google-meridian 1.3.1__py3-none-any.whl → 1.4.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (74) hide show
  1. {google_meridian-1.3.1.dist-info → google_meridian-1.4.0.dist-info}/METADATA +13 -9
  2. google_meridian-1.4.0.dist-info/RECORD +108 -0
  3. {google_meridian-1.3.1.dist-info → google_meridian-1.4.0.dist-info}/top_level.txt +1 -0
  4. meridian/analysis/__init__.py +1 -2
  5. meridian/analysis/analyzer.py +0 -1
  6. meridian/analysis/optimizer.py +5 -3
  7. meridian/analysis/review/checks.py +81 -30
  8. meridian/analysis/review/constants.py +4 -0
  9. meridian/analysis/review/results.py +40 -9
  10. meridian/analysis/summarizer.py +8 -3
  11. meridian/analysis/test_utils.py +934 -485
  12. meridian/analysis/visualizer.py +11 -7
  13. meridian/backend/__init__.py +53 -5
  14. meridian/backend/test_utils.py +72 -0
  15. meridian/constants.py +2 -0
  16. meridian/data/load.py +2 -0
  17. meridian/data/test_utils.py +82 -10
  18. meridian/model/__init__.py +2 -0
  19. meridian/model/context.py +925 -0
  20. meridian/model/eda/__init__.py +0 -1
  21. meridian/model/eda/constants.py +13 -2
  22. meridian/model/eda/eda_engine.py +299 -37
  23. meridian/model/eda/eda_outcome.py +21 -1
  24. meridian/model/equations.py +418 -0
  25. meridian/model/knots.py +75 -47
  26. meridian/model/model.py +93 -792
  27. meridian/{analysis/templates → templates}/card.html.jinja +1 -1
  28. meridian/{analysis/templates → templates}/chart.html.jinja +1 -1
  29. meridian/{analysis/templates → templates}/chips.html.jinja +1 -1
  30. meridian/{analysis → templates}/formatter.py +12 -1
  31. meridian/templates/formatter_test.py +216 -0
  32. meridian/{analysis/templates → templates}/insights.html.jinja +1 -1
  33. meridian/{analysis/templates → templates}/stats.html.jinja +1 -1
  34. meridian/{analysis/templates → templates}/style.css +1 -1
  35. meridian/{analysis/templates → templates}/style.scss +1 -1
  36. meridian/{analysis/templates → templates}/summary.html.jinja +4 -2
  37. meridian/{analysis/templates → templates}/table.html.jinja +1 -1
  38. meridian/version.py +1 -1
  39. scenarioplanner/__init__.py +42 -0
  40. scenarioplanner/converters/__init__.py +25 -0
  41. scenarioplanner/converters/dataframe/__init__.py +28 -0
  42. scenarioplanner/converters/dataframe/budget_opt_converters.py +383 -0
  43. scenarioplanner/converters/dataframe/common.py +71 -0
  44. scenarioplanner/converters/dataframe/constants.py +137 -0
  45. scenarioplanner/converters/dataframe/converter.py +42 -0
  46. scenarioplanner/converters/dataframe/dataframe_model_converter.py +70 -0
  47. scenarioplanner/converters/dataframe/marketing_analyses_converters.py +543 -0
  48. scenarioplanner/converters/dataframe/rf_opt_converters.py +314 -0
  49. scenarioplanner/converters/mmm.py +743 -0
  50. scenarioplanner/converters/mmm_converter.py +58 -0
  51. scenarioplanner/converters/sheets.py +156 -0
  52. scenarioplanner/converters/test_data.py +714 -0
  53. scenarioplanner/linkingapi/__init__.py +47 -0
  54. scenarioplanner/linkingapi/constants.py +27 -0
  55. scenarioplanner/linkingapi/url_generator.py +131 -0
  56. scenarioplanner/mmm_ui_proto_generator.py +354 -0
  57. schema/__init__.py +15 -0
  58. schema/mmm_proto_generator.py +71 -0
  59. schema/model_consumer.py +133 -0
  60. schema/processors/__init__.py +77 -0
  61. schema/processors/budget_optimization_processor.py +832 -0
  62. schema/processors/common.py +64 -0
  63. schema/processors/marketing_processor.py +1136 -0
  64. schema/processors/model_fit_processor.py +367 -0
  65. schema/processors/model_kernel_processor.py +117 -0
  66. schema/processors/model_processor.py +412 -0
  67. schema/processors/reach_frequency_optimization_processor.py +584 -0
  68. schema/test_data.py +380 -0
  69. schema/utils/__init__.py +1 -0
  70. schema/utils/date_range_bucketing.py +117 -0
  71. google_meridian-1.3.1.dist-info/RECORD +0 -76
  72. meridian/model/eda/meridian_eda.py +0 -220
  73. {google_meridian-1.3.1.dist-info → google_meridian-1.4.0.dist-info}/WHEEL +0 -0
  74. {google_meridian-1.3.1.dist-info → google_meridian-1.4.0.dist-info}/licenses/LICENSE +0 -0
@@ -224,7 +224,6 @@ INC_OUTCOME_RF_ONLY_USE_POSTERIOR = np.array([
224
224
  [2081.52, 317.14],
225
225
  ],
226
226
  ])
227
-
228
227
  INC_OUTCOME_NON_MEDIA_USE_PRIOR = np.array([[
229
228
  [
230
229
  5.297e02,
@@ -232,41 +231,61 @@ INC_OUTCOME_NON_MEDIA_USE_PRIOR = np.array([[
232
231
  2.677e02,
233
232
  8.525e02,
234
233
  4.928e02,
234
+ 3.305e05,
235
+ 1.000e04,
236
+ 5.644e07,
237
+ 3.129e03,
238
+ 6.678e10,
235
239
  -6.732e05,
236
240
  -9.344e04,
237
241
  2.366e05,
238
242
  -3.368e05,
239
243
  ],
240
244
  [
241
- 8.667e01,
245
+ 8.668e01,
242
246
  5.333e02,
243
247
  7.794e02,
244
248
  2.703e02,
245
249
  2.679e02,
246
- -6.813e04,
247
- 1.557e05,
250
+ 2.234e06,
251
+ 1.185e05,
252
+ 6.034e05,
253
+ 1.622e04,
254
+ 3.811e06,
255
+ -6.814e04,
256
+ 1.558e05,
248
257
  1.123e05,
249
258
  -3.768e04,
250
259
  ],
251
260
  [
252
261
  4.647e02,
253
262
  2.914e02,
254
- 3.165e02,
255
- 3.285e02,
263
+ 3.166e02,
264
+ 3.286e02,
256
265
  4.524e02,
266
+ 3.128e05,
267
+ 1.168e07,
268
+ 9.420e05,
269
+ 6.457e04,
270
+ 1.707e06,
257
271
  -1.484e05,
258
- -7.160e05,
259
- 5.994e04,
260
- -6.157e04,
272
+ -7.161e05,
273
+ 5.995e04,
274
+ -6.158e04,
261
275
  ],
262
276
  [
263
277
  7.034e02,
264
278
  6.047e01,
265
279
  1.184e02,
266
- 2.647e02,
280
+ 2.648e02,
267
281
  3.022e02,
282
+ 1.618e05,
283
+ 1.878e05,
284
+ 1.379e04,
285
+ 1.895e06,
286
+ 1.131e07,
268
287
  -5.980e04,
269
- -5.054e05,
288
+ -5.055e05,
270
289
  -7.100e04,
271
290
  5.156e05,
272
291
  ],
@@ -274,66 +293,96 @@ INC_OUTCOME_NON_MEDIA_USE_PRIOR = np.array([[
274
293
  1.105e03,
275
294
  1.486e03,
276
295
  1.729e02,
277
- 3.167e02,
278
- 2.660e02,
279
- -1.372e05,
296
+ 3.168e02,
297
+ 2.661e02,
298
+ 6.419e06,
299
+ 1.665e06,
300
+ 1.272e07,
301
+ 4.632e04,
302
+ 9.471e06,
303
+ -1.373e05,
280
304
  5.433e05,
281
- 1.552e05,
305
+ 1.553e05,
282
306
  -1.327e05,
283
307
  ],
284
308
  [
285
309
  2.216e02,
286
- 4.411e02,
310
+ 4.412e02,
287
311
  1.254e03,
288
312
  3.295e02,
289
- 4.110e02,
313
+ 4.111e02,
314
+ 5.366e05,
315
+ 7.268e04,
316
+ 5.930e07,
317
+ 1.730e06,
318
+ 4.749e06,
290
319
  1.196e05,
291
- -2.278e05,
292
- 7.862e04,
293
- 1.129e05,
320
+ -2.279e05,
321
+ 7.863e04,
322
+ 1.130e05,
294
323
  ],
295
324
  [
296
- 7.480e02,
297
- 2.665e02,
298
- 1.705e02,
325
+ 7.481e02,
326
+ 2.666e02,
327
+ 1.706e02,
299
328
  1.805e02,
300
329
  2.840e02,
301
- 3.730e05,
302
- -3.130e05,
330
+ 5.345e06,
331
+ 1.730e05,
332
+ 3.684e06,
333
+ 5.869e05,
334
+ 7.030e04,
335
+ 3.731e05,
336
+ -3.131e05,
303
337
  1.099e05,
304
- -1.897e05,
338
+ -1.898e05,
305
339
  ],
306
340
  [
307
- 6.140e02,
341
+ 6.141e02,
308
342
  6.552e02,
309
343
  2.245e02,
310
- 2.145e02,
311
- 4.806e02,
312
- -9.055e03,
344
+ 2.146e02,
345
+ 4.807e02,
346
+ 1.233e05,
347
+ 4.201e03,
348
+ 3.061e06,
349
+ 8.086e03,
350
+ 6.251e05,
351
+ -9.056e03,
313
352
  -2.358e05,
314
- -4.722e04,
353
+ -4.723e04,
315
354
  -1.610e05,
316
355
  ],
317
356
  [
318
- 1.113e03,
357
+ 1.114e03,
319
358
  8.533e02,
320
359
  6.742e02,
321
360
  5.307e02,
322
- 1.387e02,
361
+ 1.388e02,
362
+ 6.012e06,
363
+ 1.252e04,
364
+ 2.522e05,
365
+ 6.544e05,
366
+ 4.772e07,
323
367
  2.961e05,
324
368
  4.278e05,
325
- 1.057e05,
326
- 2.885e05,
369
+ 1.058e05,
370
+ 2.886e05,
327
371
  ],
328
372
  [
329
373
  3.804e02,
330
374
  1.248e02,
331
375
  5.768e02,
332
376
  6.984e02,
333
- 3.007e02,
334
- 1.687e05,
377
+ 3.008e02,
378
+ 1.615e04,
379
+ 4.729e07,
380
+ 8.092e04,
381
+ 5.136e05,
382
+ 2.485e04,
383
+ 1.688e05,
335
384
  1.381e05,
336
- -4.316e04,
385
+ -4.317e04,
337
386
  2.224e05,
338
387
  ],
339
388
  ]])
@@ -343,198 +392,288 @@ INC_OUTCOME_NON_MEDIA_USE_POSTERIOR = np.array([
343
392
  1.991e02,
344
393
  5.116e02,
345
394
  5.191e01,
346
- 6.623e02,
395
+ 6.624e02,
347
396
  1.969e02,
348
- 6.355e04,
349
- 6.137e04,
397
+ 3.669e03,
398
+ 9.246e03,
399
+ 1.355e04,
400
+ 5.733e03,
401
+ 1.109e03,
402
+ 6.356e04,
403
+ 6.138e04,
350
404
  1.885e04,
351
- 1.414e04,
405
+ 1.415e04,
352
406
  ],
353
407
  [
354
- 1.980e02,
355
- 5.257e02,
408
+ 1.981e02,
409
+ 5.258e02,
356
410
  5.190e01,
357
411
  6.690e02,
358
412
  1.947e02,
413
+ 3.742e03,
414
+ 8.480e03,
415
+ 1.164e04,
416
+ 5.672e03,
417
+ 1.700e03,
359
418
  6.186e04,
360
- 6.107e04,
361
- 1.791e04,
419
+ 6.108e04,
420
+ 1.792e04,
362
421
  1.379e04,
363
422
  ],
364
423
  [
365
424
  1.984e02,
366
- 5.229e02,
367
- 5.186e01,
425
+ 5.230e02,
426
+ 5.187e01,
368
427
  6.678e02,
369
- 1.950e02,
428
+ 1.951e02,
429
+ 3.738e03,
430
+ 8.182e03,
431
+ 1.172e04,
432
+ 5.648e03,
433
+ 1.518e03,
370
434
  6.190e04,
371
435
  6.057e04,
372
436
  1.801e04,
373
437
  1.462e04,
374
438
  ],
375
439
  [
376
- 1.984e02,
440
+ 1.985e02,
377
441
  5.234e02,
378
442
  5.193e01,
379
443
  6.658e02,
380
- 1.899e02,
444
+ 1.900e02,
445
+ 3.852e03,
446
+ 7.537e03,
447
+ 1.125e04,
448
+ 5.648e03,
449
+ 2.118e03,
381
450
  5.850e04,
382
451
  5.792e04,
383
- 1.745e04,
384
- 1.331e04,
452
+ 1.746e04,
453
+ 1.332e04,
385
454
  ],
386
455
  [
387
456
  1.980e02,
388
- 5.205e02,
457
+ 5.206e02,
389
458
  5.196e01,
390
- 6.697e02,
459
+ 6.698e02,
391
460
  1.898e02,
392
- 5.965e04,
461
+ 3.842e03,
462
+ 7.094e03,
463
+ 1.136e04,
464
+ 5.642e03,
465
+ 1.926e03,
466
+ 5.966e04,
393
467
  5.862e04,
394
468
  1.714e04,
395
- 1.445e04,
469
+ 1.446e04,
396
470
  ],
397
471
  [
398
- 1.960e02,
472
+ 1.961e02,
399
473
  5.301e02,
400
- 5.181e01,
474
+ 5.182e01,
401
475
  6.764e02,
402
476
  1.999e02,
403
- 6.082e04,
404
- 5.874e04,
477
+ 3.775e03,
478
+ 7.215e03,
479
+ 1.161e04,
480
+ 5.650e03,
481
+ 1.137e03,
482
+ 6.083e04,
483
+ 5.875e04,
405
484
  1.672e04,
406
- 1.176e04,
485
+ 1.177e04,
407
486
  ],
408
487
  [
409
488
  1.988e02,
410
489
  5.094e02,
411
- 5.180e01,
490
+ 5.181e01,
412
491
  6.780e02,
413
- 1.979e02,
414
- 5.893e04,
492
+ 1.980e02,
493
+ 3.786e03,
494
+ 7.502e03,
495
+ 1.172e04,
496
+ 5.622e03,
497
+ 8.346e02,
498
+ 5.894e04,
415
499
  5.686e04,
416
- 1.647e04,
417
- 1.202e04,
500
+ 1.648e04,
501
+ 1.203e04,
418
502
  ],
419
503
  [
420
- 1.991e02,
504
+ 1.992e02,
421
505
  5.109e02,
422
- 5.174e01,
506
+ 5.175e01,
423
507
  6.698e02,
424
- 1.972e02,
425
- 5.288e04,
508
+ 1.973e02,
509
+ 4.175e03,
510
+ 6.719e03,
511
+ 1.256e04,
512
+ 5.602e03,
513
+ 8.899e02,
514
+ 5.289e04,
426
515
  5.654e04,
427
516
  1.636e04,
428
517
  1.309e04,
429
518
  ],
430
519
  [
431
- 1.986e02,
520
+ 1.987e02,
432
521
  5.084e02,
433
522
  5.175e01,
434
- 6.669e02,
523
+ 6.670e02,
435
524
  1.948e02,
436
- 5.378e04,
525
+ 4.056e03,
526
+ 6.772e03,
527
+ 1.265e04,
528
+ 5.566e03,
529
+ 8.286e02,
530
+ 5.379e04,
437
531
  5.640e04,
438
532
  1.671e04,
439
533
  1.332e04,
440
534
  ],
441
535
  [
442
536
  1.986e02,
443
- 5.123e02,
537
+ 5.124e02,
444
538
  5.178e01,
445
539
  6.670e02,
446
- 1.965e02,
447
- 5.519e04,
448
- 5.608e04,
540
+ 1.966e02,
541
+ 4.217e03,
542
+ 6.105e03,
543
+ 1.231e04,
544
+ 5.582e03,
545
+ 5.811e02,
546
+ 5.520e04,
547
+ 5.609e04,
449
548
  1.721e04,
450
- 1.107e04,
549
+ 1.108e04,
451
550
  ],
452
551
  ],
453
552
  [
454
553
  [
455
- 1.431e03,
456
- 8.507e01,
554
+ 1.432e03,
555
+ 8.508e01,
457
556
  2.222e02,
458
557
  2.692e02,
459
558
  1.240e02,
460
- 5.840e04,
461
- 1.407e05,
462
- -3.598e04,
463
- 6.875e04,
559
+ 1.966e03,
560
+ 2.489e03,
561
+ 1.009e04,
562
+ 3.308e03,
563
+ 8.592e03,
564
+ 5.841e04,
565
+ 1.408e05,
566
+ -3.599e04,
567
+ 6.876e04,
464
568
  ],
465
569
  [
466
570
  1.432e03,
467
571
  8.505e01,
468
572
  2.231e02,
469
- 2.683e02,
573
+ 2.684e02,
470
574
  1.240e02,
575
+ 1.966e03,
576
+ 2.492e03,
577
+ 1.022e04,
578
+ 3.310e03,
579
+ 8.431e03,
471
580
  5.933e04,
472
- 1.402e05,
473
- -3.604e04,
474
- 6.769e04,
581
+ 1.403e05,
582
+ -3.605e04,
583
+ 6.770e04,
475
584
  ],
476
585
  [
477
- 1.430e03,
586
+ 1.431e03,
478
587
  8.500e01,
479
- 2.248e02,
480
- 2.675e02,
588
+ 2.249e02,
589
+ 2.676e02,
481
590
  1.235e02,
591
+ 1.965e03,
592
+ 2.493e03,
593
+ 6.681e03,
594
+ 3.317e03,
595
+ 8.151e03,
482
596
  5.684e04,
483
- 1.393e05,
484
- -3.585e04,
597
+ 1.394e05,
598
+ -3.586e04,
485
599
  6.492e04,
486
600
  ],
487
601
  [
488
- 1.436e03,
602
+ 1.437e03,
489
603
  8.512e01,
490
- 2.231e02,
604
+ 2.232e02,
491
605
  2.667e02,
492
606
  1.244e02,
607
+ 1.961e03,
608
+ 2.509e03,
609
+ 6.729e03,
610
+ 3.325e03,
611
+ 8.230e03,
493
612
  5.558e04,
494
- 1.391e05,
613
+ 1.392e05,
495
614
  -3.566e04,
496
615
  5.967e04,
497
616
  ],
498
617
  [
499
- 1.447e03,
500
- 8.433e01,
618
+ 1.448e03,
619
+ 8.434e01,
501
620
  2.226e02,
502
- 2.650e02,
621
+ 2.651e02,
503
622
  1.254e02,
623
+ 1.962e03,
624
+ 2.507e03,
625
+ 3.038e03,
626
+ 3.337e03,
627
+ 7.613e03,
504
628
  5.029e04,
505
- 1.344e05,
629
+ 1.345e05,
506
630
  -3.523e04,
507
- 5.162e04,
631
+ 5.163e04,
508
632
  ],
509
633
  [
510
634
  1.430e03,
511
635
  8.481e01,
512
- 2.232e02,
636
+ 2.233e02,
513
637
  2.641e02,
514
- 1.254e02,
638
+ 1.255e02,
639
+ 1.959e03,
640
+ 2.492e03,
641
+ 2.489e03,
642
+ 3.327e03,
643
+ 7.391e03,
515
644
  5.083e04,
516
- 1.412e05,
517
- -3.529e04,
645
+ 1.413e05,
646
+ -3.530e04,
518
647
  4.894e04,
519
648
  ],
520
649
  [
521
- 1.457e03,
650
+ 1.458e03,
522
651
  8.494e01,
523
- 2.258e02,
652
+ 2.259e02,
524
653
  2.621e02,
525
- 1.247e02,
526
- 5.094e04,
527
- 1.386e05,
654
+ 1.248e02,
655
+ 1.962e03,
656
+ 2.488e03,
657
+ 2.177e03,
658
+ 3.347e03,
659
+ 7.023e03,
660
+ 5.095e04,
661
+ 1.387e05,
528
662
  -3.560e04,
529
663
  4.367e04,
530
664
  ],
531
665
  [
532
- 1.456e03,
666
+ 1.457e03,
533
667
  8.486e01,
534
668
  2.276e02,
535
669
  2.646e02,
536
- 1.246e02,
537
- 4.977e04,
670
+ 1.247e02,
671
+ 1.964e03,
672
+ 2.475e03,
673
+ 2.080e03,
674
+ 3.344e03,
675
+ 6.851e03,
676
+ 4.978e04,
538
677
  1.430e05,
539
678
  -3.544e04,
540
679
  4.030e04,
@@ -542,23 +681,33 @@ INC_OUTCOME_NON_MEDIA_USE_POSTERIOR = np.array([
542
681
  [
543
682
  1.484e03,
544
683
  8.516e01,
545
- 2.252e02,
546
- 2.668e02,
547
- 1.241e02,
684
+ 2.253e02,
685
+ 2.669e02,
686
+ 1.242e02,
687
+ 1.963e03,
688
+ 2.472e03,
689
+ 1.917e03,
690
+ 3.369e03,
691
+ 6.657e03,
548
692
  4.880e04,
549
693
  1.479e05,
550
- -3.523e04,
694
+ -3.524e04,
551
695
  4.206e04,
552
696
  ],
553
697
  [
554
- 1.475e03,
555
- 8.522e01,
556
- 2.238e02,
557
- 2.669e02,
698
+ 1.476e03,
699
+ 8.523e01,
700
+ 2.239e02,
701
+ 2.670e02,
558
702
  1.244e02,
703
+ 1.962e03,
704
+ 2.475e03,
705
+ 1.610e03,
706
+ 3.361e03,
707
+ 6.795e03,
559
708
  4.895e04,
560
- 1.481e05,
561
- -3.557e04,
709
+ 1.482e05,
710
+ -3.558e04,
562
711
  4.163e04,
563
712
  ],
564
713
  ],
@@ -1058,108 +1207,158 @@ INC_OUTCOME_NON_MEDIA_MAX = np.array([
1058
1207
  [
1059
1208
  1.991e02,
1060
1209
  5.116e02,
1061
- 5.190e01,
1062
- 6.623e02,
1210
+ 5.191e01,
1211
+ 6.624e02,
1063
1212
  1.969e02,
1213
+ 3.669e03,
1214
+ 9.246e03,
1215
+ 1.355e04,
1216
+ 5.733e03,
1217
+ 1.109e03,
1064
1218
  -5.644e04,
1065
1219
  -6.282e04,
1066
1220
  -1.721e04,
1067
1221
  -1.362e04,
1068
1222
  ],
1069
1223
  [
1070
- 1.980e02,
1071
- 5.257e02,
1224
+ 1.981e02,
1225
+ 5.258e02,
1072
1226
  5.190e01,
1073
1227
  6.690e02,
1074
1228
  1.947e02,
1075
- -5.492e04,
1076
- -6.247e04,
1077
- -1.637e04,
1078
- -1.329e04,
1229
+ 3.742e03,
1230
+ 8.480e03,
1231
+ 1.164e04,
1232
+ 5.672e03,
1233
+ 1.701e03,
1234
+ -5.493e04,
1235
+ -6.248e04,
1236
+ -1.638e04,
1237
+ -1.330e04,
1079
1238
  ],
1080
1239
  [
1081
1240
  1.984e02,
1082
- 5.229e02,
1083
- 5.186e01,
1241
+ 5.230e02,
1242
+ 5.187e01,
1084
1243
  6.678e02,
1085
- 1.950e02,
1244
+ 1.951e02,
1245
+ 3.738e03,
1246
+ 8.182e03,
1247
+ 1.172e04,
1248
+ 5.648e03,
1249
+ 1.518e03,
1086
1250
  -5.496e04,
1087
- -6.199e04,
1088
- -1.645e04,
1089
- -1.410e04,
1251
+ -6.200e04,
1252
+ -1.646e04,
1253
+ -1.411e04,
1090
1254
  ],
1091
1255
  [
1092
- 1.984e02,
1256
+ 1.985e02,
1093
1257
  5.234e02,
1094
1258
  5.193e01,
1095
1259
  6.658e02,
1096
- 1.899e02,
1260
+ 1.900e02,
1261
+ 3.852e03,
1262
+ 7.537e03,
1263
+ 1.125e04,
1264
+ 5.648e03,
1265
+ 2.118e03,
1097
1266
  -5.189e04,
1098
- -5.948e04,
1099
- -1.595e04,
1100
- -1.284e04,
1267
+ -5.949e04,
1268
+ -1.596e04,
1269
+ -1.285e04,
1101
1270
  ],
1102
1271
  [
1103
1272
  1.980e02,
1104
- 5.205e02,
1273
+ 5.206e02,
1105
1274
  5.196e01,
1106
- 6.697e02,
1275
+ 6.698e02,
1107
1276
  1.898e02,
1108
- -5.291e04,
1109
- -6.014e04,
1110
- -1.567e04,
1111
- -1.395e04,
1277
+ 3.842e03,
1278
+ 7.094e03,
1279
+ 1.136e04,
1280
+ 5.642e03,
1281
+ 1.926e03,
1282
+ -5.292e04,
1283
+ -6.015e04,
1284
+ -1.568e04,
1285
+ -1.396e04,
1112
1286
  ],
1113
1287
  [
1114
- 1.960e02,
1288
+ 1.961e02,
1115
1289
  5.301e02,
1116
- 5.181e01,
1290
+ 5.182e01,
1117
1291
  6.764e02,
1118
1292
  1.999e02,
1119
- -5.397e04,
1120
- -6.036e04,
1121
- -1.529e04,
1293
+ 3.775e03,
1294
+ 7.215e03,
1295
+ 1.161e04,
1296
+ 5.650e03,
1297
+ 1.137e03,
1298
+ -5.398e04,
1299
+ -6.037e04,
1300
+ -1.530e04,
1122
1301
  -1.132e04,
1123
1302
  ],
1124
1303
  [
1125
1304
  1.988e02,
1126
1305
  5.094e02,
1127
- 5.180e01,
1306
+ 5.181e01,
1128
1307
  6.780e02,
1129
- 1.979e02,
1130
- -5.227e04,
1131
- -5.857e04,
1132
- -1.507e04,
1133
- -1.157e04,
1134
- ],
1135
- [
1136
- 1.991e02,
1308
+ 1.980e02,
1309
+ 3.786e03,
1310
+ 7.502e03,
1311
+ 1.172e04,
1312
+ 5.622e03,
1313
+ 8.346e02,
1314
+ -5.228e04,
1315
+ -5.858e04,
1316
+ -1.508e04,
1317
+ -1.158e04,
1318
+ ],
1319
+ [
1320
+ 1.992e02,
1137
1321
  5.109e02,
1138
- 5.174e01,
1322
+ 5.175e01,
1139
1323
  6.698e02,
1140
- 1.972e02,
1141
- -4.684e04,
1324
+ 1.973e02,
1325
+ 4.175e03,
1326
+ 6.719e03,
1327
+ 1.256e04,
1328
+ 5.602e03,
1329
+ 8.899e02,
1330
+ -4.685e04,
1142
1331
  -5.840e04,
1143
1332
  -1.497e04,
1144
1333
  -1.261e04,
1145
1334
  ],
1146
1335
  [
1147
- 1.986e02,
1336
+ 1.987e02,
1148
1337
  5.084e02,
1149
1338
  5.175e01,
1150
- 6.669e02,
1339
+ 6.670e02,
1151
1340
  1.948e02,
1341
+ 4.056e03,
1342
+ 6.772e03,
1343
+ 1.265e04,
1344
+ 5.566e03,
1345
+ 8.286e02,
1152
1346
  -4.765e04,
1153
- -5.827e04,
1154
- -1.528e04,
1347
+ -5.828e04,
1348
+ -1.529e04,
1155
1349
  -1.282e04,
1156
1350
  ],
1157
1351
  [
1158
1352
  1.986e02,
1159
- 5.123e02,
1353
+ 5.124e02,
1160
1354
  5.178e01,
1161
1355
  6.670e02,
1162
- 1.965e02,
1356
+ 1.966e02,
1357
+ 4.217e03,
1358
+ 6.105e03,
1359
+ 1.231e04,
1360
+ 5.582e03,
1361
+ 5.811e02,
1163
1362
  -4.892e04,
1164
1363
  -5.794e04,
1165
1364
  -1.573e04,
@@ -1168,13 +1367,18 @@ INC_OUTCOME_NON_MEDIA_MAX = np.array([
1168
1367
  ],
1169
1368
  [
1170
1369
  [
1171
- 1.431e03,
1172
- 8.507e01,
1370
+ 1.432e03,
1371
+ 8.508e01,
1173
1372
  2.222e02,
1174
1373
  2.692e02,
1175
1374
  1.240e02,
1375
+ 1.966e03,
1376
+ 2.489e03,
1377
+ 1.009e04,
1378
+ 3.308e03,
1379
+ 8.592e03,
1176
1380
  -5.204e04,
1177
- -1.360e05,
1381
+ -1.361e05,
1178
1382
  3.212e04,
1179
1383
  -6.661e04,
1180
1384
  ],
@@ -1182,99 +1386,144 @@ INC_OUTCOME_NON_MEDIA_MAX = np.array([
1182
1386
  1.432e03,
1183
1387
  8.505e01,
1184
1388
  2.231e02,
1185
- 2.683e02,
1389
+ 2.684e02,
1186
1390
  1.240e02,
1391
+ 1.966e03,
1392
+ 2.492e03,
1393
+ 1.022e04,
1394
+ 3.310e03,
1395
+ 8.431e03,
1187
1396
  -5.287e04,
1188
1397
  -1.356e05,
1189
- 3.217e04,
1190
- -6.557e04,
1398
+ 3.218e04,
1399
+ -6.558e04,
1191
1400
  ],
1192
1401
  [
1193
- 1.430e03,
1402
+ 1.431e03,
1194
1403
  8.500e01,
1195
- 2.248e02,
1196
- 2.675e02,
1404
+ 2.249e02,
1405
+ 2.676e02,
1197
1406
  1.235e02,
1198
- -5.063e04,
1199
- -1.346e05,
1407
+ 1.965e03,
1408
+ 2.493e03,
1409
+ 6.681e03,
1410
+ 3.317e03,
1411
+ 8.151e03,
1412
+ -5.064e04,
1413
+ -1.347e05,
1200
1414
  3.200e04,
1201
1415
  -6.298e04,
1202
1416
  ],
1203
1417
  [
1204
- 1.436e03,
1418
+ 1.437e03,
1205
1419
  8.512e01,
1206
- 2.231e02,
1420
+ 2.232e02,
1207
1421
  2.667e02,
1208
1422
  1.244e02,
1209
- -4.951e04,
1210
- -1.344e05,
1423
+ 1.961e03,
1424
+ 2.509e03,
1425
+ 6.729e03,
1426
+ 3.325e03,
1427
+ 8.230e03,
1428
+ -4.952e04,
1429
+ -1.345e05,
1211
1430
  3.183e04,
1212
1431
  -5.796e04,
1213
1432
  ],
1214
1433
  [
1215
- 1.447e03,
1216
- 8.433e01,
1434
+ 1.448e03,
1435
+ 8.434e01,
1217
1436
  2.226e02,
1218
- 2.650e02,
1437
+ 2.651e02,
1219
1438
  1.254e02,
1439
+ 1.962e03,
1440
+ 2.507e03,
1441
+ 3.038e03,
1442
+ 3.337e03,
1443
+ 7.613e03,
1220
1444
  -4.474e04,
1221
- -1.298e05,
1445
+ -1.299e05,
1222
1446
  3.144e04,
1223
- -5.029e04,
1447
+ -5.030e04,
1224
1448
  ],
1225
1449
  [
1226
1450
  1.430e03,
1227
1451
  8.481e01,
1228
- 2.232e02,
1452
+ 2.233e02,
1229
1453
  2.641e02,
1230
- 1.254e02,
1231
- -4.522e04,
1454
+ 1.255e02,
1455
+ 1.959e03,
1456
+ 2.492e03,
1457
+ 2.489e03,
1458
+ 3.327e03,
1459
+ 7.391e03,
1460
+ -4.523e04,
1232
1461
  -1.365e05,
1233
1462
  3.150e04,
1234
1463
  -4.747e04,
1235
1464
  ],
1236
1465
  [
1237
- 1.457e03,
1466
+ 1.458e03,
1238
1467
  8.494e01,
1239
- 2.258e02,
1468
+ 2.259e02,
1240
1469
  2.621e02,
1241
- 1.247e02,
1470
+ 1.248e02,
1471
+ 1.962e03,
1472
+ 2.488e03,
1473
+ 2.177e03,
1474
+ 3.347e03,
1475
+ 7.023e03,
1242
1476
  -4.530e04,
1243
- -1.340e05,
1244
- 3.177e04,
1477
+ -1.341e05,
1478
+ 3.178e04,
1245
1479
  -4.230e04,
1246
1480
  ],
1247
1481
  [
1248
- 1.456e03,
1482
+ 1.457e03,
1249
1483
  8.486e01,
1250
1484
  2.276e02,
1251
1485
  2.646e02,
1252
- 1.246e02,
1486
+ 1.247e02,
1487
+ 1.964e03,
1488
+ 2.475e03,
1489
+ 2.080e03,
1490
+ 3.344e03,
1491
+ 6.851e03,
1253
1492
  -4.425e04,
1254
- -1.382e05,
1255
- 3.163e04,
1256
- -3.916e04,
1493
+ -1.383e05,
1494
+ 3.164e04,
1495
+ -3.917e04,
1257
1496
  ],
1258
1497
  [
1259
1498
  1.484e03,
1260
1499
  8.516e01,
1261
- 2.252e02,
1262
- 2.668e02,
1263
- 1.241e02,
1264
- -4.339e04,
1500
+ 2.253e02,
1501
+ 2.669e02,
1502
+ 1.242e02,
1503
+ 1.963e03,
1504
+ 2.472e03,
1505
+ 1.917e03,
1506
+ 3.369e03,
1507
+ 6.657e03,
1508
+ -4.340e04,
1265
1509
  -1.430e05,
1266
- 3.144e04,
1510
+ 3.145e04,
1267
1511
  -4.083e04,
1268
1512
  ],
1269
1513
  [
1270
- 1.475e03,
1271
- 8.522e01,
1272
- 2.238e02,
1273
- 2.669e02,
1514
+ 1.476e03,
1515
+ 8.523e01,
1516
+ 2.239e02,
1517
+ 2.670e02,
1274
1518
  1.244e02,
1519
+ 1.962e03,
1520
+ 2.475e03,
1521
+ 1.610e03,
1522
+ 3.361e03,
1523
+ 6.795e03,
1275
1524
  -4.355e04,
1276
1525
  -1.432e05,
1277
- 3.175e04,
1526
+ 3.176e04,
1278
1527
  -4.040e04,
1279
1528
  ],
1280
1529
  ],
@@ -1284,223 +1533,323 @@ INC_OUTCOME_NON_MEDIA_MIX = np.array([
1284
1533
  [
1285
1534
  1.991e02,
1286
1535
  5.116e02,
1287
- 5.190e01,
1288
- 6.623e02,
1536
+ 5.191e01,
1537
+ 6.624e02,
1289
1538
  1.969e02,
1290
- 6.355e04,
1539
+ 3.669e03,
1540
+ 9.246e03,
1541
+ 1.355e04,
1542
+ 5.733e03,
1543
+ 1.109e03,
1544
+ 6.356e04,
1291
1545
  -6.282e04,
1292
1546
  -1.721e04,
1293
- 1.414e04,
1547
+ 1.415e04,
1294
1548
  ],
1295
1549
  [
1296
- 1.980e02,
1297
- 5.257e02,
1550
+ 1.981e02,
1551
+ 5.258e02,
1298
1552
  5.190e01,
1299
1553
  6.690e02,
1300
1554
  1.947e02,
1555
+ 3.742e03,
1556
+ 8.480e03,
1557
+ 1.164e04,
1558
+ 5.672e03,
1559
+ 1.700e03,
1301
1560
  6.186e04,
1302
- -6.247e04,
1303
- -1.637e04,
1561
+ -6.248e04,
1562
+ -1.638e04,
1304
1563
  1.379e04,
1305
1564
  ],
1306
1565
  [
1307
1566
  1.984e02,
1308
- 5.229e02,
1309
- 5.186e01,
1567
+ 5.230e02,
1568
+ 5.187e01,
1310
1569
  6.678e02,
1311
- 1.950e02,
1570
+ 1.951e02,
1571
+ 3.738e03,
1572
+ 8.182e03,
1573
+ 1.172e04,
1574
+ 5.648e03,
1575
+ 1.518e03,
1312
1576
  6.190e04,
1313
- -6.199e04,
1314
- -1.645e04,
1577
+ -6.200e04,
1578
+ -1.646e04,
1315
1579
  1.462e04,
1316
1580
  ],
1317
1581
  [
1318
- 1.984e02,
1582
+ 1.985e02,
1319
1583
  5.234e02,
1320
1584
  5.193e01,
1321
1585
  6.658e02,
1322
- 1.899e02,
1586
+ 1.900e02,
1587
+ 3.852e03,
1588
+ 7.537e03,
1589
+ 1.125e04,
1590
+ 5.648e03,
1591
+ 2.118e03,
1323
1592
  5.850e04,
1324
- -5.948e04,
1325
- -1.595e04,
1326
- 1.331e04,
1593
+ -5.949e04,
1594
+ -1.596e04,
1595
+ 1.332e04,
1327
1596
  ],
1328
1597
  [
1329
1598
  1.980e02,
1330
- 5.205e02,
1599
+ 5.206e02,
1331
1600
  5.196e01,
1332
- 6.697e02,
1601
+ 6.698e02,
1333
1602
  1.898e02,
1334
- 5.965e04,
1335
- -6.014e04,
1336
- -1.567e04,
1337
- 1.445e04,
1603
+ 3.842e03,
1604
+ 7.094e03,
1605
+ 1.136e04,
1606
+ 5.642e03,
1607
+ 1.926e03,
1608
+ 5.966e04,
1609
+ -6.015e04,
1610
+ -1.568e04,
1611
+ 1.446e04,
1338
1612
  ],
1339
1613
  [
1340
- 1.960e02,
1614
+ 1.961e02,
1341
1615
  5.301e02,
1342
- 5.181e01,
1616
+ 5.182e01,
1343
1617
  6.764e02,
1344
1618
  1.999e02,
1345
- 6.082e04,
1346
- -6.036e04,
1347
- -1.529e04,
1348
- 1.176e04,
1619
+ 3.775e03,
1620
+ 7.215e03,
1621
+ 1.161e04,
1622
+ 5.650e03,
1623
+ 1.137e03,
1624
+ 6.083e04,
1625
+ -6.037e04,
1626
+ -1.530e04,
1627
+ 1.177e04,
1349
1628
  ],
1350
1629
  [
1351
1630
  1.988e02,
1352
1631
  5.094e02,
1353
- 5.180e01,
1632
+ 5.181e01,
1354
1633
  6.780e02,
1355
- 1.979e02,
1356
- 5.893e04,
1357
- -5.857e04,
1358
- -1.507e04,
1359
- 1.202e04,
1634
+ 1.980e02,
1635
+ 3.786e03,
1636
+ 7.502e03,
1637
+ 1.172e04,
1638
+ 5.622e03,
1639
+ 8.346e02,
1640
+ 5.894e04,
1641
+ -5.858e04,
1642
+ -1.508e04,
1643
+ 1.203e04,
1360
1644
  ],
1361
1645
  [
1362
- 1.991e02,
1646
+ 1.992e02,
1363
1647
  5.109e02,
1364
- 5.174e01,
1648
+ 5.175e01,
1365
1649
  6.698e02,
1366
- 1.972e02,
1367
- 5.288e04,
1650
+ 1.973e02,
1651
+ 4.175e03,
1652
+ 6.719e03,
1653
+ 1.256e04,
1654
+ 5.602e03,
1655
+ 8.899e02,
1656
+ 5.289e04,
1368
1657
  -5.840e04,
1369
1658
  -1.497e04,
1370
1659
  1.309e04,
1371
1660
  ],
1372
1661
  [
1373
- 1.986e02,
1662
+ 1.987e02,
1374
1663
  5.084e02,
1375
1664
  5.175e01,
1376
- 6.669e02,
1665
+ 6.670e02,
1377
1666
  1.948e02,
1378
- 5.378e04,
1379
- -5.827e04,
1380
- -1.528e04,
1667
+ 4.056e03,
1668
+ 6.772e03,
1669
+ 1.265e04,
1670
+ 5.566e03,
1671
+ 8.286e02,
1672
+ 5.379e04,
1673
+ -5.828e04,
1674
+ -1.529e04,
1381
1675
  1.332e04,
1382
1676
  ],
1383
1677
  [
1384
1678
  1.986e02,
1385
- 5.123e02,
1679
+ 5.124e02,
1386
1680
  5.178e01,
1387
1681
  6.670e02,
1388
- 1.965e02,
1389
- 5.519e04,
1682
+ 1.966e02,
1683
+ 4.217e03,
1684
+ 6.105e03,
1685
+ 1.231e04,
1686
+ 5.582e03,
1687
+ 5.811e02,
1688
+ 5.520e04,
1390
1689
  -5.794e04,
1391
1690
  -1.573e04,
1392
- 1.107e04,
1691
+ 1.108e04,
1393
1692
  ],
1394
1693
  ],
1395
1694
  [
1396
1695
  [
1397
- 1.431e03,
1398
- 8.507e01,
1696
+ 1.432e03,
1697
+ 8.508e01,
1399
1698
  2.222e02,
1400
1699
  2.692e02,
1401
1700
  1.240e02,
1402
- 5.840e04,
1403
- -1.360e05,
1701
+ 1.966e03,
1702
+ 2.489e03,
1703
+ 1.009e04,
1704
+ 3.308e03,
1705
+ 8.592e03,
1706
+ 5.841e04,
1707
+ -1.361e05,
1404
1708
  3.212e04,
1405
- 6.875e04,
1709
+ 6.876e04,
1406
1710
  ],
1407
1711
  [
1408
1712
  1.432e03,
1409
1713
  8.505e01,
1410
1714
  2.231e02,
1411
- 2.683e02,
1715
+ 2.684e02,
1412
1716
  1.240e02,
1717
+ 1.966e03,
1718
+ 2.492e03,
1719
+ 1.022e04,
1720
+ 3.310e03,
1721
+ 8.431e03,
1413
1722
  5.933e04,
1414
1723
  -1.356e05,
1415
- 3.217e04,
1416
- 6.769e04,
1724
+ 3.218e04,
1725
+ 6.770e04,
1417
1726
  ],
1418
1727
  [
1419
- 1.430e03,
1728
+ 1.431e03,
1420
1729
  8.500e01,
1421
- 2.248e02,
1422
- 2.675e02,
1730
+ 2.249e02,
1731
+ 2.676e02,
1423
1732
  1.235e02,
1733
+ 1.965e03,
1734
+ 2.493e03,
1735
+ 6.681e03,
1736
+ 3.317e03,
1737
+ 8.151e03,
1424
1738
  5.684e04,
1425
- -1.346e05,
1739
+ -1.347e05,
1426
1740
  3.200e04,
1427
1741
  6.492e04,
1428
1742
  ],
1429
1743
  [
1430
- 1.436e03,
1744
+ 1.437e03,
1431
1745
  8.512e01,
1432
- 2.231e02,
1746
+ 2.232e02,
1433
1747
  2.667e02,
1434
1748
  1.244e02,
1749
+ 1.961e03,
1750
+ 2.509e03,
1751
+ 6.729e03,
1752
+ 3.325e03,
1753
+ 8.230e03,
1435
1754
  5.558e04,
1436
- -1.344e05,
1755
+ -1.345e05,
1437
1756
  3.183e04,
1438
1757
  5.967e04,
1439
1758
  ],
1440
1759
  [
1441
- 1.447e03,
1442
- 8.433e01,
1760
+ 1.448e03,
1761
+ 8.434e01,
1443
1762
  2.226e02,
1444
- 2.650e02,
1763
+ 2.651e02,
1445
1764
  1.254e02,
1765
+ 1.962e03,
1766
+ 2.507e03,
1767
+ 3.038e03,
1768
+ 3.337e03,
1769
+ 7.613e03,
1446
1770
  5.029e04,
1447
- -1.298e05,
1771
+ -1.299e05,
1448
1772
  3.144e04,
1449
- 5.162e04,
1773
+ 5.163e04,
1450
1774
  ],
1451
1775
  [
1452
1776
  1.430e03,
1453
1777
  8.481e01,
1454
- 2.232e02,
1778
+ 2.233e02,
1455
1779
  2.641e02,
1456
- 1.254e02,
1780
+ 1.255e02,
1781
+ 1.959e03,
1782
+ 2.492e03,
1783
+ 2.489e03,
1784
+ 3.327e03,
1785
+ 7.391e03,
1457
1786
  5.083e04,
1458
1787
  -1.365e05,
1459
1788
  3.150e04,
1460
1789
  4.894e04,
1461
1790
  ],
1462
1791
  [
1463
- 1.457e03,
1792
+ 1.458e03,
1464
1793
  8.494e01,
1465
- 2.258e02,
1794
+ 2.259e02,
1466
1795
  2.621e02,
1467
- 1.247e02,
1468
- 5.094e04,
1469
- -1.340e05,
1470
- 3.177e04,
1796
+ 1.248e02,
1797
+ 1.962e03,
1798
+ 2.488e03,
1799
+ 2.177e03,
1800
+ 3.347e03,
1801
+ 7.023e03,
1802
+ 5.095e04,
1803
+ -1.341e05,
1804
+ 3.178e04,
1471
1805
  4.367e04,
1472
1806
  ],
1473
1807
  [
1474
- 1.456e03,
1808
+ 1.457e03,
1475
1809
  8.486e01,
1476
1810
  2.276e02,
1477
1811
  2.646e02,
1478
- 1.246e02,
1479
- 4.977e04,
1480
- -1.382e05,
1481
- 3.163e04,
1812
+ 1.247e02,
1813
+ 1.964e03,
1814
+ 2.475e03,
1815
+ 2.080e03,
1816
+ 3.344e03,
1817
+ 6.851e03,
1818
+ 4.978e04,
1819
+ -1.383e05,
1820
+ 3.164e04,
1482
1821
  4.030e04,
1483
1822
  ],
1484
1823
  [
1485
1824
  1.484e03,
1486
1825
  8.516e01,
1487
- 2.252e02,
1488
- 2.668e02,
1489
- 1.241e02,
1826
+ 2.253e02,
1827
+ 2.669e02,
1828
+ 1.242e02,
1829
+ 1.963e03,
1830
+ 2.472e03,
1831
+ 1.917e03,
1832
+ 3.369e03,
1833
+ 6.657e03,
1490
1834
  4.880e04,
1491
1835
  -1.430e05,
1492
- 3.144e04,
1836
+ 3.145e04,
1493
1837
  4.206e04,
1494
1838
  ],
1495
1839
  [
1496
- 1.475e03,
1497
- 8.522e01,
1498
- 2.238e02,
1499
- 2.669e02,
1840
+ 1.476e03,
1841
+ 8.523e01,
1842
+ 2.239e02,
1843
+ 2.670e02,
1500
1844
  1.244e02,
1845
+ 1.962e03,
1846
+ 2.475e03,
1847
+ 1.610e03,
1848
+ 3.361e03,
1849
+ 6.795e03,
1501
1850
  4.895e04,
1502
1851
  -1.432e05,
1503
- 3.175e04,
1852
+ 3.176e04,
1504
1853
  4.163e04,
1505
1854
  ],
1506
1855
  ],
@@ -1511,41 +1860,61 @@ INC_OUTCOME_NON_MEDIA_FIXED = np.array([
1511
1860
  1.991e02,
1512
1861
  5.116e02,
1513
1862
  5.191e01,
1514
- 6.623e02,
1863
+ 6.624e02,
1515
1864
  1.969e02,
1516
- -2.250e05,
1865
+ 3.669e03,
1866
+ 9.246e03,
1867
+ 1.355e04,
1868
+ 5.733e03,
1869
+ 1.109e03,
1870
+ -2.251e05,
1517
1871
  1.676e04,
1518
- 1.058e04,
1519
- -4.475e03,
1872
+ 1.059e04,
1873
+ -4.476e03,
1520
1874
  ],
1521
1875
  [
1522
- 1.980e02,
1523
- 5.257e02,
1876
+ 1.981e02,
1877
+ 5.258e02,
1524
1878
  5.190e01,
1525
1879
  6.690e02,
1526
1880
  1.947e02,
1527
- -2.190e05,
1528
- 1.669e04,
1529
- 1.005e04,
1881
+ 3.742e03,
1882
+ 8.480e03,
1883
+ 1.164e04,
1884
+ 5.672e03,
1885
+ 1.700e03,
1886
+ -2.191e05,
1887
+ 1.670e04,
1888
+ 1.006e04,
1530
1889
  -4.375e03,
1531
1890
  ],
1532
1891
  [
1533
1892
  1.984e02,
1534
- 5.229e02,
1535
- 5.186e01,
1893
+ 5.230e02,
1894
+ 5.187e01,
1536
1895
  6.678e02,
1537
- 1.950e02,
1538
- -2.191e05,
1539
- 1.654e04,
1896
+ 1.951e02,
1897
+ 3.738e03,
1898
+ 8.182e03,
1899
+ 1.172e04,
1900
+ 5.648e03,
1901
+ 1.518e03,
1902
+ -2.192e05,
1903
+ 1.655e04,
1540
1904
  1.011e04,
1541
1905
  -4.644e03,
1542
1906
  ],
1543
1907
  [
1544
- 1.984e02,
1908
+ 1.985e02,
1545
1909
  5.234e02,
1546
1910
  5.193e01,
1547
1911
  6.658e02,
1548
- 1.899e02,
1912
+ 1.900e02,
1913
+ 3.852e03,
1914
+ 7.537e03,
1915
+ 1.125e04,
1916
+ 5.648e03,
1917
+ 2.118e03,
1549
1918
  -2.070e05,
1550
1919
  1.575e04,
1551
1920
  9.798e03,
@@ -1553,180 +1922,260 @@ INC_OUTCOME_NON_MEDIA_FIXED = np.array([
1553
1922
  ],
1554
1923
  [
1555
1924
  1.980e02,
1556
- 5.205e02,
1925
+ 5.206e02,
1557
1926
  5.196e01,
1558
- 6.697e02,
1927
+ 6.698e02,
1559
1928
  1.898e02,
1929
+ 3.842e03,
1930
+ 7.094e03,
1931
+ 1.136e04,
1932
+ 5.642e03,
1933
+ 1.926e03,
1560
1934
  -2.111e05,
1561
- 1.595e04,
1562
- 9.621e03,
1935
+ 1.596e04,
1936
+ 9.622e03,
1563
1937
  -4.596e03,
1564
1938
  ],
1565
1939
  [
1566
- 1.960e02,
1940
+ 1.961e02,
1567
1941
  5.301e02,
1568
- 5.181e01,
1942
+ 5.182e01,
1569
1943
  6.764e02,
1570
1944
  1.999e02,
1945
+ 3.775e03,
1946
+ 7.215e03,
1947
+ 1.161e04,
1948
+ 5.650e03,
1949
+ 1.137e03,
1571
1950
  -2.153e05,
1572
1951
  1.596e04,
1573
1952
  9.384e03,
1574
- -3.718e03,
1953
+ -3.719e03,
1575
1954
  ],
1576
1955
  [
1577
1956
  1.988e02,
1578
1957
  5.094e02,
1579
- 5.180e01,
1958
+ 5.181e01,
1580
1959
  6.780e02,
1581
- 1.979e02,
1582
- -2.085e05,
1583
- 1.539e04,
1584
- 9.246e03,
1960
+ 1.980e02,
1961
+ 3.786e03,
1962
+ 7.502e03,
1963
+ 1.172e04,
1964
+ 5.622e03,
1965
+ 8.346e02,
1966
+ -2.086e05,
1967
+ 1.540e04,
1968
+ 9.247e03,
1585
1969
  -3.802e03,
1586
1970
  ],
1587
1971
  [
1588
- 1.991e02,
1972
+ 1.992e02,
1589
1973
  5.109e02,
1590
- 5.174e01,
1974
+ 5.175e01,
1591
1975
  6.698e02,
1592
- 1.972e02,
1976
+ 1.973e02,
1977
+ 4.175e03,
1978
+ 6.719e03,
1979
+ 1.256e04,
1980
+ 5.602e03,
1981
+ 8.899e02,
1593
1982
  -1.870e05,
1594
- 1.525e04,
1983
+ 1.526e04,
1595
1984
  9.182e03,
1596
- -4.143e03,
1985
+ -4.144e03,
1597
1986
  ],
1598
1987
  [
1599
- 1.986e02,
1988
+ 1.987e02,
1600
1989
  5.084e02,
1601
1990
  5.175e01,
1602
- 6.669e02,
1991
+ 6.670e02,
1603
1992
  1.948e02,
1993
+ 4.056e03,
1994
+ 6.772e03,
1995
+ 1.265e04,
1996
+ 5.666e03,
1997
+ 8.286e02,
1604
1998
  -1.902e05,
1605
- 1.520e04,
1999
+ 1.521e04,
1606
2000
  9.380e03,
1607
- -4.212e03,
2001
+ -4.213e03,
1608
2002
  ],
1609
2003
  [
1610
2004
  1.986e02,
1611
- 5.123e02,
2005
+ 5.124e02,
1612
2006
  5.178e01,
1613
2007
  6.670e02,
1614
- 1.965e02,
2008
+ 1.966e02,
2009
+ 4.217e03,
2010
+ 6.105e03,
2011
+ 1.231e04,
2012
+ 5.582e03,
2013
+ 5.811e02,
1615
2014
  -1.952e05,
1616
- 1.512e04,
2015
+ 1.513e04,
1617
2016
  9.660e03,
1618
- -3.480e03,
2017
+ -3.481e03,
1619
2018
  ],
1620
2019
  ],
1621
2020
  [
1622
2021
  [
1623
- 1.431e03,
1624
- 8.507e01,
2022
+ 1.432e03,
2023
+ 8.508e01,
1625
2024
  2.222e02,
1626
2025
  2.692e02,
1627
2026
  1.240e02,
1628
- -2.072e05,
2027
+ 1.966e03,
2028
+ 2.489e03,
2029
+ 1.009e04,
2030
+ 3.308e03,
2031
+ 8.592e03,
2032
+ -2.073e05,
1629
2033
  4.133e04,
1630
- -2.037e04,
2034
+ -2.038e04,
1631
2035
  -2.202e04,
1632
2036
  ],
1633
2037
  [
1634
2038
  1.432e03,
1635
2039
  8.505e01,
1636
2040
  2.231e02,
1637
- 2.683e02,
2041
+ 2.684e02,
1638
2042
  1.240e02,
1639
- -2.105e05,
1640
- 4.117e04,
2043
+ 1.966e03,
2044
+ 2.492e03,
2045
+ 1.022e04,
2046
+ 3.310e03,
2047
+ 8.431e03,
2048
+ -2.106e05,
2049
+ 4.118e04,
1641
2050
  -2.041e04,
1642
2051
  -2.168e04,
1643
2052
  ],
1644
2053
  [
1645
- 1.430e03,
2054
+ 1.431e03,
1646
2055
  8.500e01,
1647
- 2.248e02,
1648
- 2.675e02,
2056
+ 2.249e02,
2057
+ 2.676e02,
1649
2058
  1.235e02,
1650
- -2.016e05,
1651
- 4.092e04,
2059
+ 1.965e03,
2060
+ 2.493e03,
2061
+ 6.681e03,
2062
+ 3.317e03,
2063
+ 8.151e03,
2064
+ -2.017e05,
2065
+ 4.093e04,
1652
2066
  -2.030e04,
1653
2067
  -2.085e04,
1654
2068
  ],
1655
2069
  [
1656
- 1.436e03,
2070
+ 1.437e03,
1657
2071
  8.512e01,
1658
- 2.231e02,
2072
+ 2.232e02,
1659
2073
  2.667e02,
1660
2074
  1.244e02,
2075
+ 1.961e03,
2076
+ 2.509e03,
2077
+ 6.729e03,
2078
+ 3.325e03,
2079
+ 8.230e03,
1661
2080
  -1.972e05,
1662
2081
  4.087e04,
1663
- -2.019e04,
2082
+ -2.020e04,
1664
2083
  -1.921e04,
1665
2084
  ],
1666
2085
  [
1667
- 1.447e03,
1668
- 8.433e01,
2086
+ 1.448e03,
2087
+ 8.434e01,
1669
2088
  2.226e02,
1670
- 2.650e02,
2089
+ 2.651e02,
1671
2090
  1.254e02,
2091
+ 1.962e03,
2092
+ 2.507e03,
2093
+ 3.038e03,
2094
+ 3.337e03,
2095
+ 7.613e03,
1672
2096
  -1.783e05,
1673
2097
  3.951e04,
1674
- -1.994e04,
2098
+ -1.995e04,
1675
2099
  -1.672e04,
1676
2100
  ],
1677
2101
  [
1678
2102
  1.430e03,
1679
2103
  8.481e01,
1680
- 2.232e02,
2104
+ 2.233e02,
1681
2105
  2.641e02,
1682
- 1.254e02,
2106
+ 1.255e02,
2107
+ 1.959e03,
2108
+ 2.492e03,
2109
+ 2.489e03,
2110
+ 3.327e03,
2111
+ 7.391e03,
1683
2112
  -1.802e05,
1684
- 4.147e04,
1685
- -1.998e04,
2113
+ 4.148e04,
2114
+ -1.999e04,
1686
2115
  -1.571e04,
1687
2116
  ],
1688
2117
  [
1689
- 1.457e03,
2118
+ 1.458e03,
1690
2119
  8.494e01,
1691
- 2.258e02,
2120
+ 2.259e02,
1692
2121
  2.621e02,
1693
- 1.247e02,
1694
- -1.805e05,
1695
- 4.070e04,
1696
- -2.015e04,
2122
+ 1.248e02,
2123
+ 1.962e03,
2124
+ 2.488e03,
2125
+ 2.177e03,
2126
+ 3.347e03,
2127
+ 7.023e03,
2128
+ -1.806e05,
2129
+ 4.071e04,
2130
+ -2.016e04,
1697
2131
  -1.398e04,
1698
2132
  ],
1699
2133
  [
1700
- 1.456e03,
2134
+ 1.457e03,
1701
2135
  8.486e01,
1702
2136
  2.276e02,
1703
2137
  2.646e02,
1704
- 1.246e02,
2138
+ 1.247e02,
2139
+ 1.964e03,
2140
+ 2.475e03,
2141
+ 2.080e03,
2142
+ 3.344e03,
2143
+ 6.851e03,
1705
2144
  -1.764e05,
1706
- 4.198e04,
1707
- -2.006e04,
2145
+ 4.199e04,
2146
+ -2.007e04,
1708
2147
  -1.299e04,
1709
2148
  ],
1710
2149
  [
1711
2150
  1.484e03,
1712
2151
  8.516e01,
1713
- 2.252e02,
1714
- 2.668e02,
1715
- 1.241e02,
1716
- -1.729e05,
1717
- 4.340e04,
2152
+ 2.253e02,
2153
+ 2.669e02,
2154
+ 1.242e02,
2155
+ 1.963e03,
2156
+ 2.472e03,
2157
+ 1.917e03,
2158
+ 3.369e03,
2159
+ 6.657e03,
2160
+ -1.730e05,
2161
+ 4.341e04,
1718
2162
  -1.995e04,
1719
- -1.352e04,
2163
+ -1.353e04,
1720
2164
  ],
1721
2165
  [
1722
- 1.475e03,
1723
- 8.522e01,
1724
- 2.238e02,
1725
- 2.669e02,
2166
+ 1.476e03,
2167
+ 8.523e01,
2168
+ 2.239e02,
2169
+ 2.670e02,
1726
2170
  1.244e02,
1727
- -1.735e05,
1728
- 4.349e04,
1729
- -2.014e04,
2171
+ 1.962e03,
2172
+ 2.475e03,
2173
+ 1.610e03,
2174
+ 3.361e03,
2175
+ 6.795e03,
2176
+ -1.736e05,
2177
+ 4.350e04,
2178
+ -2.015e04,
1730
2179
  -1.338e04,
1731
2180
  ],
1732
2181
  ],
@@ -2023,40 +2472,40 @@ SAMPLE_ROI_NEW_DATA = np.array([
2023
2472
  ])
2024
2473
  SAMPLE_ROI_KPI = np.array([
2025
2474
  [
2026
- [0.4906, 0.3487],
2027
- [0.3282, 0.3426],
2028
- [0.2221, 0.0853],
2029
- [1.1906, 0.6280],
2475
+ [0.4871, 0.3487],
2476
+ [0.3269, 0.3426],
2477
+ [0.2216, 0.0854],
2478
+ [1.1747, 0.6280],
2030
2479
  ],
2031
2480
  [
2032
- [0.8133, 0.4731],
2033
- [0.7389, 0.4629],
2034
- [0.0629, 0.1878],
2035
- [2.1344, 0.7750],
2481
+ [0.8100, 0.4630],
2482
+ [0.7256, 0.4531],
2483
+ [0.0615, 0.1878],
2484
+ [2.1327, 0.7543],
2036
2485
  ],
2037
2486
  [
2038
- [0.8685, 0.1409],
2039
- [0.5808, 0.1394],
2040
- [0.3255, 0.0668],
2041
- [2.3597, 0.2199],
2487
+ [0.8659, 0.1410],
2488
+ [0.5803, 0.1395],
2489
+ [0.3249, 0.0669],
2490
+ [2.3587, 0.2200],
2042
2491
  ],
2043
2492
  [
2044
- [0.7637, 0.3663],
2493
+ [0.7501, 0.3663],
2045
2494
  [0.4951, 0.3666],
2046
2495
  [0.1475, 0.1522],
2047
- [2.1481, 0.5796],
2496
+ [2.1049, 0.5796],
2048
2497
  ],
2049
2498
  [
2050
- [0.4124, 0.5070],
2051
- [0.2880, 0.5012],
2052
- [0.1503, 0.1791],
2053
- [0.9788, 0.8474],
2499
+ [0.4109, 0.5031],
2500
+ [0.2819, 0.4974],
2501
+ [0.1502, 0.1760],
2502
+ [0.9780, 0.8424],
2054
2503
  ],
2055
2504
  [
2056
- [0.6623, 0.3717],
2057
- [0.5570, 0.3705],
2058
- [0.2228, 0.2187],
2059
- [1.3418, 0.5257],
2505
+ [0.6575, 0.3689],
2506
+ [0.5563, 0.3677],
2507
+ [0.2207, 0.2181],
2508
+ [1.3367, 0.5207],
2060
2509
  ],
2061
2510
  ])
2062
2511
  SAMPLE_MROI = np.array([
@@ -2134,34 +2583,34 @@ SAMPLE_MROI_NEW_DATA = np.array([
2134
2583
  ])
2135
2584
  SAMPLE_MROI_KPI = np.array([
2136
2585
  [
2137
- [0.2664, 0.2965],
2138
- [0.1641, 0.2913],
2139
- [0.1021, 0.0716],
2140
- [0.7221, 0.5351],
2586
+ [0.2661, 0.2965],
2587
+ [0.1646, 0.2913],
2588
+ [0.1024, 0.0717],
2589
+ [0.7193, 0.5351],
2141
2590
  ],
2142
2591
  [
2143
- [0.3500, 0.3783],
2144
- [0.2839, 0.3691],
2145
- [0.0352, 0.1035],
2146
- [0.7852, 0.6678],
2592
+ [0.3498, 0.3712],
2593
+ [0.2858, 0.3622],
2594
+ [0.0349, 0.1035],
2595
+ [0.7861, 0.6531],
2147
2596
  ],
2148
2597
  [
2149
- [0.3967, 0.1029],
2150
- [0.2331, 0.1018],
2151
- [0.1576, 0.0432],
2152
- [1.0333, 0.1662],
2598
+ [0.3978, 0.1030],
2599
+ [0.2352, 0.1018],
2600
+ [0.1582, 0.0433],
2601
+ [1.0359, 0.1662],
2153
2602
  ],
2154
2603
  [
2155
- [0.3016, 0.0377],
2156
- [0.1964, 0.0379],
2157
- [0.0734, 0.0304],
2158
- [0.7780, 0.0443],
2604
+ [0.2954, 0.0378],
2605
+ [0.1965, 0.0379],
2606
+ [0.0735, 0.0305],
2607
+ [0.7590, 0.0444],
2159
2608
  ],
2160
2609
  [
2161
- [0.1587, 0.0489],
2162
- [0.1065, 0.0487],
2163
- [0.0647, 0.0459],
2164
- [0.3297, 0.0525],
2610
+ [0.1582, 0.0485],
2611
+ [0.1051, 0.0483],
2612
+ [0.0648, 0.0452],
2613
+ [0.3298, 0.0523],
2165
2614
  ],
2166
2615
  [
2167
2616
  # mROI metric don't make sense for "All Channels".
@@ -2327,34 +2776,34 @@ SAMPLE_EFFECTIVENESS_NEW_DATA = np.array([
2327
2776
  ])
2328
2777
  SAMPLE_EFFECTIVENESS_KPI = np.array([
2329
2778
  [
2330
- [9.9277e-02, 7.0560e-02],
2331
- [6.6422e-02, 6.9333e-02],
2332
- [4.4954e-02, 1.7279e-02],
2333
- [2.4091e-01, 1.2707e-01],
2779
+ [9.8568e-02, 7.0555e-02],
2780
+ [6.6142e-02, 6.9328e-02],
2781
+ [4.4847e-02, 1.7279e-02],
2782
+ [2.3770e-01, 1.2707e-01],
2334
2783
  ],
2335
2784
  [
2336
- [1.6482e-01, 9.5891e-02],
2337
- [1.4974e-01, 9.3827e-02],
2338
- [1.2753e-02, 3.8064e-02],
2339
- [4.3255e-01, 1.5707e-01],
2785
+ [1.6415e-01, 9.3838e-02],
2786
+ [1.4704e-01, 9.1830e-02],
2787
+ [1.2472e-02, 3.8064e-02],
2788
+ [4.3220e-01, 1.5287e-01],
2340
2789
  ],
2341
2790
  [
2342
- [1.7448e-01, 2.8321e-02],
2343
- [1.1669e-01, 2.8016e-02],
2344
- [6.5400e-02, 1.3436e-02],
2345
- [4.7407e-01, 4.4187e-02],
2791
+ [1.7396e-01, 2.8322e-02],
2792
+ [1.1659e-01, 2.8017e-02],
2793
+ [6.5271e-02, 1.3437e-02],
2794
+ [4.7387e-01, 4.4188e-02],
2346
2795
  ],
2347
2796
  [
2348
- [6.3538e-05, 3.0473e-05],
2349
- [4.1191e-05, 3.0498e-05],
2350
- [1.2272e-05, 1.2665e-05],
2351
- [1.7870e-04, 4.8219e-05],
2797
+ [6.2398e-05, 3.0473e-05],
2798
+ [4.1188e-05, 3.0497e-05],
2799
+ [1.2273e-05, 1.2665e-05],
2800
+ [1.7510e-04, 4.8218e-05],
2352
2801
  ],
2353
2802
  [
2354
- [3.3949e-05, 4.1739e-05],
2355
- [2.3709e-05, 4.1265e-05],
2356
- [1.2372e-05, 1.4746e-05],
2357
- [8.0578e-05, 6.9762e-05],
2803
+ [3.3829e-05, 4.1411e-05],
2804
+ [2.3207e-05, 4.0949e-05],
2805
+ [1.2364e-05, 1.4490e-05],
2806
+ [8.0510e-05, 6.9342e-05],
2358
2807
  ],
2359
2808
  [
2360
2809
  # Effectiveness metric don't make sense for "All Channels".
@@ -2451,40 +2900,40 @@ SAMPLE_INCREMENTAL_OUTCOME_NEW_DATA = np.array([
2451
2900
  ])
2452
2901
  SAMPLE_INC_OUTCOME_KPI = np.array([
2453
2902
  [
2454
- [144.1503, 102.4545],
2455
- [96.4451, 100.6727],
2456
- [65.2740, 25.0893],
2457
- [349.8139, 184.5193],
2903
+ [143.1201, 102.4453],
2904
+ [96.0377, 100.6640],
2905
+ [65.1175, 25.0889],
2906
+ [345.1349, 184.4996],
2458
2907
  ],
2459
2908
  [
2460
- [226.7942, 131.9462],
2461
- [206.0485, 129.1067],
2462
- [17.5491, 52.3763],
2463
- [595.1923, 216.1331],
2909
+ [225.8697, 129.1217],
2910
+ [202.3337, 126.3587],
2911
+ [17.1622, 52.3764],
2912
+ [594.7014, 210.3510],
2464
2913
  ],
2465
2914
  [
2466
- [222.1169, 36.0536],
2467
- [148.5511, 35.6655],
2468
- [83.2549, 17.1049],
2469
- [603.4962, 56.2512],
2915
+ [221.4451, 36.0536],
2916
+ [148.4142, 35.6656],
2917
+ [83.0902, 17.1049],
2918
+ [603.2330, 56.2512],
2470
2919
  ],
2471
2920
  [
2472
- [207.8744, 99.6991],
2473
- [134.7621, 99.7785],
2474
- [40.1513, 41.4353],
2475
- [584.6558, 157.7549],
2921
+ [204.1436, 99.6966],
2922
+ [134.7526, 99.7761],
2923
+ [40.1513, 41.4349],
2924
+ [572.8697, 157.7504],
2476
2925
  ],
2477
2926
  [
2478
- [118.7230, 145.9658],
2479
- [82.9160, 144.3085],
2480
- [43.2690, 51.5697],
2481
- [281.7918, 243.9656],
2927
+ [118.3028, 144.8179],
2928
+ [81.1554, 143.2008],
2929
+ [43.2393, 50.6729],
2930
+ [281.5504, 242.4946],
2482
2931
  ],
2483
2932
  [
2484
- [919.6607, 516.1203],
2485
- [773.4373, 514.5176],
2486
- [309.4688, 303.7702],
2487
- [1863.1441, 729.9609],
2933
+ [912.8812, 512.1353],
2934
+ [772.4465, 510.5077],
2935
+ [306.3899, 302.8722],
2936
+ [1855.9568, 722.9710],
2488
2937
  ],
2489
2938
  ])
2490
2939
  SAMPLE_BASELINE_EXPECTED_OUTCOME = np.array([
@@ -2587,18 +3036,18 @@ SAMPLE_BASELINE_PCT_OF_CONTRIBUTION_NON_PAID = np.array([
2587
3036
  [-1.204522e-02, -4.079909e02],
2588
3037
  [1.350970e-02, -2.750774e02],
2589
3038
  ])
2590
- ADSTOCK_DECAY_CI_HI = np.array([1.0, 1.0, 0.8658, 0.9709, 0.7496])
2591
- ADSTOCK_DECAY_CI_LO = np.array([1.0, 1.0, 0.8328, 0.5749, 0.6936])
2592
- ADSTOCK_DECAY_MEAN = np.array([1.0, 1.0, 0.8493, 0.8630, 0.7215])
3039
+ ADSTOCK_DECAY_CI_HI = np.array([1.0, 1.0, 0.9520, 0.9574, 0.9064])
3040
+ ADSTOCK_DECAY_CI_LO = np.array([1.0, 1.0, 0.9206, 0.5902, 0.8476])
3041
+ ADSTOCK_DECAY_MEAN = np.array([1.0, 1.0, 0.9365, 0.8008, 0.8773])
2593
3042
  ORGANIC_ADSTOCK_DECAY_CI_HI = np.array([1.0, 0.9636, 0.9291, 0.8962, 0.8650])
2594
3043
  ORGANIC_ADSTOCK_DECAY_CI_LO = np.array([1.0, 0.6623, 0.4394, 0.2920, 0.1944])
2595
3044
  ORGANIC_ADSTOCK_DECAY_MEAN = np.array([1.0, 0.8076, 0.6633, 0.5537, 0.4693])
2596
3045
  ORGANIC_RF_ADSTOCK_DECAY_CI_HI = np.array([1.0, 0.9208, 0.8482, 0.781, 0.7202])
2597
3046
  ORGANIC_RF_ADSTOCK_DECAY_CI_LO = np.array([1.0, 0.6674, 0.4460, 0.2985, 0.2001])
2598
3047
  ORGANIC_RF_ADSTOCK_DECAY_MEAN = np.array([1.0, 0.8344, 0.7042, 0.6001, 0.5155])
2599
- HILL_CURVES_CI_HI = np.array([0.0, 0.0, 0.00098, 0.00895, 0.00195])
2600
- HILL_CURVES_CI_LO = np.array([0.0, 0.0, 0.00085, 0.00322, 0.00169])
2601
- HILL_CURVES_MEAN = np.array([0.0, 0.0, 0.00091, 0.00606, 0.00183])
3048
+ HILL_CURVES_CI_HI = np.array([0.0, 0.0, 0.00106, 0.01789, 0.00212])
3049
+ HILL_CURVES_CI_LO = np.array([0.0, 0.0, 0.00082, 0.00303, 0.00164])
3050
+ HILL_CURVES_MEAN = np.array([0.0, 0.0, 0.00094, 0.00821, 0.00188])
2602
3051
  HILL_CURVES_COUNT_HISTOGRAM = np.array(
2603
3052
  [34.55127961, 34.55127961, 51.82691941, 51.82691941, 17.2756398]
2604
3053
  )