google-meridian 1.1.5__py3-none-any.whl → 1.1.6__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: google-meridian
3
- Version: 1.1.5
3
+ Version: 1.1.6
4
4
  Summary: Google's open source mixed marketing model library, helps you understand your return on investment and direct your ad spend with confidence.
5
5
  Author-email: The Meridian Authors <no-reply@google.com>
6
6
  License:
@@ -397,7 +397,7 @@ To cite this repository:
397
397
  author = {Google Meridian Marketing Mix Modeling Team},
398
398
  title = {Meridian: Marketing Mix Modeling},
399
399
  url = {https://github.com/google/meridian},
400
- version = {1.1.5},
400
+ version = {1.1.6},
401
401
  year = {2025},
402
402
  }
403
403
  ```
@@ -1,7 +1,7 @@
1
- google_meridian-1.1.5.dist-info/licenses/LICENSE,sha256=WNHhf_5RCaeuKWyq_K39vmp9F28LxKsB4SpomwSZ2L0,11357
1
+ google_meridian-1.1.6.dist-info/licenses/LICENSE,sha256=WNHhf_5RCaeuKWyq_K39vmp9F28LxKsB4SpomwSZ2L0,11357
2
2
  meridian/__init__.py,sha256=XROKwHNVQvEa371QCXAHik5wN_YKObOdJQX9bJ2c4M4,832
3
3
  meridian/constants.py,sha256=YE5h3qKH8e2lI3d9vWxc5TsSHUm5bHcz1Lq-2LurJnw,17204
4
- meridian/version.py,sha256=PWF9Cv3V4ldFs0FOhaSlKgPdbBYCdiiaNLeQLulJrpE,644
4
+ meridian/version.py,sha256=Po1LKdWVufT1_bpzSPvWjGDDYioK0kiMOjW4fb3VUyM,644
5
5
  meridian/analysis/__init__.py,sha256=nGBYz7k9FVdadO_WVGMKJcfq7Yy_TuuP8zgee4i9pSA,836
6
6
  meridian/analysis/analyzer.py,sha256=L7XyCTd4e_Bqfi8a0bW1WaXjH2ZvSVTPs0VP12a209c,206559
7
7
  meridian/analysis/formatter.py,sha256=ENIdR1CRiaVqIGEXx1HcnsA4ewgDD_nhsYCweJAThaw,7270
@@ -36,12 +36,12 @@ meridian/model/knots.py,sha256=KPEgnb-UdQQ4QBugOYEke-zBgEghgTmeCMoeiJ30meY,8054
36
36
  meridian/model/media.py,sha256=3BaPX8xYAFMEvf0mz3mBSCIDWViIs7M218nrCklc6Fk,14099
37
37
  meridian/model/model.py,sha256=XxVJaJtfUnCWI6gM7hWC6yC64yXECi91r1LHP2B23SQ,61216
38
38
  meridian/model/model_test_data.py,sha256=hDDTEzm72LknW9c5E_dNsy4Mm4Tfs6AirhGf_QxykFs,15552
39
- meridian/model/posterior_sampler.py,sha256=K49zWTTelME2rL1JLeFAdMPzL0OwrBvyAXA3oR-kgSI,27801
39
+ meridian/model/posterior_sampler.py,sha256=aOYMu4R1ltak3VC0scjrAPig5ExSjkpagk4pjmxKeh4,27884
40
40
  meridian/model/prior_distribution.py,sha256=1Qh7jQ2py7tdhLPDyeQzZ0doU6NhQRVaA0lGZNnOVZA,42554
41
41
  meridian/model/prior_sampler.py,sha256=by41y2g56jEeJ1cxJi_s45uaUBySgf7wtL5u7-GpVE8,23325
42
42
  meridian/model/spec.py,sha256=0HNiMQUWQpYvWYOZr1_fj2ah8tH-bEyfEjoqgBZ9Lc0,18049
43
43
  meridian/model/transformers.py,sha256=nRjzq1fQG0ypldxboM7Gqok6WSAXAS1witRXoAzeH9Q,7763
44
- google_meridian-1.1.5.dist-info/METADATA,sha256=FfS9XdL_j8tmV1xBvGavFjNJTdivXFGnQy23JLuTcuY,22201
45
- google_meridian-1.1.5.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
46
- google_meridian-1.1.5.dist-info/top_level.txt,sha256=nwaCebZvvU34EopTKZsjK0OMTFjVnkf4FfnBN_TAc0g,9
47
- google_meridian-1.1.5.dist-info/RECORD,,
44
+ google_meridian-1.1.6.dist-info/METADATA,sha256=HV2L4mWfmMtz4hTWOEsVJYbTQ-aGa_0DeIr45ScZQEw,22201
45
+ google_meridian-1.1.6.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
46
+ google_meridian-1.1.6.dist-info/top_level.txt,sha256=nwaCebZvvU34EopTKZsjK0OMTFjVnkf4FfnBN_TAc0g,9
47
+ google_meridian-1.1.6.dist-info/RECORD,,
@@ -528,7 +528,7 @@ class PosteriorMCMCSampler:
528
528
  be a positive integer. For more information, see `tf.while_loop`.
529
529
  seed: An `int32[2]` Tensor or a Python list or tuple of 2 `int`s, which
530
530
  will be treated as stateless seeds; or a Python `int` or `None`, which
531
- will be treated as stateful seeds. See [tfp.random.sanitize_seed]
531
+ will be converted into a stateless seed. See [tfp.random.sanitize_seed]
532
532
  (https://www.tensorflow.org/probability/api_docs/python/tfp/random/sanitize_seed).
533
533
  **pins: These are used to condition the provided joint distribution, and
534
534
  are passed directly to `joint_dist.experimental_pin(**pins)`.
@@ -547,6 +547,8 @@ class PosteriorMCMCSampler:
547
547
  " [tfp.random.sanitize_seed](https://www.tensorflow.org/probability/api_docs/python/tfp/random/sanitize_seed)"
548
548
  " for details."
549
549
  )
550
+ if seed is not None and isinstance(seed, int):
551
+ seed = (seed, seed)
550
552
  seed = tfp.random.sanitize_seed(seed) if seed is not None else None
551
553
  n_chains_list = [n_chains] if isinstance(n_chains, int) else n_chains
552
554
  total_chains = np.sum(n_chains_list)
meridian/version.py CHANGED
@@ -14,4 +14,4 @@
14
14
 
15
15
  """Module for Meridian version."""
16
16
 
17
- __version__ = "1.1.5"
17
+ __version__ = "1.1.6"