google-meridian 1.0.9__py3-none-any.whl → 1.1.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {google_meridian-1.0.9.dist-info → google_meridian-1.1.0.dist-info}/METADATA +2 -2
- google_meridian-1.1.0.dist-info/RECORD +41 -0
- {google_meridian-1.0.9.dist-info → google_meridian-1.1.0.dist-info}/WHEEL +1 -1
- meridian/__init__.py +1 -1
- meridian/analysis/analyzer.py +195 -189
- meridian/analysis/optimizer.py +263 -65
- meridian/analysis/summarizer.py +4 -4
- meridian/analysis/test_utils.py +81 -81
- meridian/analysis/visualizer.py +12 -16
- meridian/constants.py +100 -16
- meridian/data/input_data.py +115 -19
- meridian/data/test_utils.py +116 -5
- meridian/data/time_coordinates.py +3 -3
- meridian/model/media.py +133 -98
- meridian/model/model.py +447 -57
- meridian/model/model_test_data.py +11 -0
- meridian/model/posterior_sampler.py +120 -43
- meridian/model/prior_distribution.py +96 -51
- meridian/model/prior_sampler.py +179 -209
- meridian/model/spec.py +196 -36
- meridian/model/transformers.py +15 -3
- google_meridian-1.0.9.dist-info/RECORD +0 -41
- {google_meridian-1.0.9.dist-info → google_meridian-1.1.0.dist-info}/licenses/LICENSE +0 -0
- {google_meridian-1.0.9.dist-info → google_meridian-1.1.0.dist-info}/top_level.txt +0 -0
meridian/analysis/test_utils.py
CHANGED
|
@@ -1515,13 +1515,13 @@ INC_OUTCOME_NON_MEDIA_FIXED = np.array([
|
|
|
1515
1515
|
[
|
|
1516
1516
|
1.991e02,
|
|
1517
1517
|
5.116e02,
|
|
1518
|
-
5.
|
|
1518
|
+
5.191e01,
|
|
1519
1519
|
6.623e02,
|
|
1520
1520
|
1.969e02,
|
|
1521
|
-
-
|
|
1522
|
-
|
|
1523
|
-
|
|
1524
|
-
-
|
|
1521
|
+
-2.250e05,
|
|
1522
|
+
1.676e04,
|
|
1523
|
+
1.058e04,
|
|
1524
|
+
-4.475e03,
|
|
1525
1525
|
],
|
|
1526
1526
|
[
|
|
1527
1527
|
1.980e02,
|
|
@@ -1529,10 +1529,10 @@ INC_OUTCOME_NON_MEDIA_FIXED = np.array([
|
|
|
1529
1529
|
5.190e01,
|
|
1530
1530
|
6.690e02,
|
|
1531
1531
|
1.947e02,
|
|
1532
|
-
-
|
|
1533
|
-
|
|
1534
|
-
|
|
1535
|
-
-
|
|
1532
|
+
-2.190e05,
|
|
1533
|
+
1.669e04,
|
|
1534
|
+
1.005e04,
|
|
1535
|
+
-4.375e03,
|
|
1536
1536
|
],
|
|
1537
1537
|
[
|
|
1538
1538
|
1.984e02,
|
|
@@ -1540,10 +1540,10 @@ INC_OUTCOME_NON_MEDIA_FIXED = np.array([
|
|
|
1540
1540
|
5.186e01,
|
|
1541
1541
|
6.678e02,
|
|
1542
1542
|
1.950e02,
|
|
1543
|
-
-
|
|
1544
|
-
|
|
1545
|
-
|
|
1546
|
-
-
|
|
1543
|
+
-2.191e05,
|
|
1544
|
+
1.654e04,
|
|
1545
|
+
1.011e04,
|
|
1546
|
+
-4.644e03,
|
|
1547
1547
|
],
|
|
1548
1548
|
[
|
|
1549
1549
|
1.984e02,
|
|
@@ -1551,10 +1551,10 @@ INC_OUTCOME_NON_MEDIA_FIXED = np.array([
|
|
|
1551
1551
|
5.193e01,
|
|
1552
1552
|
6.658e02,
|
|
1553
1553
|
1.899e02,
|
|
1554
|
-
-
|
|
1555
|
-
|
|
1556
|
-
|
|
1557
|
-
-
|
|
1554
|
+
-2.070e05,
|
|
1555
|
+
1.575e04,
|
|
1556
|
+
9.798e03,
|
|
1557
|
+
-4.228e03,
|
|
1558
1558
|
],
|
|
1559
1559
|
[
|
|
1560
1560
|
1.980e02,
|
|
@@ -1562,10 +1562,10 @@ INC_OUTCOME_NON_MEDIA_FIXED = np.array([
|
|
|
1562
1562
|
5.196e01,
|
|
1563
1563
|
6.697e02,
|
|
1564
1564
|
1.898e02,
|
|
1565
|
-
-
|
|
1566
|
-
|
|
1567
|
-
|
|
1568
|
-
-
|
|
1565
|
+
-2.111e05,
|
|
1566
|
+
1.595e04,
|
|
1567
|
+
9.621e03,
|
|
1568
|
+
-4.596e03,
|
|
1569
1569
|
],
|
|
1570
1570
|
[
|
|
1571
1571
|
1.960e02,
|
|
@@ -1573,10 +1573,10 @@ INC_OUTCOME_NON_MEDIA_FIXED = np.array([
|
|
|
1573
1573
|
5.181e01,
|
|
1574
1574
|
6.764e02,
|
|
1575
1575
|
1.999e02,
|
|
1576
|
-
-
|
|
1577
|
-
|
|
1578
|
-
|
|
1579
|
-
-
|
|
1576
|
+
-2.153e05,
|
|
1577
|
+
1.596e04,
|
|
1578
|
+
9.384e03,
|
|
1579
|
+
-3.718e03,
|
|
1580
1580
|
],
|
|
1581
1581
|
[
|
|
1582
1582
|
1.988e02,
|
|
@@ -1584,10 +1584,10 @@ INC_OUTCOME_NON_MEDIA_FIXED = np.array([
|
|
|
1584
1584
|
5.180e01,
|
|
1585
1585
|
6.780e02,
|
|
1586
1586
|
1.979e02,
|
|
1587
|
-
-
|
|
1588
|
-
|
|
1589
|
-
|
|
1590
|
-
-
|
|
1587
|
+
-2.085e05,
|
|
1588
|
+
1.539e04,
|
|
1589
|
+
9.246e03,
|
|
1590
|
+
-3.802e03,
|
|
1591
1591
|
],
|
|
1592
1592
|
[
|
|
1593
1593
|
1.991e02,
|
|
@@ -1595,10 +1595,10 @@ INC_OUTCOME_NON_MEDIA_FIXED = np.array([
|
|
|
1595
1595
|
5.174e01,
|
|
1596
1596
|
6.698e02,
|
|
1597
1597
|
1.972e02,
|
|
1598
|
-
-
|
|
1599
|
-
|
|
1600
|
-
|
|
1601
|
-
-
|
|
1598
|
+
-1.870e05,
|
|
1599
|
+
1.525e04,
|
|
1600
|
+
9.182e03,
|
|
1601
|
+
-4.143e03,
|
|
1602
1602
|
],
|
|
1603
1603
|
[
|
|
1604
1604
|
1.986e02,
|
|
@@ -1606,10 +1606,10 @@ INC_OUTCOME_NON_MEDIA_FIXED = np.array([
|
|
|
1606
1606
|
5.175e01,
|
|
1607
1607
|
6.669e02,
|
|
1608
1608
|
1.948e02,
|
|
1609
|
-
-
|
|
1610
|
-
|
|
1611
|
-
|
|
1612
|
-
-
|
|
1609
|
+
-1.902e05,
|
|
1610
|
+
1.520e04,
|
|
1611
|
+
9.380e03,
|
|
1612
|
+
-4.212e03,
|
|
1613
1613
|
],
|
|
1614
1614
|
[
|
|
1615
1615
|
1.986e02,
|
|
@@ -1617,10 +1617,10 @@ INC_OUTCOME_NON_MEDIA_FIXED = np.array([
|
|
|
1617
1617
|
5.178e01,
|
|
1618
1618
|
6.670e02,
|
|
1619
1619
|
1.965e02,
|
|
1620
|
-
-
|
|
1621
|
-
|
|
1622
|
-
|
|
1623
|
-
-
|
|
1620
|
+
-1.952e05,
|
|
1621
|
+
1.512e04,
|
|
1622
|
+
9.660e03,
|
|
1623
|
+
-3.480e03,
|
|
1624
1624
|
],
|
|
1625
1625
|
],
|
|
1626
1626
|
[
|
|
@@ -1630,10 +1630,10 @@ INC_OUTCOME_NON_MEDIA_FIXED = np.array([
|
|
|
1630
1630
|
2.222e02,
|
|
1631
1631
|
2.692e02,
|
|
1632
1632
|
1.240e02,
|
|
1633
|
-
-
|
|
1634
|
-
|
|
1635
|
-
|
|
1636
|
-
-
|
|
1633
|
+
-2.072e05,
|
|
1634
|
+
4.133e04,
|
|
1635
|
+
-2.037e04,
|
|
1636
|
+
-2.202e04,
|
|
1637
1637
|
],
|
|
1638
1638
|
[
|
|
1639
1639
|
1.432e03,
|
|
@@ -1641,10 +1641,10 @@ INC_OUTCOME_NON_MEDIA_FIXED = np.array([
|
|
|
1641
1641
|
2.231e02,
|
|
1642
1642
|
2.683e02,
|
|
1643
1643
|
1.240e02,
|
|
1644
|
-
-
|
|
1645
|
-
|
|
1646
|
-
|
|
1647
|
-
-
|
|
1644
|
+
-2.105e05,
|
|
1645
|
+
4.117e04,
|
|
1646
|
+
-2.041e04,
|
|
1647
|
+
-2.168e04,
|
|
1648
1648
|
],
|
|
1649
1649
|
[
|
|
1650
1650
|
1.430e03,
|
|
@@ -1652,10 +1652,10 @@ INC_OUTCOME_NON_MEDIA_FIXED = np.array([
|
|
|
1652
1652
|
2.248e02,
|
|
1653
1653
|
2.675e02,
|
|
1654
1654
|
1.235e02,
|
|
1655
|
-
-
|
|
1656
|
-
|
|
1657
|
-
|
|
1658
|
-
-
|
|
1655
|
+
-2.016e05,
|
|
1656
|
+
4.092e04,
|
|
1657
|
+
-2.030e04,
|
|
1658
|
+
-2.085e04,
|
|
1659
1659
|
],
|
|
1660
1660
|
[
|
|
1661
1661
|
1.436e03,
|
|
@@ -1663,10 +1663,10 @@ INC_OUTCOME_NON_MEDIA_FIXED = np.array([
|
|
|
1663
1663
|
2.231e02,
|
|
1664
1664
|
2.667e02,
|
|
1665
1665
|
1.244e02,
|
|
1666
|
-
-
|
|
1667
|
-
|
|
1668
|
-
|
|
1669
|
-
-1.
|
|
1666
|
+
-1.972e05,
|
|
1667
|
+
4.087e04,
|
|
1668
|
+
-2.019e04,
|
|
1669
|
+
-1.921e04,
|
|
1670
1670
|
],
|
|
1671
1671
|
[
|
|
1672
1672
|
1.447e03,
|
|
@@ -1674,10 +1674,10 @@ INC_OUTCOME_NON_MEDIA_FIXED = np.array([
|
|
|
1674
1674
|
2.226e02,
|
|
1675
1675
|
2.650e02,
|
|
1676
1676
|
1.254e02,
|
|
1677
|
-
-
|
|
1678
|
-
|
|
1679
|
-
|
|
1680
|
-
-1.
|
|
1677
|
+
-1.783e05,
|
|
1678
|
+
3.951e04,
|
|
1679
|
+
-1.994e04,
|
|
1680
|
+
-1.672e04,
|
|
1681
1681
|
],
|
|
1682
1682
|
[
|
|
1683
1683
|
1.430e03,
|
|
@@ -1685,10 +1685,10 @@ INC_OUTCOME_NON_MEDIA_FIXED = np.array([
|
|
|
1685
1685
|
2.232e02,
|
|
1686
1686
|
2.641e02,
|
|
1687
1687
|
1.254e02,
|
|
1688
|
-
-
|
|
1689
|
-
|
|
1690
|
-
|
|
1691
|
-
-1.
|
|
1688
|
+
-1.802e05,
|
|
1689
|
+
4.147e04,
|
|
1690
|
+
-1.998e04,
|
|
1691
|
+
-1.571e04,
|
|
1692
1692
|
],
|
|
1693
1693
|
[
|
|
1694
1694
|
1.457e03,
|
|
@@ -1696,10 +1696,10 @@ INC_OUTCOME_NON_MEDIA_FIXED = np.array([
|
|
|
1696
1696
|
2.258e02,
|
|
1697
1697
|
2.621e02,
|
|
1698
1698
|
1.247e02,
|
|
1699
|
-
-
|
|
1700
|
-
|
|
1701
|
-
|
|
1702
|
-
-
|
|
1699
|
+
-1.805e05,
|
|
1700
|
+
4.070e04,
|
|
1701
|
+
-2.015e04,
|
|
1702
|
+
-1.398e04,
|
|
1703
1703
|
],
|
|
1704
1704
|
[
|
|
1705
1705
|
1.456e03,
|
|
@@ -1707,10 +1707,10 @@ INC_OUTCOME_NON_MEDIA_FIXED = np.array([
|
|
|
1707
1707
|
2.276e02,
|
|
1708
1708
|
2.646e02,
|
|
1709
1709
|
1.246e02,
|
|
1710
|
-
-
|
|
1711
|
-
|
|
1712
|
-
2.
|
|
1713
|
-
-
|
|
1710
|
+
-1.764e05,
|
|
1711
|
+
4.198e04,
|
|
1712
|
+
-2.006e04,
|
|
1713
|
+
-1.299e04,
|
|
1714
1714
|
],
|
|
1715
1715
|
[
|
|
1716
1716
|
1.484e03,
|
|
@@ -1718,10 +1718,10 @@ INC_OUTCOME_NON_MEDIA_FIXED = np.array([
|
|
|
1718
1718
|
2.252e02,
|
|
1719
1719
|
2.668e02,
|
|
1720
1720
|
1.241e02,
|
|
1721
|
-
-
|
|
1722
|
-
|
|
1723
|
-
|
|
1724
|
-
-
|
|
1721
|
+
-1.729e05,
|
|
1722
|
+
4.340e04,
|
|
1723
|
+
-1.995e04,
|
|
1724
|
+
-1.352e04,
|
|
1725
1725
|
],
|
|
1726
1726
|
[
|
|
1727
1727
|
1.475e03,
|
|
@@ -1729,10 +1729,10 @@ INC_OUTCOME_NON_MEDIA_FIXED = np.array([
|
|
|
1729
1729
|
2.238e02,
|
|
1730
1730
|
2.669e02,
|
|
1731
1731
|
1.244e02,
|
|
1732
|
-
-
|
|
1733
|
-
|
|
1734
|
-
2.
|
|
1735
|
-
-
|
|
1732
|
+
-1.735e05,
|
|
1733
|
+
4.349e04,
|
|
1734
|
+
-2.014e04,
|
|
1735
|
+
-1.338e04,
|
|
1736
1736
|
],
|
|
1737
1737
|
],
|
|
1738
1738
|
])
|
meridian/analysis/visualizer.py
CHANGED
|
@@ -1405,7 +1405,7 @@ class MediaSummary:
|
|
|
1405
1405
|
confidence_level: float = c.DEFAULT_CONFIDENCE_LEVEL,
|
|
1406
1406
|
selected_times: Sequence[str] | None = None,
|
|
1407
1407
|
marginal_roi_by_reach: bool = True,
|
|
1408
|
-
non_media_baseline_values: Sequence[
|
|
1408
|
+
non_media_baseline_values: Sequence[float] | None = None,
|
|
1409
1409
|
):
|
|
1410
1410
|
"""Initializes the media summary metrics based on the model data and params.
|
|
1411
1411
|
|
|
@@ -1420,13 +1420,11 @@ class MediaSummary:
|
|
|
1420
1420
|
next dollar spent only impacts reach, holding frequency constant. If
|
|
1421
1421
|
this argument is False, we assume the next dollar spent only impacts
|
|
1422
1422
|
frequency, holding reach constant.
|
|
1423
|
-
non_media_baseline_values: Optional list of shape
|
|
1424
|
-
Each element is
|
|
1425
|
-
used as baseline for the given channel
|
|
1426
|
-
|
|
1427
|
-
|
|
1428
|
-
None, the minimum value is used as baseline for each non_media treatment
|
|
1429
|
-
channel.
|
|
1423
|
+
non_media_baseline_values: Optional list of shape
|
|
1424
|
+
`(n_non_media_channels,)`. Each element is a float denoting the fixed
|
|
1425
|
+
value which will be used as baseline for the given channel. If `None`,
|
|
1426
|
+
the values defined with `ModelSpec.non_media_baseline_values`
|
|
1427
|
+
will be used.
|
|
1430
1428
|
"""
|
|
1431
1429
|
self._meridian = meridian
|
|
1432
1430
|
self._analyzer = analyzer.Analyzer(meridian)
|
|
@@ -1629,7 +1627,7 @@ class MediaSummary:
|
|
|
1629
1627
|
confidence_level: float | None = None,
|
|
1630
1628
|
selected_times: Sequence[str] | None = None,
|
|
1631
1629
|
marginal_roi_by_reach: bool = True,
|
|
1632
|
-
non_media_baseline_values: Sequence[
|
|
1630
|
+
non_media_baseline_values: Sequence[float] | None = None,
|
|
1633
1631
|
):
|
|
1634
1632
|
"""Runs the computation for the media summary metrics with new parameters.
|
|
1635
1633
|
|
|
@@ -1644,13 +1642,11 @@ class MediaSummary:
|
|
|
1644
1642
|
dollar spent only impacts reach, holding frequency constant. If `False`,
|
|
1645
1643
|
the assumption is the next dollar spent only impacts frequency, holding
|
|
1646
1644
|
reach constant.
|
|
1647
|
-
non_media_baseline_values: Optional list of shape
|
|
1648
|
-
Each element is
|
|
1649
|
-
used as baseline for the given channel
|
|
1650
|
-
|
|
1651
|
-
|
|
1652
|
-
None, the minimum value is used as baseline for each non_media treatment
|
|
1653
|
-
channel.
|
|
1645
|
+
non_media_baseline_values: Optional list of shape
|
|
1646
|
+
`(n_non_media_channels,)`. Each element is a float denoting the fixed
|
|
1647
|
+
value which will be used as baseline for the given channel. If `None`,
|
|
1648
|
+
the values defined with `ModelSpec.non_media_baseline_values`
|
|
1649
|
+
will be used.
|
|
1654
1650
|
"""
|
|
1655
1651
|
self._confidence_level = confidence_level or self._confidence_level
|
|
1656
1652
|
self._selected_times = selected_times
|
meridian/constants.py
CHANGED
|
@@ -194,17 +194,23 @@ RF_ROI_CALIBRATION_PERIOD = 'rf_roi_calibration_period'
|
|
|
194
194
|
KNOTS = 'knots'
|
|
195
195
|
BASELINE_GEO = 'baseline_geo'
|
|
196
196
|
|
|
197
|
-
#
|
|
198
|
-
|
|
199
|
-
|
|
200
|
-
|
|
201
|
-
|
|
202
|
-
|
|
203
|
-
|
|
204
|
-
|
|
197
|
+
# Treatment prior types.
|
|
198
|
+
TREATMENT_PRIOR_TYPE_ROI = 'roi'
|
|
199
|
+
TREATMENT_PRIOR_TYPE_MROI = 'mroi'
|
|
200
|
+
TREATMENT_PRIOR_TYPE_COEFFICIENT = 'coefficient'
|
|
201
|
+
TREATMENT_PRIOR_TYPE_CONTRIBUTION = 'contribution'
|
|
202
|
+
PAID_TREATMENT_PRIOR_TYPES = frozenset({
|
|
203
|
+
TREATMENT_PRIOR_TYPE_ROI,
|
|
204
|
+
TREATMENT_PRIOR_TYPE_MROI,
|
|
205
|
+
TREATMENT_PRIOR_TYPE_COEFFICIENT,
|
|
206
|
+
TREATMENT_PRIOR_TYPE_CONTRIBUTION,
|
|
207
|
+
})
|
|
208
|
+
NON_PAID_TREATMENT_PRIOR_TYPES = frozenset({
|
|
209
|
+
TREATMENT_PRIOR_TYPE_COEFFICIENT,
|
|
210
|
+
TREATMENT_PRIOR_TYPE_CONTRIBUTION,
|
|
205
211
|
})
|
|
206
212
|
PAID_MEDIA_ROI_PRIOR_TYPES = frozenset(
|
|
207
|
-
{
|
|
213
|
+
{TREATMENT_PRIOR_TYPE_ROI, TREATMENT_PRIOR_TYPE_MROI}
|
|
208
214
|
)
|
|
209
215
|
# Represents a 1% increase in spend.
|
|
210
216
|
MROI_FACTOR = 1.01
|
|
@@ -233,6 +239,11 @@ ROI_M = 'roi_m'
|
|
|
233
239
|
ROI_RF = 'roi_rf'
|
|
234
240
|
MROI_M = 'mroi_m'
|
|
235
241
|
MROI_RF = 'mroi_rf'
|
|
242
|
+
CONTRIBUTION_M = 'contribution_m'
|
|
243
|
+
CONTRIBUTION_RF = 'contribution_rf'
|
|
244
|
+
CONTRIBUTION_OM = 'contribution_om'
|
|
245
|
+
CONTRIBUTION_ORF = 'contribution_orf'
|
|
246
|
+
CONTRIBUTION_N = 'contribution_n'
|
|
236
247
|
GAMMA_C = 'gamma_c'
|
|
237
248
|
GAMMA_N = 'gamma_n'
|
|
238
249
|
XI_C = 'xi_c'
|
|
@@ -301,7 +312,29 @@ RF_PARAMETER_NAMES = (
|
|
|
301
312
|
BETA_RF,
|
|
302
313
|
BETA_GRF,
|
|
303
314
|
)
|
|
315
|
+
|
|
316
|
+
MEDIA_PARAMETERS = (
|
|
317
|
+
ROI_M,
|
|
318
|
+
MROI_M,
|
|
319
|
+
CONTRIBUTION_M,
|
|
320
|
+
BETA_M,
|
|
321
|
+
ETA_M,
|
|
322
|
+
ALPHA_M,
|
|
323
|
+
EC_M,
|
|
324
|
+
SLOPE_M,
|
|
325
|
+
)
|
|
326
|
+
RF_PARAMETERS = (
|
|
327
|
+
ROI_RF,
|
|
328
|
+
MROI_RF,
|
|
329
|
+
CONTRIBUTION_RF,
|
|
330
|
+
BETA_RF,
|
|
331
|
+
ETA_RF,
|
|
332
|
+
ALPHA_RF,
|
|
333
|
+
EC_RF,
|
|
334
|
+
SLOPE_RF,
|
|
335
|
+
)
|
|
304
336
|
ORGANIC_MEDIA_PARAMETERS = (
|
|
337
|
+
CONTRIBUTION_OM,
|
|
305
338
|
BETA_OM,
|
|
306
339
|
ETA_OM,
|
|
307
340
|
ALPHA_OM,
|
|
@@ -309,6 +342,7 @@ ORGANIC_MEDIA_PARAMETERS = (
|
|
|
309
342
|
SLOPE_OM,
|
|
310
343
|
)
|
|
311
344
|
ORGANIC_RF_PARAMETERS = (
|
|
345
|
+
CONTRIBUTION_ORF,
|
|
312
346
|
BETA_ORF,
|
|
313
347
|
ETA_ORF,
|
|
314
348
|
ALPHA_ORF,
|
|
@@ -316,13 +350,12 @@ ORGANIC_RF_PARAMETERS = (
|
|
|
316
350
|
SLOPE_ORF,
|
|
317
351
|
)
|
|
318
352
|
NON_MEDIA_PARAMETERS = (
|
|
353
|
+
CONTRIBUTION_N,
|
|
319
354
|
GAMMA_N,
|
|
320
355
|
XI_N,
|
|
321
356
|
)
|
|
322
357
|
|
|
323
358
|
KNOTS_PARAMETERS = (KNOT_VALUES,)
|
|
324
|
-
MEDIA_PARAMETERS = (ETA_M, BETA_M, ALPHA_M, EC_M, SLOPE_M, ROI_M, MROI_M)
|
|
325
|
-
RF_PARAMETERS = (ETA_RF, BETA_RF, ALPHA_RF, EC_RF, SLOPE_RF, ROI_RF, MROI_RF)
|
|
326
359
|
CONTROL_PARAMETERS = (GAMMA_C, XI_C)
|
|
327
360
|
SIGMA_PARAMETERS = (SIGMA,)
|
|
328
361
|
GEO_PARAMETERS = (
|
|
@@ -360,10 +393,61 @@ UNSAVED_PARAMETERS = (
|
|
|
360
393
|
GAMMA_GN_DEV,
|
|
361
394
|
TAU_G_EXCL_BASELINE, # Used to derive TAU_G.
|
|
362
395
|
)
|
|
363
|
-
|
|
364
|
-
|
|
365
|
-
|
|
366
|
-
|
|
396
|
+
IGNORED_PRIORS_MEDIA = immutabledict.immutabledict({
|
|
397
|
+
TREATMENT_PRIOR_TYPE_ROI: (
|
|
398
|
+
BETA_M,
|
|
399
|
+
MROI_M,
|
|
400
|
+
CONTRIBUTION_M,
|
|
401
|
+
),
|
|
402
|
+
TREATMENT_PRIOR_TYPE_MROI: (
|
|
403
|
+
BETA_M,
|
|
404
|
+
ROI_M,
|
|
405
|
+
CONTRIBUTION_M,
|
|
406
|
+
),
|
|
407
|
+
TREATMENT_PRIOR_TYPE_CONTRIBUTION: (
|
|
408
|
+
BETA_M,
|
|
409
|
+
ROI_M,
|
|
410
|
+
MROI_M,
|
|
411
|
+
),
|
|
412
|
+
TREATMENT_PRIOR_TYPE_COEFFICIENT: (
|
|
413
|
+
ROI_M,
|
|
414
|
+
MROI_M,
|
|
415
|
+
CONTRIBUTION_M,
|
|
416
|
+
),
|
|
417
|
+
})
|
|
418
|
+
IGNORED_PRIORS_RF = immutabledict.immutabledict({
|
|
419
|
+
TREATMENT_PRIOR_TYPE_ROI: (
|
|
420
|
+
BETA_RF,
|
|
421
|
+
MROI_RF,
|
|
422
|
+
CONTRIBUTION_RF,
|
|
423
|
+
),
|
|
424
|
+
TREATMENT_PRIOR_TYPE_MROI: (
|
|
425
|
+
BETA_RF,
|
|
426
|
+
ROI_RF,
|
|
427
|
+
CONTRIBUTION_RF,
|
|
428
|
+
),
|
|
429
|
+
TREATMENT_PRIOR_TYPE_CONTRIBUTION: (
|
|
430
|
+
BETA_RF,
|
|
431
|
+
ROI_RF,
|
|
432
|
+
MROI_RF,
|
|
433
|
+
),
|
|
434
|
+
TREATMENT_PRIOR_TYPE_COEFFICIENT: (
|
|
435
|
+
ROI_RF,
|
|
436
|
+
MROI_RF,
|
|
437
|
+
CONTRIBUTION_RF,
|
|
438
|
+
),
|
|
439
|
+
})
|
|
440
|
+
IGNORED_PRIORS_ORGANIC_MEDIA = immutabledict.immutabledict({
|
|
441
|
+
TREATMENT_PRIOR_TYPE_CONTRIBUTION: (BETA_OM,),
|
|
442
|
+
TREATMENT_PRIOR_TYPE_COEFFICIENT: (CONTRIBUTION_OM,),
|
|
443
|
+
})
|
|
444
|
+
IGNORED_PRIORS_ORGANIC_RF = immutabledict.immutabledict({
|
|
445
|
+
TREATMENT_PRIOR_TYPE_CONTRIBUTION: (BETA_ORF,),
|
|
446
|
+
TREATMENT_PRIOR_TYPE_COEFFICIENT: (CONTRIBUTION_ORF,),
|
|
447
|
+
})
|
|
448
|
+
IGNORED_PRIORS_NON_MEDIA_TREATMENTS = immutabledict.immutabledict({
|
|
449
|
+
TREATMENT_PRIOR_TYPE_CONTRIBUTION: (GAMMA_N,),
|
|
450
|
+
TREATMENT_PRIOR_TYPE_COEFFICIENT: (CONTRIBUTION_N,),
|
|
367
451
|
})
|
|
368
452
|
|
|
369
453
|
# Inference data dimensions.
|
|
@@ -616,7 +700,7 @@ CARD_STATS = 'stats'
|
|
|
616
700
|
# VegaLite common params.
|
|
617
701
|
VEGALITE_FACET_DEFAULT_WIDTH = 400
|
|
618
702
|
VEGALITE_FACET_LARGE_WIDTH = 500
|
|
619
|
-
VEGALITE_FACET_EXTRA_LARGE_WIDTH =
|
|
703
|
+
VEGALITE_FACET_EXTRA_LARGE_WIDTH = 700
|
|
620
704
|
|
|
621
705
|
# Time Granularity Constants
|
|
622
706
|
WEEKLY = 'weekly'
|