7Nwp0CxFpkyQeR8KfOBVMBkzctG7hMpWI2OzgxB2jY,740
88
92
  gov_uk_dashboards/lib/dap/__init__.py,sha256=bYga8kJuf9TGkfpnd16SInrD1FcN8iPn4SzcUSHAH48,76
89
93
  gov_uk_dashboards/lib/dap/dap_deployment.py,sha256=ZXixeOAtRNjMsPdGKLwwLNamlo0miZLaKCckKtq8_iI,2313
90
94
  gov_uk_dashboards/lib/dap/get_dataframe_from_cds.py,sha256=OiusRCgYnkBjK_GZgYLGzNrxOGizYt8CgThiWRCVKK0,3921
91
- gov_uk_dashboards-13.4.2.dist-info/licenses/LICENSE,sha256=GDiD7Y2Gx7JucPV1JfVySJeah-qiSyBPdpJ6RHCEHTc,1126
92
- gov_uk_dashboards-13.4.2.dist-info/METADATA,sha256=UhAylRWUU3TMvHg5_Oy9VROpHm7VpQn10NMbSsPZyso,5917
93
- gov_uk_dashboards-13.4.2.dist-info/WHEEL,sha256=tTnHoFhvKQHCh4jz3yCn0WPTYIy7wXx3CJtJ7SJGV7c,91
94
- gov_uk_dashboards-13.4.2.dist-info/top_level.txt,sha256=gPaN1P3-H3Rgi2me6tt-fX_cxo19CZfA4PjlZPjGRpo,18
95
- gov_uk_dashboards-13.4.2.dist-info/RECORD,,
95
+ gov_uk_dashboards-13.5.1.dist-info/licenses/LICENSE,sha256=GDiD7Y2Gx7JucPV1JfVySJeah-qiSyBPdpJ6RHCEHTc,1126
96
+ gov_uk_dashboards-13.5.1.dist-info/METADATA,sha256=oPk-ivgHqCnoq7PFrS6nNO0p6--uALhlACcFDHczzhA,5917
97
+ gov_uk_dashboards-13.5.1.dist-info/WHEEL,sha256=DK49LOLCYiurdXXOXwGJm6U4DkHkg4lcxjhqwRa0CP4,91
98
+ gov_uk_dashboards-13.5.1.dist-info/top_level.txt,sha256=gPaN1P3-H3Rgi2me6tt-fX_cxo19CZfA4PjlZPjGRpo,18
99
+ gov_uk_dashboards-13.5.1.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (77.0.1)
2
+ Generator: setuptools (78.0.2)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5