google-meridian 1.0.3__py3-none-any.whl → 1.0.5__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {google_meridian-1.0.3.dist-info → google_meridian-1.0.5.dist-info}/METADATA +26 -21
- {google_meridian-1.0.3.dist-info → google_meridian-1.0.5.dist-info}/RECORD +20 -16
- {google_meridian-1.0.3.dist-info → google_meridian-1.0.5.dist-info}/WHEEL +1 -1
- meridian/__init__.py +1 -1
- meridian/analysis/analyzer.py +347 -512
- meridian/analysis/formatter.py +18 -0
- meridian/analysis/optimizer.py +259 -145
- meridian/analysis/summarizer.py +2 -2
- meridian/analysis/visualizer.py +21 -2
- meridian/data/__init__.py +1 -0
- meridian/data/arg_builder.py +107 -0
- meridian/data/input_data.py +23 -0
- meridian/data/test_utils.py +6 -4
- meridian/model/__init__.py +2 -0
- meridian/model/model.py +42 -984
- meridian/model/model_test_data.py +351 -0
- meridian/model/posterior_sampler.py +566 -0
- meridian/model/prior_sampler.py +633 -0
- {google_meridian-1.0.3.dist-info → google_meridian-1.0.5.dist-info}/LICENSE +0 -0
- {google_meridian-1.0.3.dist-info → google_meridian-1.0.5.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,351 @@
|
|
|
1
|
+
# Copyright 2024 The Meridian Authors.
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
|
|
15
|
+
"""Shared test data samples."""
|
|
16
|
+
|
|
17
|
+
import collections
|
|
18
|
+
import os
|
|
19
|
+
|
|
20
|
+
from meridian import constants
|
|
21
|
+
from meridian.data import test_utils
|
|
22
|
+
import tensorflow as tf
|
|
23
|
+
import xarray as xr
|
|
24
|
+
|
|
25
|
+
|
|
26
|
+
def _convert_with_swap(array: xr.DataArray, n_burnin: int) -> tf.Tensor:
|
|
27
|
+
"""Converts a DataArray to a tf.Tensor with the correct MCMC format.
|
|
28
|
+
|
|
29
|
+
This function converts a DataArray to tf.Tensor, swaps first two dimensions
|
|
30
|
+
and adds the burnin part. This is needed to properly mock the
|
|
31
|
+
_xla_windowed_adaptive_nuts() function output in the sample_posterior
|
|
32
|
+
tests.
|
|
33
|
+
|
|
34
|
+
Args:
|
|
35
|
+
array: The array to be converted.
|
|
36
|
+
n_burnin: The number of extra draws to be padded with as the 'burnin' part.
|
|
37
|
+
|
|
38
|
+
Returns:
|
|
39
|
+
A tensor in the same format as returned by the _xla_windowed_adaptive_nuts()
|
|
40
|
+
function.
|
|
41
|
+
"""
|
|
42
|
+
tensor = tf.convert_to_tensor(array)
|
|
43
|
+
perm = [1, 0] + [i for i in range(2, len(tensor.shape))]
|
|
44
|
+
transposed_tensor = tf.transpose(tensor, perm=perm)
|
|
45
|
+
|
|
46
|
+
# Add the "burnin" part to the mocked output of _xla_windowed_adaptive_nuts
|
|
47
|
+
# to make sure sample_posterior returns the correct "keep" part.
|
|
48
|
+
if array.dtype == bool:
|
|
49
|
+
pad_value = False
|
|
50
|
+
else:
|
|
51
|
+
pad_value = 0.0 if array.dtype.kind == "f" else 0
|
|
52
|
+
|
|
53
|
+
burnin = tf.fill([n_burnin] + transposed_tensor.shape[1:], pad_value)
|
|
54
|
+
return tf.concat(
|
|
55
|
+
[burnin, transposed_tensor],
|
|
56
|
+
axis=0,
|
|
57
|
+
)
|
|
58
|
+
|
|
59
|
+
|
|
60
|
+
class WithInputDataSamples:
|
|
61
|
+
"""A mixin to inject test data samples to a unit test class."""
|
|
62
|
+
|
|
63
|
+
# TODO: Update the sample data to span over 1 or 2 year(s).
|
|
64
|
+
_TEST_DIR = os.path.join(os.path.dirname(__file__), "test_data")
|
|
65
|
+
_TEST_SAMPLE_PRIOR_MEDIA_AND_RF_PATH = os.path.join(
|
|
66
|
+
_TEST_DIR,
|
|
67
|
+
"sample_prior_media_and_rf.nc",
|
|
68
|
+
)
|
|
69
|
+
_TEST_SAMPLE_PRIOR_MEDIA_ONLY_PATH = os.path.join(
|
|
70
|
+
_TEST_DIR,
|
|
71
|
+
"sample_prior_media_only.nc",
|
|
72
|
+
)
|
|
73
|
+
_TEST_SAMPLE_PRIOR_RF_ONLY_PATH = os.path.join(
|
|
74
|
+
_TEST_DIR,
|
|
75
|
+
"sample_prior_rf_only.nc",
|
|
76
|
+
)
|
|
77
|
+
_TEST_SAMPLE_POSTERIOR_MEDIA_AND_RF_PATH = os.path.join(
|
|
78
|
+
_TEST_DIR,
|
|
79
|
+
"sample_posterior_media_and_rf.nc",
|
|
80
|
+
)
|
|
81
|
+
_TEST_SAMPLE_POSTERIOR_MEDIA_ONLY_PATH = os.path.join(
|
|
82
|
+
_TEST_DIR,
|
|
83
|
+
"sample_posterior_media_only.nc",
|
|
84
|
+
)
|
|
85
|
+
_TEST_SAMPLE_POSTERIOR_RF_ONLY_PATH = os.path.join(
|
|
86
|
+
_TEST_DIR,
|
|
87
|
+
"sample_posterior_rf_only.nc",
|
|
88
|
+
)
|
|
89
|
+
_TEST_SAMPLE_TRACE_PATH = os.path.join(
|
|
90
|
+
_TEST_DIR,
|
|
91
|
+
"sample_trace.nc",
|
|
92
|
+
)
|
|
93
|
+
|
|
94
|
+
# Data dimensions for sample input.
|
|
95
|
+
_N_CHAINS = 2
|
|
96
|
+
_N_ADAPT = 2
|
|
97
|
+
_N_BURNIN = 5
|
|
98
|
+
_N_KEEP = 10
|
|
99
|
+
_N_DRAWS = 10
|
|
100
|
+
_N_GEOS = 5
|
|
101
|
+
_N_GEOS_NATIONAL = 1
|
|
102
|
+
_N_TIMES = 200
|
|
103
|
+
_N_TIMES_SHORT = 49
|
|
104
|
+
_N_MEDIA_TIMES = 203
|
|
105
|
+
_N_MEDIA_TIMES_SHORT = 52
|
|
106
|
+
_N_MEDIA_CHANNELS = 3
|
|
107
|
+
_N_RF_CHANNELS = 2
|
|
108
|
+
_N_CONTROLS = 2
|
|
109
|
+
_ROI_CALIBRATION_PERIOD = tf.cast(
|
|
110
|
+
tf.ones((_N_MEDIA_TIMES_SHORT, _N_MEDIA_CHANNELS)),
|
|
111
|
+
dtype=tf.bool,
|
|
112
|
+
)
|
|
113
|
+
_RF_ROI_CALIBRATION_PERIOD = tf.cast(
|
|
114
|
+
tf.ones((_N_MEDIA_TIMES_SHORT, _N_RF_CHANNELS)),
|
|
115
|
+
dtype=tf.bool,
|
|
116
|
+
)
|
|
117
|
+
_N_ORGANIC_MEDIA_CHANNELS = 4
|
|
118
|
+
_N_ORGANIC_RF_CHANNELS = 1
|
|
119
|
+
_N_NON_MEDIA_CHANNELS = 2
|
|
120
|
+
|
|
121
|
+
def setup(self):
|
|
122
|
+
"""Sets up input data samples."""
|
|
123
|
+
self.input_data_non_revenue_no_revenue_per_kpi = (
|
|
124
|
+
test_utils.sample_input_data_non_revenue_no_revenue_per_kpi(
|
|
125
|
+
n_geos=self._N_GEOS,
|
|
126
|
+
n_times=self._N_TIMES,
|
|
127
|
+
n_media_times=self._N_MEDIA_TIMES,
|
|
128
|
+
n_controls=self._N_CONTROLS,
|
|
129
|
+
n_media_channels=self._N_MEDIA_CHANNELS,
|
|
130
|
+
seed=0,
|
|
131
|
+
)
|
|
132
|
+
)
|
|
133
|
+
self.input_data_with_media_only = (
|
|
134
|
+
test_utils.sample_input_data_non_revenue_revenue_per_kpi(
|
|
135
|
+
n_geos=self._N_GEOS,
|
|
136
|
+
n_times=self._N_TIMES,
|
|
137
|
+
n_media_times=self._N_MEDIA_TIMES,
|
|
138
|
+
n_controls=self._N_CONTROLS,
|
|
139
|
+
n_media_channels=self._N_MEDIA_CHANNELS,
|
|
140
|
+
seed=0,
|
|
141
|
+
)
|
|
142
|
+
)
|
|
143
|
+
self.input_data_with_rf_only = (
|
|
144
|
+
test_utils.sample_input_data_non_revenue_revenue_per_kpi(
|
|
145
|
+
n_geos=self._N_GEOS,
|
|
146
|
+
n_times=self._N_TIMES,
|
|
147
|
+
n_media_times=self._N_MEDIA_TIMES,
|
|
148
|
+
n_controls=self._N_CONTROLS,
|
|
149
|
+
n_rf_channels=self._N_RF_CHANNELS,
|
|
150
|
+
seed=0,
|
|
151
|
+
)
|
|
152
|
+
)
|
|
153
|
+
self.input_data_with_media_and_rf = (
|
|
154
|
+
test_utils.sample_input_data_non_revenue_revenue_per_kpi(
|
|
155
|
+
n_geos=self._N_GEOS,
|
|
156
|
+
n_times=self._N_TIMES,
|
|
157
|
+
n_media_times=self._N_MEDIA_TIMES,
|
|
158
|
+
n_controls=self._N_CONTROLS,
|
|
159
|
+
n_media_channels=self._N_MEDIA_CHANNELS,
|
|
160
|
+
n_rf_channels=self._N_RF_CHANNELS,
|
|
161
|
+
seed=0,
|
|
162
|
+
)
|
|
163
|
+
)
|
|
164
|
+
self.short_input_data_with_media_only = (
|
|
165
|
+
test_utils.sample_input_data_non_revenue_revenue_per_kpi(
|
|
166
|
+
n_geos=self._N_GEOS,
|
|
167
|
+
n_times=self._N_TIMES_SHORT,
|
|
168
|
+
n_media_times=self._N_MEDIA_TIMES_SHORT,
|
|
169
|
+
n_controls=self._N_CONTROLS,
|
|
170
|
+
n_media_channels=self._N_MEDIA_CHANNELS,
|
|
171
|
+
seed=0,
|
|
172
|
+
)
|
|
173
|
+
)
|
|
174
|
+
self.short_input_data_with_rf_only = (
|
|
175
|
+
test_utils.sample_input_data_non_revenue_revenue_per_kpi(
|
|
176
|
+
n_geos=self._N_GEOS,
|
|
177
|
+
n_times=self._N_TIMES_SHORT,
|
|
178
|
+
n_media_times=self._N_MEDIA_TIMES_SHORT,
|
|
179
|
+
n_controls=self._N_CONTROLS,
|
|
180
|
+
n_rf_channels=self._N_RF_CHANNELS,
|
|
181
|
+
seed=0,
|
|
182
|
+
)
|
|
183
|
+
)
|
|
184
|
+
self.short_input_data_with_media_and_rf = (
|
|
185
|
+
test_utils.sample_input_data_non_revenue_revenue_per_kpi(
|
|
186
|
+
n_geos=self._N_GEOS,
|
|
187
|
+
n_times=self._N_TIMES_SHORT,
|
|
188
|
+
n_media_times=self._N_MEDIA_TIMES_SHORT,
|
|
189
|
+
n_controls=self._N_CONTROLS,
|
|
190
|
+
n_media_channels=self._N_MEDIA_CHANNELS,
|
|
191
|
+
n_rf_channels=self._N_RF_CHANNELS,
|
|
192
|
+
seed=0,
|
|
193
|
+
)
|
|
194
|
+
)
|
|
195
|
+
self.national_input_data_media_only = (
|
|
196
|
+
test_utils.sample_input_data_non_revenue_revenue_per_kpi(
|
|
197
|
+
n_geos=self._N_GEOS_NATIONAL,
|
|
198
|
+
n_times=self._N_TIMES,
|
|
199
|
+
n_media_times=self._N_MEDIA_TIMES,
|
|
200
|
+
n_controls=self._N_CONTROLS,
|
|
201
|
+
n_media_channels=self._N_MEDIA_CHANNELS,
|
|
202
|
+
seed=0,
|
|
203
|
+
)
|
|
204
|
+
)
|
|
205
|
+
self.national_input_data_media_and_rf = (
|
|
206
|
+
test_utils.sample_input_data_non_revenue_revenue_per_kpi(
|
|
207
|
+
n_geos=self._N_GEOS_NATIONAL,
|
|
208
|
+
n_times=self._N_TIMES,
|
|
209
|
+
n_media_times=self._N_MEDIA_TIMES,
|
|
210
|
+
n_controls=self._N_CONTROLS,
|
|
211
|
+
n_media_channels=self._N_MEDIA_CHANNELS,
|
|
212
|
+
n_rf_channels=self._N_RF_CHANNELS,
|
|
213
|
+
seed=0,
|
|
214
|
+
)
|
|
215
|
+
)
|
|
216
|
+
|
|
217
|
+
test_prior_media_and_rf = xr.open_dataset(
|
|
218
|
+
self._TEST_SAMPLE_PRIOR_MEDIA_AND_RF_PATH
|
|
219
|
+
)
|
|
220
|
+
test_prior_media_only = xr.open_dataset(
|
|
221
|
+
self._TEST_SAMPLE_PRIOR_MEDIA_ONLY_PATH
|
|
222
|
+
)
|
|
223
|
+
test_prior_rf_only = xr.open_dataset(self._TEST_SAMPLE_PRIOR_RF_ONLY_PATH)
|
|
224
|
+
self.test_dist_media_and_rf = collections.OrderedDict({
|
|
225
|
+
param: tf.convert_to_tensor(test_prior_media_and_rf[param])
|
|
226
|
+
for param in constants.COMMON_PARAMETER_NAMES
|
|
227
|
+
+ constants.MEDIA_PARAMETER_NAMES
|
|
228
|
+
+ constants.RF_PARAMETER_NAMES
|
|
229
|
+
})
|
|
230
|
+
self.test_dist_media_only = collections.OrderedDict({
|
|
231
|
+
param: tf.convert_to_tensor(test_prior_media_only[param])
|
|
232
|
+
for param in constants.COMMON_PARAMETER_NAMES
|
|
233
|
+
+ constants.MEDIA_PARAMETER_NAMES
|
|
234
|
+
})
|
|
235
|
+
self.test_dist_rf_only = collections.OrderedDict({
|
|
236
|
+
param: tf.convert_to_tensor(test_prior_rf_only[param])
|
|
237
|
+
for param in constants.COMMON_PARAMETER_NAMES
|
|
238
|
+
+ constants.RF_PARAMETER_NAMES
|
|
239
|
+
})
|
|
240
|
+
|
|
241
|
+
test_posterior_media_and_rf = xr.open_dataset(
|
|
242
|
+
self._TEST_SAMPLE_POSTERIOR_MEDIA_AND_RF_PATH
|
|
243
|
+
)
|
|
244
|
+
test_posterior_media_only = xr.open_dataset(
|
|
245
|
+
self._TEST_SAMPLE_POSTERIOR_MEDIA_ONLY_PATH
|
|
246
|
+
)
|
|
247
|
+
test_posterior_rf_only = xr.open_dataset(
|
|
248
|
+
self._TEST_SAMPLE_POSTERIOR_RF_ONLY_PATH
|
|
249
|
+
)
|
|
250
|
+
posterior_params_to_tensors_media_and_rf = {
|
|
251
|
+
param: _convert_with_swap(
|
|
252
|
+
test_posterior_media_and_rf[param], n_burnin=self._N_BURNIN
|
|
253
|
+
)
|
|
254
|
+
for param in constants.COMMON_PARAMETER_NAMES
|
|
255
|
+
+ constants.MEDIA_PARAMETER_NAMES
|
|
256
|
+
+ constants.RF_PARAMETER_NAMES
|
|
257
|
+
}
|
|
258
|
+
posterior_params_to_tensors_media_only = {
|
|
259
|
+
param: _convert_with_swap(
|
|
260
|
+
test_posterior_media_only[param], n_burnin=self._N_BURNIN
|
|
261
|
+
)
|
|
262
|
+
for param in constants.COMMON_PARAMETER_NAMES
|
|
263
|
+
+ constants.MEDIA_PARAMETER_NAMES
|
|
264
|
+
}
|
|
265
|
+
posterior_params_to_tensors_rf_only = {
|
|
266
|
+
param: _convert_with_swap(
|
|
267
|
+
test_posterior_rf_only[param], n_burnin=self._N_BURNIN
|
|
268
|
+
)
|
|
269
|
+
for param in constants.COMMON_PARAMETER_NAMES
|
|
270
|
+
+ constants.RF_PARAMETER_NAMES
|
|
271
|
+
}
|
|
272
|
+
self.test_posterior_states_media_and_rf = collections.namedtuple(
|
|
273
|
+
"StructTuple",
|
|
274
|
+
constants.COMMON_PARAMETER_NAMES
|
|
275
|
+
+ constants.MEDIA_PARAMETER_NAMES
|
|
276
|
+
+ constants.RF_PARAMETER_NAMES,
|
|
277
|
+
)(**posterior_params_to_tensors_media_and_rf)
|
|
278
|
+
self.test_posterior_states_media_only = collections.namedtuple(
|
|
279
|
+
"StructTuple",
|
|
280
|
+
constants.COMMON_PARAMETER_NAMES + constants.MEDIA_PARAMETER_NAMES,
|
|
281
|
+
)(**posterior_params_to_tensors_media_only)
|
|
282
|
+
self.test_posterior_states_rf_only = collections.namedtuple(
|
|
283
|
+
"StructTuple",
|
|
284
|
+
constants.COMMON_PARAMETER_NAMES + constants.RF_PARAMETER_NAMES,
|
|
285
|
+
)(**posterior_params_to_tensors_rf_only)
|
|
286
|
+
|
|
287
|
+
test_trace = xr.open_dataset(self._TEST_SAMPLE_TRACE_PATH)
|
|
288
|
+
self.test_trace = {
|
|
289
|
+
param: _convert_with_swap(test_trace[param], n_burnin=self._N_BURNIN)
|
|
290
|
+
for param in test_trace.data_vars
|
|
291
|
+
}
|
|
292
|
+
|
|
293
|
+
# The following are input data samples with non-paid channels.
|
|
294
|
+
|
|
295
|
+
self.national_input_data_non_media_and_organic = (
|
|
296
|
+
test_utils.sample_input_data_non_revenue_revenue_per_kpi(
|
|
297
|
+
n_geos=self._N_GEOS_NATIONAL,
|
|
298
|
+
n_times=self._N_TIMES,
|
|
299
|
+
n_media_times=self._N_MEDIA_TIMES,
|
|
300
|
+
n_controls=self._N_CONTROLS,
|
|
301
|
+
n_non_media_channels=self._N_NON_MEDIA_CHANNELS,
|
|
302
|
+
n_media_channels=self._N_MEDIA_CHANNELS,
|
|
303
|
+
n_rf_channels=self._N_RF_CHANNELS,
|
|
304
|
+
n_organic_media_channels=self._N_ORGANIC_MEDIA_CHANNELS,
|
|
305
|
+
n_organic_rf_channels=self._N_ORGANIC_RF_CHANNELS,
|
|
306
|
+
seed=0,
|
|
307
|
+
)
|
|
308
|
+
)
|
|
309
|
+
|
|
310
|
+
self.input_data_non_media_and_organic = (
|
|
311
|
+
test_utils.sample_input_data_non_revenue_revenue_per_kpi(
|
|
312
|
+
n_geos=self._N_GEOS,
|
|
313
|
+
n_times=self._N_TIMES,
|
|
314
|
+
n_media_times=self._N_MEDIA_TIMES,
|
|
315
|
+
n_controls=self._N_CONTROLS,
|
|
316
|
+
n_non_media_channels=self._N_NON_MEDIA_CHANNELS,
|
|
317
|
+
n_media_channels=self._N_MEDIA_CHANNELS,
|
|
318
|
+
n_rf_channels=self._N_RF_CHANNELS,
|
|
319
|
+
n_organic_media_channels=self._N_ORGANIC_MEDIA_CHANNELS,
|
|
320
|
+
n_organic_rf_channels=self._N_ORGANIC_RF_CHANNELS,
|
|
321
|
+
seed=0,
|
|
322
|
+
)
|
|
323
|
+
)
|
|
324
|
+
self.short_input_data_non_media_and_organic = (
|
|
325
|
+
test_utils.sample_input_data_non_revenue_revenue_per_kpi(
|
|
326
|
+
n_geos=self._N_GEOS,
|
|
327
|
+
n_times=self._N_TIMES_SHORT,
|
|
328
|
+
n_media_times=self._N_MEDIA_TIMES_SHORT,
|
|
329
|
+
n_controls=self._N_CONTROLS,
|
|
330
|
+
n_non_media_channels=self._N_NON_MEDIA_CHANNELS,
|
|
331
|
+
n_media_channels=self._N_MEDIA_CHANNELS,
|
|
332
|
+
n_rf_channels=self._N_RF_CHANNELS,
|
|
333
|
+
n_organic_media_channels=self._N_ORGANIC_MEDIA_CHANNELS,
|
|
334
|
+
n_organic_rf_channels=self._N_ORGANIC_RF_CHANNELS,
|
|
335
|
+
seed=0,
|
|
336
|
+
)
|
|
337
|
+
)
|
|
338
|
+
self.short_input_data_non_media = (
|
|
339
|
+
test_utils.sample_input_data_non_revenue_revenue_per_kpi(
|
|
340
|
+
n_geos=self._N_GEOS,
|
|
341
|
+
n_times=self._N_TIMES_SHORT,
|
|
342
|
+
n_media_times=self._N_MEDIA_TIMES_SHORT,
|
|
343
|
+
n_controls=self._N_CONTROLS,
|
|
344
|
+
n_non_media_channels=self._N_NON_MEDIA_CHANNELS,
|
|
345
|
+
n_media_channels=self._N_MEDIA_CHANNELS,
|
|
346
|
+
n_rf_channels=self._N_RF_CHANNELS,
|
|
347
|
+
n_organic_media_channels=0,
|
|
348
|
+
n_organic_rf_channels=0,
|
|
349
|
+
seed=0,
|
|
350
|
+
)
|
|
351
|
+
)
|