google-genai 1.7.0__py3-none-any.whl → 1.53.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- google/genai/__init__.py +4 -2
- google/genai/_adapters.py +55 -0
- google/genai/_api_client.py +1301 -299
- google/genai/_api_module.py +1 -1
- google/genai/_automatic_function_calling_util.py +54 -33
- google/genai/_base_transformers.py +26 -0
- google/genai/_base_url.py +50 -0
- google/genai/_common.py +560 -59
- google/genai/_extra_utils.py +371 -38
- google/genai/_live_converters.py +1467 -0
- google/genai/_local_tokenizer_loader.py +214 -0
- google/genai/_mcp_utils.py +117 -0
- google/genai/_operations_converters.py +394 -0
- google/genai/_replay_api_client.py +204 -92
- google/genai/_test_api_client.py +1 -1
- google/genai/_tokens_converters.py +520 -0
- google/genai/_transformers.py +633 -233
- google/genai/batches.py +1733 -538
- google/genai/caches.py +678 -1012
- google/genai/chats.py +48 -38
- google/genai/client.py +142 -15
- google/genai/documents.py +532 -0
- google/genai/errors.py +141 -35
- google/genai/file_search_stores.py +1296 -0
- google/genai/files.py +312 -744
- google/genai/live.py +617 -367
- google/genai/live_music.py +197 -0
- google/genai/local_tokenizer.py +395 -0
- google/genai/models.py +3598 -3116
- google/genai/operations.py +201 -362
- google/genai/pagers.py +23 -7
- google/genai/py.typed +1 -0
- google/genai/tokens.py +362 -0
- google/genai/tunings.py +1274 -496
- google/genai/types.py +14535 -5454
- google/genai/version.py +2 -2
- {google_genai-1.7.0.dist-info → google_genai-1.53.0.dist-info}/METADATA +736 -234
- google_genai-1.53.0.dist-info/RECORD +41 -0
- {google_genai-1.7.0.dist-info → google_genai-1.53.0.dist-info}/WHEEL +1 -1
- google_genai-1.7.0.dist-info/RECORD +0 -27
- {google_genai-1.7.0.dist-info → google_genai-1.53.0.dist-info/licenses}/LICENSE +0 -0
- {google_genai-1.7.0.dist-info → google_genai-1.53.0.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,214 @@
|
|
|
1
|
+
# Copyright 2025 Google LLC
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
#
|
|
15
|
+
|
|
16
|
+
import dataclasses
|
|
17
|
+
import functools
|
|
18
|
+
import hashlib
|
|
19
|
+
import os
|
|
20
|
+
import tempfile
|
|
21
|
+
from typing import Optional, cast
|
|
22
|
+
import uuid
|
|
23
|
+
|
|
24
|
+
import requests # type: ignore
|
|
25
|
+
import sentencepiece as spm
|
|
26
|
+
from sentencepiece import sentencepiece_model_pb2
|
|
27
|
+
|
|
28
|
+
|
|
29
|
+
# Source of truth: https://cloud.google.com/vertex-ai/generative-ai/docs/learn/models
|
|
30
|
+
_GEMINI_MODELS_TO_TOKENIZER_NAMES = {
|
|
31
|
+
"gemini-2.5-pro": "gemma3",
|
|
32
|
+
"gemini-2.5-flash": "gemma3",
|
|
33
|
+
"gemini-2.5-flash-lite": "gemma3",
|
|
34
|
+
"gemini-2.0-flash": "gemma3",
|
|
35
|
+
"gemini-2.0-flash-lite": "gemma3",
|
|
36
|
+
}
|
|
37
|
+
_GEMINI_STABLE_MODELS_TO_TOKENIZER_NAMES = {
|
|
38
|
+
"gemini-2.5-pro-preview-06-05": "gemma3",
|
|
39
|
+
"gemini-2.5-pro-preview-05-06": "gemma3",
|
|
40
|
+
"gemini-2.5-pro-exp-03-25": "gemma3",
|
|
41
|
+
"gemini-live-2.5-flash": "gemma3",
|
|
42
|
+
"gemini-2.5-flash-preview-05-20": "gemma3",
|
|
43
|
+
"gemini-2.5-flash-preview-04-17": "gemma3",
|
|
44
|
+
"gemini-2.5-flash-lite-preview-06-17": "gemma3",
|
|
45
|
+
"gemini-2.0-flash-001": "gemma3",
|
|
46
|
+
"gemini-2.0-flash-lite-001": "gemma3",
|
|
47
|
+
}
|
|
48
|
+
|
|
49
|
+
|
|
50
|
+
@dataclasses.dataclass(frozen=True)
|
|
51
|
+
class _TokenizerConfig:
|
|
52
|
+
model_url: str
|
|
53
|
+
model_hash: str
|
|
54
|
+
|
|
55
|
+
|
|
56
|
+
# TODO: update gemma3 tokenizer
|
|
57
|
+
_TOKENIZERS = {
|
|
58
|
+
"gemma2": _TokenizerConfig(
|
|
59
|
+
model_url="https://raw.githubusercontent.com/google/gemma_pytorch/33b652c465537c6158f9a472ea5700e5e770ad3f/tokenizer/tokenizer.model",
|
|
60
|
+
model_hash=(
|
|
61
|
+
"61a7b147390c64585d6c3543dd6fc636906c9af3865a5548f27f31aee1d4c8e2"
|
|
62
|
+
),
|
|
63
|
+
),
|
|
64
|
+
"gemma3": _TokenizerConfig(
|
|
65
|
+
model_url="https://raw.githubusercontent.com/google/gemma_pytorch/014acb7ac4563a5f77c76d7ff98f31b568c16508/tokenizer/gemma3_cleaned_262144_v2.spiece.model",
|
|
66
|
+
model_hash=(
|
|
67
|
+
"1299c11d7cf632ef3b4e11937501358ada021bbdf7c47638d13c0ee982f2e79c"
|
|
68
|
+
),
|
|
69
|
+
),
|
|
70
|
+
}
|
|
71
|
+
|
|
72
|
+
|
|
73
|
+
def _load_file(file_url_path: str) -> bytes:
|
|
74
|
+
"""Loads file bytes from the given file url path."""
|
|
75
|
+
resp = requests.get(file_url_path)
|
|
76
|
+
resp.raise_for_status()
|
|
77
|
+
return cast(bytes, resp.content)
|
|
78
|
+
|
|
79
|
+
|
|
80
|
+
def _is_valid_model(*, model_data: bytes, expected_hash: str) -> bool:
|
|
81
|
+
"""Returns true if the content is valid by checking the hash."""
|
|
82
|
+
if not expected_hash:
|
|
83
|
+
raise ValueError("expected_hash is required")
|
|
84
|
+
return hashlib.sha256(model_data).hexdigest() == expected_hash
|
|
85
|
+
|
|
86
|
+
|
|
87
|
+
def _maybe_remove_file(file_path: str) -> None:
|
|
88
|
+
"""Removes the file if exists."""
|
|
89
|
+
if not os.path.exists(file_path):
|
|
90
|
+
return
|
|
91
|
+
try:
|
|
92
|
+
os.remove(file_path)
|
|
93
|
+
except OSError:
|
|
94
|
+
# Don't raise if we cannot remove file.
|
|
95
|
+
pass
|
|
96
|
+
|
|
97
|
+
|
|
98
|
+
def _maybe_load_from_cache(
|
|
99
|
+
*, file_path: str, expected_hash: str
|
|
100
|
+
) -> Optional[bytes]:
|
|
101
|
+
"""Loads the content from the cache path."""
|
|
102
|
+
if not os.path.exists(file_path):
|
|
103
|
+
return None
|
|
104
|
+
with open(file_path, "rb") as f:
|
|
105
|
+
content = f.read()
|
|
106
|
+
if _is_valid_model(model_data=content, expected_hash=expected_hash):
|
|
107
|
+
return content
|
|
108
|
+
|
|
109
|
+
# Cached file corrupted.
|
|
110
|
+
_maybe_remove_file(file_path)
|
|
111
|
+
return None
|
|
112
|
+
|
|
113
|
+
|
|
114
|
+
def _maybe_save_to_cache(
|
|
115
|
+
*, cache_dir: str, cache_path: str, content: bytes
|
|
116
|
+
) -> None:
|
|
117
|
+
"""Saves the content to the cache path."""
|
|
118
|
+
try:
|
|
119
|
+
os.makedirs(cache_dir, exist_ok=True)
|
|
120
|
+
tmp_path = cache_dir + "." + str(uuid.uuid4()) + ".tmp"
|
|
121
|
+
with open(tmp_path, "wb") as f:
|
|
122
|
+
f.write(content)
|
|
123
|
+
os.rename(tmp_path, cache_path)
|
|
124
|
+
except OSError:
|
|
125
|
+
# Don't raise if we cannot write file.
|
|
126
|
+
pass
|
|
127
|
+
|
|
128
|
+
|
|
129
|
+
def _load_from_url(*, file_url: str, expected_hash: str) -> bytes:
|
|
130
|
+
"""Loads model bytes from the given file url."""
|
|
131
|
+
content = _load_file(file_url)
|
|
132
|
+
if not _is_valid_model(model_data=content, expected_hash=expected_hash):
|
|
133
|
+
actual_hash = hashlib.sha256(content).hexdigest()
|
|
134
|
+
raise ValueError(
|
|
135
|
+
"Downloaded model file is corrupted."
|
|
136
|
+
f" Expected hash {expected_hash}. Got file hash {actual_hash}."
|
|
137
|
+
)
|
|
138
|
+
return content
|
|
139
|
+
|
|
140
|
+
|
|
141
|
+
def _load(*, file_url: str, expected_hash: str) -> bytes:
|
|
142
|
+
"""Loads model bytes from the given file url.
|
|
143
|
+
|
|
144
|
+
1. If the find local cached file for the given url and the cached file hash
|
|
145
|
+
matches the expected hash, the cached file is returned.
|
|
146
|
+
2. If local cached file is not found or the hash does not match, the file is
|
|
147
|
+
downloaded from the given url. And write to local cache and return the
|
|
148
|
+
file bytes.
|
|
149
|
+
3. If the file downloaded from the given url does not match the expected
|
|
150
|
+
hash, raise ValueError.
|
|
151
|
+
|
|
152
|
+
Args:
|
|
153
|
+
file_url: The url of the file to load.
|
|
154
|
+
expected_hash: The expected hash of the file.
|
|
155
|
+
|
|
156
|
+
Returns:
|
|
157
|
+
The file bytes.
|
|
158
|
+
"""
|
|
159
|
+
model_dir = os.path.join(tempfile.gettempdir(), "vertexai_tokenizer_model")
|
|
160
|
+
filename = hashlib.sha1(file_url.encode()).hexdigest()
|
|
161
|
+
model_path = os.path.join(model_dir, filename)
|
|
162
|
+
|
|
163
|
+
model_data = _maybe_load_from_cache(
|
|
164
|
+
file_path=model_path, expected_hash=expected_hash
|
|
165
|
+
)
|
|
166
|
+
if not model_data:
|
|
167
|
+
model_data = _load_from_url(file_url=file_url, expected_hash=expected_hash)
|
|
168
|
+
|
|
169
|
+
_maybe_save_to_cache(
|
|
170
|
+
cache_dir=model_dir, cache_path=model_path, content=model_data
|
|
171
|
+
)
|
|
172
|
+
return model_data
|
|
173
|
+
|
|
174
|
+
|
|
175
|
+
def _load_model_proto_bytes(tokenizer_name: str) -> bytes:
|
|
176
|
+
"""Loads model proto bytes from the given tokenizer name."""
|
|
177
|
+
if tokenizer_name not in _TOKENIZERS:
|
|
178
|
+
raise ValueError(
|
|
179
|
+
f"Tokenizer {tokenizer_name} is not supported."
|
|
180
|
+
f"Supported tokenizers: {list(_TOKENIZERS.keys())}"
|
|
181
|
+
)
|
|
182
|
+
return _load(
|
|
183
|
+
file_url=_TOKENIZERS[tokenizer_name].model_url,
|
|
184
|
+
expected_hash=_TOKENIZERS[tokenizer_name].model_hash,
|
|
185
|
+
)
|
|
186
|
+
|
|
187
|
+
|
|
188
|
+
@functools.lru_cache()
|
|
189
|
+
def load_model_proto(
|
|
190
|
+
tokenizer_name: str,
|
|
191
|
+
) -> sentencepiece_model_pb2.ModelProto:
|
|
192
|
+
"""Loads model proto from the given tokenizer name."""
|
|
193
|
+
model_proto = sentencepiece_model_pb2.ModelProto()
|
|
194
|
+
model_proto.ParseFromString(_load_model_proto_bytes(tokenizer_name))
|
|
195
|
+
return model_proto
|
|
196
|
+
|
|
197
|
+
|
|
198
|
+
def get_tokenizer_name(model_name: str) -> str:
|
|
199
|
+
"""Gets the tokenizer name for the given model name."""
|
|
200
|
+
if model_name in _GEMINI_MODELS_TO_TOKENIZER_NAMES.keys():
|
|
201
|
+
return _GEMINI_MODELS_TO_TOKENIZER_NAMES[model_name]
|
|
202
|
+
if model_name in _GEMINI_STABLE_MODELS_TO_TOKENIZER_NAMES.keys():
|
|
203
|
+
return _GEMINI_STABLE_MODELS_TO_TOKENIZER_NAMES[model_name]
|
|
204
|
+
raise ValueError(
|
|
205
|
+
f"Model {model_name} is not supported. Supported models: {', '.join(_GEMINI_MODELS_TO_TOKENIZER_NAMES.keys())}, {', '.join(_GEMINI_STABLE_MODELS_TO_TOKENIZER_NAMES.keys())}.\n" # pylint: disable=line-too-long
|
|
206
|
+
)
|
|
207
|
+
|
|
208
|
+
|
|
209
|
+
@functools.lru_cache()
|
|
210
|
+
def get_sentencepiece(tokenizer_name: str) -> spm.SentencePieceProcessor:
|
|
211
|
+
"""Loads sentencepiece tokenizer from the given tokenizer name."""
|
|
212
|
+
processor = spm.SentencePieceProcessor()
|
|
213
|
+
processor.LoadFromSerializedProto(_load_model_proto_bytes(tokenizer_name))
|
|
214
|
+
return processor
|
|
@@ -0,0 +1,117 @@
|
|
|
1
|
+
# Copyright 2025 Google LLC
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
#
|
|
15
|
+
|
|
16
|
+
"""Utils for working with MCP tools."""
|
|
17
|
+
|
|
18
|
+
from importlib.metadata import PackageNotFoundError, version
|
|
19
|
+
import typing
|
|
20
|
+
from typing import Any
|
|
21
|
+
|
|
22
|
+
from . import _common
|
|
23
|
+
from . import types
|
|
24
|
+
|
|
25
|
+
if typing.TYPE_CHECKING:
|
|
26
|
+
from mcp.types import Tool as McpTool
|
|
27
|
+
from mcp import ClientSession as McpClientSession
|
|
28
|
+
else:
|
|
29
|
+
McpClientSession: typing.Type = Any
|
|
30
|
+
McpTool: typing.Type = Any
|
|
31
|
+
try:
|
|
32
|
+
from mcp.types import Tool as McpTool
|
|
33
|
+
from mcp import ClientSession as McpClientSession
|
|
34
|
+
except ImportError:
|
|
35
|
+
McpTool = None
|
|
36
|
+
McpClientSession = None
|
|
37
|
+
|
|
38
|
+
|
|
39
|
+
def mcp_to_gemini_tool(tool: McpTool) -> types.Tool:
|
|
40
|
+
"""Translates an MCP tool to a Google GenAI tool."""
|
|
41
|
+
return types.Tool(
|
|
42
|
+
function_declarations=[{
|
|
43
|
+
"name": tool.name,
|
|
44
|
+
"description": tool.description,
|
|
45
|
+
"parameters": types.Schema.from_json_schema(
|
|
46
|
+
json_schema=types.JSONSchema(
|
|
47
|
+
**_filter_to_supported_schema(tool.inputSchema)
|
|
48
|
+
)
|
|
49
|
+
),
|
|
50
|
+
}]
|
|
51
|
+
)
|
|
52
|
+
|
|
53
|
+
|
|
54
|
+
def mcp_to_gemini_tools(tools: list[McpTool]) -> list[types.Tool]:
|
|
55
|
+
"""Translates a list of MCP tools to a list of Google GenAI tools."""
|
|
56
|
+
return [mcp_to_gemini_tool(tool) for tool in tools]
|
|
57
|
+
|
|
58
|
+
|
|
59
|
+
def has_mcp_tool_usage(tools: types.ToolListUnion) -> bool:
|
|
60
|
+
"""Checks whether the list of tools contains any MCP tools or sessions."""
|
|
61
|
+
if McpClientSession is None:
|
|
62
|
+
return False
|
|
63
|
+
for tool in tools:
|
|
64
|
+
if isinstance(tool, McpTool) or isinstance(tool, McpClientSession):
|
|
65
|
+
return True
|
|
66
|
+
return False
|
|
67
|
+
|
|
68
|
+
|
|
69
|
+
def has_mcp_session_usage(tools: types.ToolListUnion) -> bool:
|
|
70
|
+
"""Checks whether the list of tools contains any MCP sessions."""
|
|
71
|
+
if McpClientSession is None:
|
|
72
|
+
return False
|
|
73
|
+
for tool in tools:
|
|
74
|
+
if isinstance(tool, McpClientSession):
|
|
75
|
+
return True
|
|
76
|
+
return False
|
|
77
|
+
|
|
78
|
+
|
|
79
|
+
def set_mcp_usage_header(headers: dict[str, str]) -> None:
|
|
80
|
+
"""Sets the MCP version label in the Google API client header."""
|
|
81
|
+
if McpClientSession is None:
|
|
82
|
+
return
|
|
83
|
+
try:
|
|
84
|
+
version_label = version("mcp")
|
|
85
|
+
except PackageNotFoundError:
|
|
86
|
+
version_label = "0.0.0"
|
|
87
|
+
existing_header = headers.get("x-goog-api-client", "")
|
|
88
|
+
headers["x-goog-api-client"] = (
|
|
89
|
+
existing_header + f" mcp_used/{version_label}"
|
|
90
|
+
).lstrip()
|
|
91
|
+
|
|
92
|
+
|
|
93
|
+
def _filter_to_supported_schema(
|
|
94
|
+
schema: _common.StringDict,
|
|
95
|
+
) -> _common.StringDict:
|
|
96
|
+
"""Filters the schema to only include fields that are supported by JSONSchema."""
|
|
97
|
+
supported_fields: set[str] = set(types.JSONSchema.model_fields.keys())
|
|
98
|
+
schema_field_names: tuple[str] = ("items",) # 'additional_properties' to come
|
|
99
|
+
list_schema_field_names: tuple[str] = (
|
|
100
|
+
"any_of", # 'one_of', 'all_of', 'not' to come
|
|
101
|
+
)
|
|
102
|
+
dict_schema_field_names: tuple[str] = ("properties",) # 'defs' to come
|
|
103
|
+
for field_name, field_value in schema.items():
|
|
104
|
+
if field_name in schema_field_names:
|
|
105
|
+
schema[field_name] = _filter_to_supported_schema(field_value)
|
|
106
|
+
elif field_name in list_schema_field_names:
|
|
107
|
+
schema[field_name] = [
|
|
108
|
+
_filter_to_supported_schema(value) for value in field_value
|
|
109
|
+
]
|
|
110
|
+
elif field_name in dict_schema_field_names:
|
|
111
|
+
schema[field_name] = {
|
|
112
|
+
key: _filter_to_supported_schema(value)
|
|
113
|
+
for key, value in field_value.items()
|
|
114
|
+
}
|
|
115
|
+
return {
|
|
116
|
+
key: value for key, value in schema.items() if key in supported_fields
|
|
117
|
+
}
|