google-genai 1.46.0__py3-none-any.whl → 1.47.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- google/genai/_api_client.py +38 -15
- google/genai/_extra_utils.py +4 -0
- google/genai/_live_converters.py +61 -61
- google/genai/_tokens_converters.py +47 -47
- google/genai/_transformers.py +10 -1
- google/genai/batches.py +57 -57
- google/genai/caches.py +58 -58
- google/genai/client.py +4 -1
- google/genai/live.py +28 -18
- google/genai/models.py +89 -71
- google/genai/tunings.py +269 -94
- google/genai/types.py +1386 -1003
- google/genai/version.py +1 -1
- {google_genai-1.46.0.dist-info → google_genai-1.47.0.dist-info}/METADATA +151 -161
- {google_genai-1.46.0.dist-info → google_genai-1.47.0.dist-info}/RECORD +18 -18
- {google_genai-1.46.0.dist-info → google_genai-1.47.0.dist-info}/WHEEL +0 -0
- {google_genai-1.46.0.dist-info → google_genai-1.47.0.dist-info}/licenses/LICENSE +0 -0
- {google_genai-1.46.0.dist-info → google_genai-1.47.0.dist-info}/top_level.txt +0 -0
google/genai/tunings.py
CHANGED
|
@@ -35,6 +35,7 @@ logger = logging.getLogger('google_genai.tunings')
|
|
|
35
35
|
def _CancelTuningJobParameters_to_mldev(
|
|
36
36
|
from_object: Union[dict[str, Any], object],
|
|
37
37
|
parent_object: Optional[dict[str, Any]] = None,
|
|
38
|
+
root_object: Optional[Union[dict[str, Any], object]] = None,
|
|
38
39
|
) -> dict[str, Any]:
|
|
39
40
|
to_object: dict[str, Any] = {}
|
|
40
41
|
if getv(from_object, ['name']) is not None:
|
|
@@ -46,6 +47,7 @@ def _CancelTuningJobParameters_to_mldev(
|
|
|
46
47
|
def _CancelTuningJobParameters_to_vertex(
|
|
47
48
|
from_object: Union[dict[str, Any], object],
|
|
48
49
|
parent_object: Optional[dict[str, Any]] = None,
|
|
50
|
+
root_object: Optional[Union[dict[str, Any], object]] = None,
|
|
49
51
|
) -> dict[str, Any]:
|
|
50
52
|
to_object: dict[str, Any] = {}
|
|
51
53
|
if getv(from_object, ['name']) is not None:
|
|
@@ -57,6 +59,7 @@ def _CancelTuningJobParameters_to_vertex(
|
|
|
57
59
|
def _CreateTuningJobConfig_to_mldev(
|
|
58
60
|
from_object: Union[dict[str, Any], object],
|
|
59
61
|
parent_object: Optional[dict[str, Any]] = None,
|
|
62
|
+
root_object: Optional[Union[dict[str, Any], object]] = None,
|
|
60
63
|
) -> dict[str, Any]:
|
|
61
64
|
to_object: dict[str, Any] = {}
|
|
62
65
|
|
|
@@ -125,23 +128,41 @@ def _CreateTuningJobConfig_to_mldev(
|
|
|
125
128
|
if getv(from_object, ['labels']) is not None:
|
|
126
129
|
raise ValueError('labels parameter is not supported in Gemini API.')
|
|
127
130
|
|
|
131
|
+
if getv(from_object, ['beta']) is not None:
|
|
132
|
+
raise ValueError('beta parameter is not supported in Gemini API.')
|
|
133
|
+
|
|
128
134
|
return to_object
|
|
129
135
|
|
|
130
136
|
|
|
131
137
|
def _CreateTuningJobConfig_to_vertex(
|
|
132
138
|
from_object: Union[dict[str, Any], object],
|
|
133
139
|
parent_object: Optional[dict[str, Any]] = None,
|
|
140
|
+
root_object: Optional[Union[dict[str, Any], object]] = None,
|
|
134
141
|
) -> dict[str, Any]:
|
|
135
142
|
to_object: dict[str, Any] = {}
|
|
136
143
|
|
|
137
|
-
|
|
138
|
-
|
|
139
|
-
|
|
140
|
-
|
|
141
|
-
|
|
142
|
-
|
|
143
|
-
|
|
144
|
-
|
|
144
|
+
discriminator = getv(root_object, ['config', 'method'])
|
|
145
|
+
if discriminator is None:
|
|
146
|
+
discriminator = 'SUPERVISED_FINE_TUNING'
|
|
147
|
+
if discriminator == 'SUPERVISED_FINE_TUNING':
|
|
148
|
+
if getv(from_object, ['validation_dataset']) is not None:
|
|
149
|
+
setv(
|
|
150
|
+
parent_object,
|
|
151
|
+
['supervisedTuningSpec'],
|
|
152
|
+
_TuningValidationDataset_to_vertex(
|
|
153
|
+
getv(from_object, ['validation_dataset']), to_object, root_object
|
|
154
|
+
),
|
|
155
|
+
)
|
|
156
|
+
|
|
157
|
+
elif discriminator == 'PREFERENCE_TUNING':
|
|
158
|
+
if getv(from_object, ['validation_dataset']) is not None:
|
|
159
|
+
setv(
|
|
160
|
+
parent_object,
|
|
161
|
+
['preferenceOptimizationSpec'],
|
|
162
|
+
_TuningValidationDataset_to_vertex(
|
|
163
|
+
getv(from_object, ['validation_dataset']), to_object, root_object
|
|
164
|
+
),
|
|
165
|
+
)
|
|
145
166
|
|
|
146
167
|
if getv(from_object, ['tuned_model_display_name']) is not None:
|
|
147
168
|
setv(
|
|
@@ -153,33 +174,85 @@ def _CreateTuningJobConfig_to_vertex(
|
|
|
153
174
|
if getv(from_object, ['description']) is not None:
|
|
154
175
|
setv(parent_object, ['description'], getv(from_object, ['description']))
|
|
155
176
|
|
|
156
|
-
|
|
157
|
-
|
|
158
|
-
|
|
159
|
-
|
|
160
|
-
|
|
161
|
-
|
|
177
|
+
discriminator = getv(root_object, ['config', 'method'])
|
|
178
|
+
if discriminator is None:
|
|
179
|
+
discriminator = 'SUPERVISED_FINE_TUNING'
|
|
180
|
+
if discriminator == 'SUPERVISED_FINE_TUNING':
|
|
181
|
+
if getv(from_object, ['epoch_count']) is not None:
|
|
182
|
+
setv(
|
|
183
|
+
parent_object,
|
|
184
|
+
['supervisedTuningSpec', 'hyperParameters', 'epochCount'],
|
|
185
|
+
getv(from_object, ['epoch_count']),
|
|
186
|
+
)
|
|
162
187
|
|
|
163
|
-
|
|
164
|
-
|
|
165
|
-
|
|
166
|
-
|
|
167
|
-
|
|
168
|
-
|
|
188
|
+
elif discriminator == 'PREFERENCE_TUNING':
|
|
189
|
+
if getv(from_object, ['epoch_count']) is not None:
|
|
190
|
+
setv(
|
|
191
|
+
parent_object,
|
|
192
|
+
['preferenceOptimizationSpec', 'hyperParameters', 'epochCount'],
|
|
193
|
+
getv(from_object, ['epoch_count']),
|
|
194
|
+
)
|
|
169
195
|
|
|
170
|
-
|
|
171
|
-
|
|
172
|
-
|
|
173
|
-
|
|
174
|
-
|
|
175
|
-
|
|
196
|
+
discriminator = getv(root_object, ['config', 'method'])
|
|
197
|
+
if discriminator is None:
|
|
198
|
+
discriminator = 'SUPERVISED_FINE_TUNING'
|
|
199
|
+
if discriminator == 'SUPERVISED_FINE_TUNING':
|
|
200
|
+
if getv(from_object, ['learning_rate_multiplier']) is not None:
|
|
201
|
+
setv(
|
|
202
|
+
parent_object,
|
|
203
|
+
['supervisedTuningSpec', 'hyperParameters', 'learningRateMultiplier'],
|
|
204
|
+
getv(from_object, ['learning_rate_multiplier']),
|
|
205
|
+
)
|
|
176
206
|
|
|
177
|
-
|
|
178
|
-
|
|
179
|
-
|
|
180
|
-
|
|
181
|
-
|
|
182
|
-
|
|
207
|
+
elif discriminator == 'PREFERENCE_TUNING':
|
|
208
|
+
if getv(from_object, ['learning_rate_multiplier']) is not None:
|
|
209
|
+
setv(
|
|
210
|
+
parent_object,
|
|
211
|
+
[
|
|
212
|
+
'preferenceOptimizationSpec',
|
|
213
|
+
'hyperParameters',
|
|
214
|
+
'learningRateMultiplier',
|
|
215
|
+
],
|
|
216
|
+
getv(from_object, ['learning_rate_multiplier']),
|
|
217
|
+
)
|
|
218
|
+
|
|
219
|
+
discriminator = getv(root_object, ['config', 'method'])
|
|
220
|
+
if discriminator is None:
|
|
221
|
+
discriminator = 'SUPERVISED_FINE_TUNING'
|
|
222
|
+
if discriminator == 'SUPERVISED_FINE_TUNING':
|
|
223
|
+
if getv(from_object, ['export_last_checkpoint_only']) is not None:
|
|
224
|
+
setv(
|
|
225
|
+
parent_object,
|
|
226
|
+
['supervisedTuningSpec', 'exportLastCheckpointOnly'],
|
|
227
|
+
getv(from_object, ['export_last_checkpoint_only']),
|
|
228
|
+
)
|
|
229
|
+
|
|
230
|
+
elif discriminator == 'PREFERENCE_TUNING':
|
|
231
|
+
if getv(from_object, ['export_last_checkpoint_only']) is not None:
|
|
232
|
+
setv(
|
|
233
|
+
parent_object,
|
|
234
|
+
['preferenceOptimizationSpec', 'exportLastCheckpointOnly'],
|
|
235
|
+
getv(from_object, ['export_last_checkpoint_only']),
|
|
236
|
+
)
|
|
237
|
+
|
|
238
|
+
discriminator = getv(root_object, ['config', 'method'])
|
|
239
|
+
if discriminator is None:
|
|
240
|
+
discriminator = 'SUPERVISED_FINE_TUNING'
|
|
241
|
+
if discriminator == 'SUPERVISED_FINE_TUNING':
|
|
242
|
+
if getv(from_object, ['adapter_size']) is not None:
|
|
243
|
+
setv(
|
|
244
|
+
parent_object,
|
|
245
|
+
['supervisedTuningSpec', 'hyperParameters', 'adapterSize'],
|
|
246
|
+
getv(from_object, ['adapter_size']),
|
|
247
|
+
)
|
|
248
|
+
|
|
249
|
+
elif discriminator == 'PREFERENCE_TUNING':
|
|
250
|
+
if getv(from_object, ['adapter_size']) is not None:
|
|
251
|
+
setv(
|
|
252
|
+
parent_object,
|
|
253
|
+
['preferenceOptimizationSpec', 'hyperParameters', 'adapterSize'],
|
|
254
|
+
getv(from_object, ['adapter_size']),
|
|
255
|
+
)
|
|
183
256
|
|
|
184
257
|
if getv(from_object, ['batch_size']) is not None:
|
|
185
258
|
raise ValueError('batch_size parameter is not supported in Vertex AI.')
|
|
@@ -187,24 +260,46 @@ def _CreateTuningJobConfig_to_vertex(
|
|
|
187
260
|
if getv(from_object, ['learning_rate']) is not None:
|
|
188
261
|
raise ValueError('learning_rate parameter is not supported in Vertex AI.')
|
|
189
262
|
|
|
190
|
-
|
|
191
|
-
|
|
192
|
-
|
|
193
|
-
|
|
194
|
-
|
|
195
|
-
|
|
196
|
-
|
|
197
|
-
|
|
263
|
+
discriminator = getv(root_object, ['config', 'method'])
|
|
264
|
+
if discriminator is None:
|
|
265
|
+
discriminator = 'SUPERVISED_FINE_TUNING'
|
|
266
|
+
if discriminator == 'SUPERVISED_FINE_TUNING':
|
|
267
|
+
if getv(from_object, ['evaluation_config']) is not None:
|
|
268
|
+
setv(
|
|
269
|
+
parent_object,
|
|
270
|
+
['supervisedTuningSpec', 'evaluationConfig'],
|
|
271
|
+
_EvaluationConfig_to_vertex(
|
|
272
|
+
getv(from_object, ['evaluation_config']), to_object, root_object
|
|
273
|
+
),
|
|
274
|
+
)
|
|
275
|
+
|
|
276
|
+
elif discriminator == 'PREFERENCE_TUNING':
|
|
277
|
+
if getv(from_object, ['evaluation_config']) is not None:
|
|
278
|
+
setv(
|
|
279
|
+
parent_object,
|
|
280
|
+
['preferenceOptimizationSpec', 'evaluationConfig'],
|
|
281
|
+
_EvaluationConfig_to_vertex(
|
|
282
|
+
getv(from_object, ['evaluation_config']), to_object, root_object
|
|
283
|
+
),
|
|
284
|
+
)
|
|
198
285
|
|
|
199
286
|
if getv(from_object, ['labels']) is not None:
|
|
200
287
|
setv(parent_object, ['labels'], getv(from_object, ['labels']))
|
|
201
288
|
|
|
289
|
+
if getv(from_object, ['beta']) is not None:
|
|
290
|
+
setv(
|
|
291
|
+
parent_object,
|
|
292
|
+
['preferenceOptimizationSpec', 'hyperParameters', 'beta'],
|
|
293
|
+
getv(from_object, ['beta']),
|
|
294
|
+
)
|
|
295
|
+
|
|
202
296
|
return to_object
|
|
203
297
|
|
|
204
298
|
|
|
205
299
|
def _CreateTuningJobParametersPrivate_to_mldev(
|
|
206
300
|
from_object: Union[dict[str, Any], object],
|
|
207
301
|
parent_object: Optional[dict[str, Any]] = None,
|
|
302
|
+
root_object: Optional[Union[dict[str, Any], object]] = None,
|
|
208
303
|
) -> dict[str, Any]:
|
|
209
304
|
to_object: dict[str, Any] = {}
|
|
210
305
|
if getv(from_object, ['base_model']) is not None:
|
|
@@ -214,16 +309,14 @@ def _CreateTuningJobParametersPrivate_to_mldev(
|
|
|
214
309
|
setv(to_object, ['preTunedModel'], getv(from_object, ['pre_tuned_model']))
|
|
215
310
|
|
|
216
311
|
if getv(from_object, ['training_dataset']) is not None:
|
|
217
|
-
|
|
218
|
-
to_object,
|
|
219
|
-
['tuningTask', 'trainingData'],
|
|
220
|
-
_TuningDataset_to_mldev(
|
|
221
|
-
getv(from_object, ['training_dataset']), to_object
|
|
222
|
-
),
|
|
312
|
+
_TuningDataset_to_mldev(
|
|
313
|
+
getv(from_object, ['training_dataset']), to_object, root_object
|
|
223
314
|
)
|
|
224
315
|
|
|
225
316
|
if getv(from_object, ['config']) is not None:
|
|
226
|
-
_CreateTuningJobConfig_to_mldev(
|
|
317
|
+
_CreateTuningJobConfig_to_mldev(
|
|
318
|
+
getv(from_object, ['config']), to_object, root_object
|
|
319
|
+
)
|
|
227
320
|
|
|
228
321
|
return to_object
|
|
229
322
|
|
|
@@ -231,6 +324,7 @@ def _CreateTuningJobParametersPrivate_to_mldev(
|
|
|
231
324
|
def _CreateTuningJobParametersPrivate_to_vertex(
|
|
232
325
|
from_object: Union[dict[str, Any], object],
|
|
233
326
|
parent_object: Optional[dict[str, Any]] = None,
|
|
327
|
+
root_object: Optional[Union[dict[str, Any], object]] = None,
|
|
234
328
|
) -> dict[str, Any]:
|
|
235
329
|
to_object: dict[str, Any] = {}
|
|
236
330
|
if getv(from_object, ['base_model']) is not None:
|
|
@@ -240,16 +334,14 @@ def _CreateTuningJobParametersPrivate_to_vertex(
|
|
|
240
334
|
setv(to_object, ['preTunedModel'], getv(from_object, ['pre_tuned_model']))
|
|
241
335
|
|
|
242
336
|
if getv(from_object, ['training_dataset']) is not None:
|
|
243
|
-
|
|
244
|
-
to_object,
|
|
245
|
-
['supervisedTuningSpec', 'trainingDatasetUri'],
|
|
246
|
-
_TuningDataset_to_vertex(
|
|
247
|
-
getv(from_object, ['training_dataset']), to_object
|
|
248
|
-
),
|
|
337
|
+
_TuningDataset_to_vertex(
|
|
338
|
+
getv(from_object, ['training_dataset']), to_object, root_object
|
|
249
339
|
)
|
|
250
340
|
|
|
251
341
|
if getv(from_object, ['config']) is not None:
|
|
252
|
-
_CreateTuningJobConfig_to_vertex(
|
|
342
|
+
_CreateTuningJobConfig_to_vertex(
|
|
343
|
+
getv(from_object, ['config']), to_object, root_object
|
|
344
|
+
)
|
|
253
345
|
|
|
254
346
|
return to_object
|
|
255
347
|
|
|
@@ -257,6 +349,7 @@ def _CreateTuningJobParametersPrivate_to_vertex(
|
|
|
257
349
|
def _EvaluationConfig_from_vertex(
|
|
258
350
|
from_object: Union[dict[str, Any], object],
|
|
259
351
|
parent_object: Optional[dict[str, Any]] = None,
|
|
352
|
+
root_object: Optional[Union[dict[str, Any], object]] = None,
|
|
260
353
|
) -> dict[str, Any]:
|
|
261
354
|
to_object: dict[str, Any] = {}
|
|
262
355
|
if getv(from_object, ['metrics']) is not None:
|
|
@@ -276,6 +369,7 @@ def _EvaluationConfig_from_vertex(
|
|
|
276
369
|
def _EvaluationConfig_to_vertex(
|
|
277
370
|
from_object: Union[dict[str, Any], object],
|
|
278
371
|
parent_object: Optional[dict[str, Any]] = None,
|
|
372
|
+
root_object: Optional[Union[dict[str, Any], object]] = None,
|
|
279
373
|
) -> dict[str, Any]:
|
|
280
374
|
to_object: dict[str, Any] = {}
|
|
281
375
|
if getv(from_object, ['metrics']) is not None:
|
|
@@ -295,6 +389,7 @@ def _EvaluationConfig_to_vertex(
|
|
|
295
389
|
def _GetTuningJobParameters_to_mldev(
|
|
296
390
|
from_object: Union[dict[str, Any], object],
|
|
297
391
|
parent_object: Optional[dict[str, Any]] = None,
|
|
392
|
+
root_object: Optional[Union[dict[str, Any], object]] = None,
|
|
298
393
|
) -> dict[str, Any]:
|
|
299
394
|
to_object: dict[str, Any] = {}
|
|
300
395
|
if getv(from_object, ['name']) is not None:
|
|
@@ -306,6 +401,7 @@ def _GetTuningJobParameters_to_mldev(
|
|
|
306
401
|
def _GetTuningJobParameters_to_vertex(
|
|
307
402
|
from_object: Union[dict[str, Any], object],
|
|
308
403
|
parent_object: Optional[dict[str, Any]] = None,
|
|
404
|
+
root_object: Optional[Union[dict[str, Any], object]] = None,
|
|
309
405
|
) -> dict[str, Any]:
|
|
310
406
|
to_object: dict[str, Any] = {}
|
|
311
407
|
if getv(from_object, ['name']) is not None:
|
|
@@ -317,6 +413,7 @@ def _GetTuningJobParameters_to_vertex(
|
|
|
317
413
|
def _ListTuningJobsConfig_to_mldev(
|
|
318
414
|
from_object: Union[dict[str, Any], object],
|
|
319
415
|
parent_object: Optional[dict[str, Any]] = None,
|
|
416
|
+
root_object: Optional[Union[dict[str, Any], object]] = None,
|
|
320
417
|
) -> dict[str, Any]:
|
|
321
418
|
to_object: dict[str, Any] = {}
|
|
322
419
|
|
|
@@ -341,6 +438,7 @@ def _ListTuningJobsConfig_to_mldev(
|
|
|
341
438
|
def _ListTuningJobsConfig_to_vertex(
|
|
342
439
|
from_object: Union[dict[str, Any], object],
|
|
343
440
|
parent_object: Optional[dict[str, Any]] = None,
|
|
441
|
+
root_object: Optional[Union[dict[str, Any], object]] = None,
|
|
344
442
|
) -> dict[str, Any]:
|
|
345
443
|
to_object: dict[str, Any] = {}
|
|
346
444
|
|
|
@@ -365,10 +463,13 @@ def _ListTuningJobsConfig_to_vertex(
|
|
|
365
463
|
def _ListTuningJobsParameters_to_mldev(
|
|
366
464
|
from_object: Union[dict[str, Any], object],
|
|
367
465
|
parent_object: Optional[dict[str, Any]] = None,
|
|
466
|
+
root_object: Optional[Union[dict[str, Any], object]] = None,
|
|
368
467
|
) -> dict[str, Any]:
|
|
369
468
|
to_object: dict[str, Any] = {}
|
|
370
469
|
if getv(from_object, ['config']) is not None:
|
|
371
|
-
_ListTuningJobsConfig_to_mldev(
|
|
470
|
+
_ListTuningJobsConfig_to_mldev(
|
|
471
|
+
getv(from_object, ['config']), to_object, root_object
|
|
472
|
+
)
|
|
372
473
|
|
|
373
474
|
return to_object
|
|
374
475
|
|
|
@@ -376,10 +477,13 @@ def _ListTuningJobsParameters_to_mldev(
|
|
|
376
477
|
def _ListTuningJobsParameters_to_vertex(
|
|
377
478
|
from_object: Union[dict[str, Any], object],
|
|
378
479
|
parent_object: Optional[dict[str, Any]] = None,
|
|
480
|
+
root_object: Optional[Union[dict[str, Any], object]] = None,
|
|
379
481
|
) -> dict[str, Any]:
|
|
380
482
|
to_object: dict[str, Any] = {}
|
|
381
483
|
if getv(from_object, ['config']) is not None:
|
|
382
|
-
_ListTuningJobsConfig_to_vertex(
|
|
484
|
+
_ListTuningJobsConfig_to_vertex(
|
|
485
|
+
getv(from_object, ['config']), to_object, root_object
|
|
486
|
+
)
|
|
383
487
|
|
|
384
488
|
return to_object
|
|
385
489
|
|
|
@@ -387,6 +491,7 @@ def _ListTuningJobsParameters_to_vertex(
|
|
|
387
491
|
def _ListTuningJobsResponse_from_mldev(
|
|
388
492
|
from_object: Union[dict[str, Any], object],
|
|
389
493
|
parent_object: Optional[dict[str, Any]] = None,
|
|
494
|
+
root_object: Optional[Union[dict[str, Any], object]] = None,
|
|
390
495
|
) -> dict[str, Any]:
|
|
391
496
|
to_object: dict[str, Any] = {}
|
|
392
497
|
if getv(from_object, ['sdkHttpResponse']) is not None:
|
|
@@ -402,7 +507,7 @@ def _ListTuningJobsResponse_from_mldev(
|
|
|
402
507
|
to_object,
|
|
403
508
|
['tuning_jobs'],
|
|
404
509
|
[
|
|
405
|
-
_TuningJob_from_mldev(item, to_object)
|
|
510
|
+
_TuningJob_from_mldev(item, to_object, root_object)
|
|
406
511
|
for item in getv(from_object, ['tunedModels'])
|
|
407
512
|
],
|
|
408
513
|
)
|
|
@@ -413,6 +518,7 @@ def _ListTuningJobsResponse_from_mldev(
|
|
|
413
518
|
def _ListTuningJobsResponse_from_vertex(
|
|
414
519
|
from_object: Union[dict[str, Any], object],
|
|
415
520
|
parent_object: Optional[dict[str, Any]] = None,
|
|
521
|
+
root_object: Optional[Union[dict[str, Any], object]] = None,
|
|
416
522
|
) -> dict[str, Any]:
|
|
417
523
|
to_object: dict[str, Any] = {}
|
|
418
524
|
if getv(from_object, ['sdkHttpResponse']) is not None:
|
|
@@ -428,7 +534,7 @@ def _ListTuningJobsResponse_from_vertex(
|
|
|
428
534
|
to_object,
|
|
429
535
|
['tuning_jobs'],
|
|
430
536
|
[
|
|
431
|
-
_TuningJob_from_vertex(item, to_object)
|
|
537
|
+
_TuningJob_from_vertex(item, to_object, root_object)
|
|
432
538
|
for item in getv(from_object, ['tuningJobs'])
|
|
433
539
|
],
|
|
434
540
|
)
|
|
@@ -439,6 +545,7 @@ def _ListTuningJobsResponse_from_vertex(
|
|
|
439
545
|
def _TunedModel_from_mldev(
|
|
440
546
|
from_object: Union[dict[str, Any], object],
|
|
441
547
|
parent_object: Optional[dict[str, Any]] = None,
|
|
548
|
+
root_object: Optional[Union[dict[str, Any], object]] = None,
|
|
442
549
|
) -> dict[str, Any]:
|
|
443
550
|
to_object: dict[str, Any] = {}
|
|
444
551
|
if getv(from_object, ['name']) is not None:
|
|
@@ -453,6 +560,7 @@ def _TunedModel_from_mldev(
|
|
|
453
560
|
def _TuningDataset_to_mldev(
|
|
454
561
|
from_object: Union[dict[str, Any], object],
|
|
455
562
|
parent_object: Optional[dict[str, Any]] = None,
|
|
563
|
+
root_object: Optional[Union[dict[str, Any], object]] = None,
|
|
456
564
|
) -> dict[str, Any]:
|
|
457
565
|
to_object: dict[str, Any] = {}
|
|
458
566
|
if getv(from_object, ['gcs_uri']) is not None:
|
|
@@ -476,21 +584,47 @@ def _TuningDataset_to_mldev(
|
|
|
476
584
|
def _TuningDataset_to_vertex(
|
|
477
585
|
from_object: Union[dict[str, Any], object],
|
|
478
586
|
parent_object: Optional[dict[str, Any]] = None,
|
|
587
|
+
root_object: Optional[Union[dict[str, Any], object]] = None,
|
|
479
588
|
) -> dict[str, Any]:
|
|
480
589
|
to_object: dict[str, Any] = {}
|
|
481
|
-
if getv(from_object, ['gcs_uri']) is not None:
|
|
482
|
-
setv(
|
|
483
|
-
parent_object,
|
|
484
|
-
['supervisedTuningSpec', 'trainingDatasetUri'],
|
|
485
|
-
getv(from_object, ['gcs_uri']),
|
|
486
|
-
)
|
|
487
590
|
|
|
488
|
-
|
|
489
|
-
|
|
490
|
-
|
|
491
|
-
|
|
492
|
-
|
|
493
|
-
|
|
591
|
+
discriminator = getv(root_object, ['config', 'method'])
|
|
592
|
+
if discriminator is None:
|
|
593
|
+
discriminator = 'SUPERVISED_FINE_TUNING'
|
|
594
|
+
if discriminator == 'SUPERVISED_FINE_TUNING':
|
|
595
|
+
if getv(from_object, ['gcs_uri']) is not None:
|
|
596
|
+
setv(
|
|
597
|
+
parent_object,
|
|
598
|
+
['supervisedTuningSpec', 'trainingDatasetUri'],
|
|
599
|
+
getv(from_object, ['gcs_uri']),
|
|
600
|
+
)
|
|
601
|
+
|
|
602
|
+
elif discriminator == 'PREFERENCE_TUNING':
|
|
603
|
+
if getv(from_object, ['gcs_uri']) is not None:
|
|
604
|
+
setv(
|
|
605
|
+
parent_object,
|
|
606
|
+
['preferenceOptimizationSpec', 'trainingDatasetUri'],
|
|
607
|
+
getv(from_object, ['gcs_uri']),
|
|
608
|
+
)
|
|
609
|
+
|
|
610
|
+
discriminator = getv(root_object, ['config', 'method'])
|
|
611
|
+
if discriminator is None:
|
|
612
|
+
discriminator = 'SUPERVISED_FINE_TUNING'
|
|
613
|
+
if discriminator == 'SUPERVISED_FINE_TUNING':
|
|
614
|
+
if getv(from_object, ['vertex_dataset_resource']) is not None:
|
|
615
|
+
setv(
|
|
616
|
+
parent_object,
|
|
617
|
+
['supervisedTuningSpec', 'trainingDatasetUri'],
|
|
618
|
+
getv(from_object, ['vertex_dataset_resource']),
|
|
619
|
+
)
|
|
620
|
+
|
|
621
|
+
elif discriminator == 'PREFERENCE_TUNING':
|
|
622
|
+
if getv(from_object, ['vertex_dataset_resource']) is not None:
|
|
623
|
+
setv(
|
|
624
|
+
parent_object,
|
|
625
|
+
['preferenceOptimizationSpec', 'trainingDatasetUri'],
|
|
626
|
+
getv(from_object, ['vertex_dataset_resource']),
|
|
627
|
+
)
|
|
494
628
|
|
|
495
629
|
if getv(from_object, ['examples']) is not None:
|
|
496
630
|
raise ValueError('examples parameter is not supported in Vertex AI.')
|
|
@@ -501,6 +635,7 @@ def _TuningDataset_to_vertex(
|
|
|
501
635
|
def _TuningJob_from_mldev(
|
|
502
636
|
from_object: Union[dict[str, Any], object],
|
|
503
637
|
parent_object: Optional[dict[str, Any]] = None,
|
|
638
|
+
root_object: Optional[Union[dict[str, Any], object]] = None,
|
|
504
639
|
) -> dict[str, Any]:
|
|
505
640
|
to_object: dict[str, Any] = {}
|
|
506
641
|
if getv(from_object, ['sdkHttpResponse']) is not None:
|
|
@@ -548,7 +683,9 @@ def _TuningJob_from_mldev(
|
|
|
548
683
|
setv(
|
|
549
684
|
to_object,
|
|
550
685
|
['tuned_model'],
|
|
551
|
-
_TunedModel_from_mldev(
|
|
686
|
+
_TunedModel_from_mldev(
|
|
687
|
+
getv(from_object, ['_self']), to_object, root_object
|
|
688
|
+
),
|
|
552
689
|
)
|
|
553
690
|
|
|
554
691
|
return to_object
|
|
@@ -557,6 +694,7 @@ def _TuningJob_from_mldev(
|
|
|
557
694
|
def _TuningJob_from_vertex(
|
|
558
695
|
from_object: Union[dict[str, Any], object],
|
|
559
696
|
parent_object: Optional[dict[str, Any]] = None,
|
|
697
|
+
root_object: Optional[Union[dict[str, Any], object]] = None,
|
|
560
698
|
) -> dict[str, Any]:
|
|
561
699
|
to_object: dict[str, Any] = {}
|
|
562
700
|
if getv(from_object, ['sdkHttpResponse']) is not None:
|
|
@@ -608,6 +746,13 @@ def _TuningJob_from_vertex(
|
|
|
608
746
|
getv(from_object, ['supervisedTuningSpec']),
|
|
609
747
|
)
|
|
610
748
|
|
|
749
|
+
if getv(from_object, ['preferenceOptimizationSpec']) is not None:
|
|
750
|
+
setv(
|
|
751
|
+
to_object,
|
|
752
|
+
['preference_optimization_spec'],
|
|
753
|
+
getv(from_object, ['preferenceOptimizationSpec']),
|
|
754
|
+
)
|
|
755
|
+
|
|
611
756
|
if getv(from_object, ['tuningDataStats']) is not None:
|
|
612
757
|
setv(
|
|
613
758
|
to_object, ['tuning_data_stats'], getv(from_object, ['tuningDataStats'])
|
|
@@ -628,7 +773,7 @@ def _TuningJob_from_vertex(
|
|
|
628
773
|
to_object,
|
|
629
774
|
['evaluation_config'],
|
|
630
775
|
_EvaluationConfig_from_vertex(
|
|
631
|
-
getv(from_object, ['evaluationConfig']), to_object
|
|
776
|
+
getv(from_object, ['evaluationConfig']), to_object, root_object
|
|
632
777
|
),
|
|
633
778
|
)
|
|
634
779
|
|
|
@@ -668,6 +813,7 @@ def _TuningJob_from_vertex(
|
|
|
668
813
|
def _TuningOperation_from_mldev(
|
|
669
814
|
from_object: Union[dict[str, Any], object],
|
|
670
815
|
parent_object: Optional[dict[str, Any]] = None,
|
|
816
|
+
root_object: Optional[Union[dict[str, Any], object]] = None,
|
|
671
817
|
) -> dict[str, Any]:
|
|
672
818
|
to_object: dict[str, Any] = {}
|
|
673
819
|
if getv(from_object, ['sdkHttpResponse']) is not None:
|
|
@@ -693,6 +839,7 @@ def _TuningOperation_from_mldev(
|
|
|
693
839
|
def _TuningValidationDataset_to_vertex(
|
|
694
840
|
from_object: Union[dict[str, Any], object],
|
|
695
841
|
parent_object: Optional[dict[str, Any]] = None,
|
|
842
|
+
root_object: Optional[Union[dict[str, Any], object]] = None,
|
|
696
843
|
) -> dict[str, Any]:
|
|
697
844
|
to_object: dict[str, Any] = {}
|
|
698
845
|
if getv(from_object, ['gcs_uri']) is not None:
|
|
@@ -700,8 +847,8 @@ def _TuningValidationDataset_to_vertex(
|
|
|
700
847
|
|
|
701
848
|
if getv(from_object, ['vertex_dataset_resource']) is not None:
|
|
702
849
|
setv(
|
|
703
|
-
|
|
704
|
-
['
|
|
850
|
+
to_object,
|
|
851
|
+
['validationDatasetUri'],
|
|
705
852
|
getv(from_object, ['vertex_dataset_resource']),
|
|
706
853
|
)
|
|
707
854
|
|
|
@@ -733,14 +880,18 @@ class Tunings(_api_module.BaseModule):
|
|
|
733
880
|
request_url_dict: Optional[dict[str, str]]
|
|
734
881
|
|
|
735
882
|
if self._api_client.vertexai:
|
|
736
|
-
request_dict = _GetTuningJobParameters_to_vertex(
|
|
883
|
+
request_dict = _GetTuningJobParameters_to_vertex(
|
|
884
|
+
parameter_model, None, parameter_model
|
|
885
|
+
)
|
|
737
886
|
request_url_dict = request_dict.get('_url')
|
|
738
887
|
if request_url_dict:
|
|
739
888
|
path = '{name}'.format_map(request_url_dict)
|
|
740
889
|
else:
|
|
741
890
|
path = '{name}'
|
|
742
891
|
else:
|
|
743
|
-
request_dict = _GetTuningJobParameters_to_mldev(
|
|
892
|
+
request_dict = _GetTuningJobParameters_to_mldev(
|
|
893
|
+
parameter_model, None, parameter_model
|
|
894
|
+
)
|
|
744
895
|
request_url_dict = request_dict.get('_url')
|
|
745
896
|
if request_url_dict:
|
|
746
897
|
path = '{name}'.format_map(request_url_dict)
|
|
@@ -800,14 +951,18 @@ class Tunings(_api_module.BaseModule):
|
|
|
800
951
|
request_url_dict: Optional[dict[str, str]]
|
|
801
952
|
|
|
802
953
|
if self._api_client.vertexai:
|
|
803
|
-
request_dict = _ListTuningJobsParameters_to_vertex(
|
|
954
|
+
request_dict = _ListTuningJobsParameters_to_vertex(
|
|
955
|
+
parameter_model, None, parameter_model
|
|
956
|
+
)
|
|
804
957
|
request_url_dict = request_dict.get('_url')
|
|
805
958
|
if request_url_dict:
|
|
806
959
|
path = 'tuningJobs'.format_map(request_url_dict)
|
|
807
960
|
else:
|
|
808
961
|
path = 'tuningJobs'
|
|
809
962
|
else:
|
|
810
|
-
request_dict = _ListTuningJobsParameters_to_mldev(
|
|
963
|
+
request_dict = _ListTuningJobsParameters_to_mldev(
|
|
964
|
+
parameter_model, None, parameter_model
|
|
965
|
+
)
|
|
811
966
|
request_url_dict = request_dict.get('_url')
|
|
812
967
|
if request_url_dict:
|
|
813
968
|
path = 'tunedModels'.format_map(request_url_dict)
|
|
@@ -868,14 +1023,18 @@ class Tunings(_api_module.BaseModule):
|
|
|
868
1023
|
request_url_dict: Optional[dict[str, str]]
|
|
869
1024
|
|
|
870
1025
|
if self._api_client.vertexai:
|
|
871
|
-
request_dict = _CancelTuningJobParameters_to_vertex(
|
|
1026
|
+
request_dict = _CancelTuningJobParameters_to_vertex(
|
|
1027
|
+
parameter_model, None, parameter_model
|
|
1028
|
+
)
|
|
872
1029
|
request_url_dict = request_dict.get('_url')
|
|
873
1030
|
if request_url_dict:
|
|
874
1031
|
path = '{name}:cancel'.format_map(request_url_dict)
|
|
875
1032
|
else:
|
|
876
1033
|
path = '{name}:cancel'
|
|
877
1034
|
else:
|
|
878
|
-
request_dict = _CancelTuningJobParameters_to_mldev(
|
|
1035
|
+
request_dict = _CancelTuningJobParameters_to_mldev(
|
|
1036
|
+
parameter_model, None, parameter_model
|
|
1037
|
+
)
|
|
879
1038
|
request_url_dict = request_dict.get('_url')
|
|
880
1039
|
if request_url_dict:
|
|
881
1040
|
path = '{name}:cancel'.format_map(request_url_dict)
|
|
@@ -909,7 +1068,7 @@ class Tunings(_api_module.BaseModule):
|
|
|
909
1068
|
training_dataset: types.TuningDatasetOrDict,
|
|
910
1069
|
config: Optional[types.CreateTuningJobConfigOrDict] = None,
|
|
911
1070
|
) -> types.TuningJob:
|
|
912
|
-
"""Creates a
|
|
1071
|
+
"""Creates a tuning job and returns the TuningJob object.
|
|
913
1072
|
|
|
914
1073
|
Args:
|
|
915
1074
|
base_model: The name of the model to tune.
|
|
@@ -932,7 +1091,7 @@ class Tunings(_api_module.BaseModule):
|
|
|
932
1091
|
raise ValueError('This method is only supported in the Vertex AI client.')
|
|
933
1092
|
else:
|
|
934
1093
|
request_dict = _CreateTuningJobParametersPrivate_to_vertex(
|
|
935
|
-
parameter_model
|
|
1094
|
+
parameter_model, None, parameter_model
|
|
936
1095
|
)
|
|
937
1096
|
request_url_dict = request_dict.get('_url')
|
|
938
1097
|
if request_url_dict:
|
|
@@ -982,7 +1141,7 @@ class Tunings(_api_module.BaseModule):
|
|
|
982
1141
|
training_dataset: types.TuningDatasetOrDict,
|
|
983
1142
|
config: Optional[types.CreateTuningJobConfigOrDict] = None,
|
|
984
1143
|
) -> types.TuningOperation:
|
|
985
|
-
"""Creates a
|
|
1144
|
+
"""Creates a tuning job and returns the TuningJob object.
|
|
986
1145
|
|
|
987
1146
|
Args:
|
|
988
1147
|
base_model: The name of the model to tune.
|
|
@@ -1006,7 +1165,9 @@ class Tunings(_api_module.BaseModule):
|
|
|
1006
1165
|
'This method is only supported in the Gemini Developer client.'
|
|
1007
1166
|
)
|
|
1008
1167
|
else:
|
|
1009
|
-
request_dict = _CreateTuningJobParametersPrivate_to_mldev(
|
|
1168
|
+
request_dict = _CreateTuningJobParametersPrivate_to_mldev(
|
|
1169
|
+
parameter_model, None, parameter_model
|
|
1170
|
+
)
|
|
1010
1171
|
request_url_dict = request_dict.get('_url')
|
|
1011
1172
|
if request_url_dict:
|
|
1012
1173
|
path = 'tunedModels'.format_map(request_url_dict)
|
|
@@ -1184,14 +1345,18 @@ class AsyncTunings(_api_module.BaseModule):
|
|
|
1184
1345
|
request_url_dict: Optional[dict[str, str]]
|
|
1185
1346
|
|
|
1186
1347
|
if self._api_client.vertexai:
|
|
1187
|
-
request_dict = _GetTuningJobParameters_to_vertex(
|
|
1348
|
+
request_dict = _GetTuningJobParameters_to_vertex(
|
|
1349
|
+
parameter_model, None, parameter_model
|
|
1350
|
+
)
|
|
1188
1351
|
request_url_dict = request_dict.get('_url')
|
|
1189
1352
|
if request_url_dict:
|
|
1190
1353
|
path = '{name}'.format_map(request_url_dict)
|
|
1191
1354
|
else:
|
|
1192
1355
|
path = '{name}'
|
|
1193
1356
|
else:
|
|
1194
|
-
request_dict = _GetTuningJobParameters_to_mldev(
|
|
1357
|
+
request_dict = _GetTuningJobParameters_to_mldev(
|
|
1358
|
+
parameter_model, None, parameter_model
|
|
1359
|
+
)
|
|
1195
1360
|
request_url_dict = request_dict.get('_url')
|
|
1196
1361
|
if request_url_dict:
|
|
1197
1362
|
path = '{name}'.format_map(request_url_dict)
|
|
@@ -1253,14 +1418,18 @@ class AsyncTunings(_api_module.BaseModule):
|
|
|
1253
1418
|
request_url_dict: Optional[dict[str, str]]
|
|
1254
1419
|
|
|
1255
1420
|
if self._api_client.vertexai:
|
|
1256
|
-
request_dict = _ListTuningJobsParameters_to_vertex(
|
|
1421
|
+
request_dict = _ListTuningJobsParameters_to_vertex(
|
|
1422
|
+
parameter_model, None, parameter_model
|
|
1423
|
+
)
|
|
1257
1424
|
request_url_dict = request_dict.get('_url')
|
|
1258
1425
|
if request_url_dict:
|
|
1259
1426
|
path = 'tuningJobs'.format_map(request_url_dict)
|
|
1260
1427
|
else:
|
|
1261
1428
|
path = 'tuningJobs'
|
|
1262
1429
|
else:
|
|
1263
|
-
request_dict = _ListTuningJobsParameters_to_mldev(
|
|
1430
|
+
request_dict = _ListTuningJobsParameters_to_mldev(
|
|
1431
|
+
parameter_model, None, parameter_model
|
|
1432
|
+
)
|
|
1264
1433
|
request_url_dict = request_dict.get('_url')
|
|
1265
1434
|
if request_url_dict:
|
|
1266
1435
|
path = 'tunedModels'.format_map(request_url_dict)
|
|
@@ -1323,14 +1492,18 @@ class AsyncTunings(_api_module.BaseModule):
|
|
|
1323
1492
|
request_url_dict: Optional[dict[str, str]]
|
|
1324
1493
|
|
|
1325
1494
|
if self._api_client.vertexai:
|
|
1326
|
-
request_dict = _CancelTuningJobParameters_to_vertex(
|
|
1495
|
+
request_dict = _CancelTuningJobParameters_to_vertex(
|
|
1496
|
+
parameter_model, None, parameter_model
|
|
1497
|
+
)
|
|
1327
1498
|
request_url_dict = request_dict.get('_url')
|
|
1328
1499
|
if request_url_dict:
|
|
1329
1500
|
path = '{name}:cancel'.format_map(request_url_dict)
|
|
1330
1501
|
else:
|
|
1331
1502
|
path = '{name}:cancel'
|
|
1332
1503
|
else:
|
|
1333
|
-
request_dict = _CancelTuningJobParameters_to_mldev(
|
|
1504
|
+
request_dict = _CancelTuningJobParameters_to_mldev(
|
|
1505
|
+
parameter_model, None, parameter_model
|
|
1506
|
+
)
|
|
1334
1507
|
request_url_dict = request_dict.get('_url')
|
|
1335
1508
|
if request_url_dict:
|
|
1336
1509
|
path = '{name}:cancel'.format_map(request_url_dict)
|
|
@@ -1364,7 +1537,7 @@ class AsyncTunings(_api_module.BaseModule):
|
|
|
1364
1537
|
training_dataset: types.TuningDatasetOrDict,
|
|
1365
1538
|
config: Optional[types.CreateTuningJobConfigOrDict] = None,
|
|
1366
1539
|
) -> types.TuningJob:
|
|
1367
|
-
"""Creates a
|
|
1540
|
+
"""Creates a tuning job and returns the TuningJob object.
|
|
1368
1541
|
|
|
1369
1542
|
Args:
|
|
1370
1543
|
base_model: The name of the model to tune.
|
|
@@ -1387,7 +1560,7 @@ class AsyncTunings(_api_module.BaseModule):
|
|
|
1387
1560
|
raise ValueError('This method is only supported in the Vertex AI client.')
|
|
1388
1561
|
else:
|
|
1389
1562
|
request_dict = _CreateTuningJobParametersPrivate_to_vertex(
|
|
1390
|
-
parameter_model
|
|
1563
|
+
parameter_model, None, parameter_model
|
|
1391
1564
|
)
|
|
1392
1565
|
request_url_dict = request_dict.get('_url')
|
|
1393
1566
|
if request_url_dict:
|
|
@@ -1437,7 +1610,7 @@ class AsyncTunings(_api_module.BaseModule):
|
|
|
1437
1610
|
training_dataset: types.TuningDatasetOrDict,
|
|
1438
1611
|
config: Optional[types.CreateTuningJobConfigOrDict] = None,
|
|
1439
1612
|
) -> types.TuningOperation:
|
|
1440
|
-
"""Creates a
|
|
1613
|
+
"""Creates a tuning job and returns the TuningJob object.
|
|
1441
1614
|
|
|
1442
1615
|
Args:
|
|
1443
1616
|
base_model: The name of the model to tune.
|
|
@@ -1461,7 +1634,9 @@ class AsyncTunings(_api_module.BaseModule):
|
|
|
1461
1634
|
'This method is only supported in the Gemini Developer client.'
|
|
1462
1635
|
)
|
|
1463
1636
|
else:
|
|
1464
|
-
request_dict = _CreateTuningJobParametersPrivate_to_mldev(
|
|
1637
|
+
request_dict = _CreateTuningJobParametersPrivate_to_mldev(
|
|
1638
|
+
parameter_model, None, parameter_model
|
|
1639
|
+
)
|
|
1465
1640
|
request_url_dict = request_dict.get('_url')
|
|
1466
1641
|
if request_url_dict:
|
|
1467
1642
|
path = 'tunedModels'.format_map(request_url_dict)
|