google-genai 1.31.0__py3-none-any.whl → 1.33.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -584,13 +584,9 @@ class BaseApiClient:
584
584
  # Initialize the lock. This lock will be used to protect access to the
585
585
  # credentials. This is crucial for thread safety when multiple coroutines
586
586
  # might be accessing the credentials at the same time.
587
- try:
588
- self._sync_auth_lock = threading.Lock()
589
- self._async_auth_lock = asyncio.Lock()
590
- except RuntimeError:
591
- asyncio.set_event_loop(asyncio.new_event_loop())
592
- self._sync_auth_lock = threading.Lock()
593
- self._async_auth_lock = asyncio.Lock()
587
+ self._sync_auth_lock = threading.Lock()
588
+ self._async_auth_lock: Optional[asyncio.Lock] = None
589
+ self._async_auth_lock_creation_lock: Optional[asyncio.Lock] = None
594
590
 
595
591
  # Handle when to use Vertex AI in express mode (api key).
596
592
  # Explicit initializer arguments are already validated above.
@@ -903,10 +899,36 @@ class BaseApiClient:
903
899
  else:
904
900
  raise RuntimeError('Could not resolve API token from the environment')
905
901
 
902
+ async def _get_async_auth_lock(self) -> asyncio.Lock:
903
+ """Lazily initializes and returns an asyncio.Lock for async authentication.
904
+
905
+ This method ensures that a single `asyncio.Lock` instance is created and
906
+ shared among all asynchronous operations that require authentication,
907
+ preventing race conditions when accessing or refreshing credentials.
908
+
909
+ The lock is created on the first call to this method. An internal async lock
910
+ is used to protect the creation of the main authentication lock to ensure
911
+ it's a singleton within the client instance.
912
+
913
+ Returns:
914
+ The asyncio.Lock instance for asynchronous authentication operations.
915
+ """
916
+ if self._async_auth_lock is None:
917
+ # Create async creation lock if needed
918
+ if self._async_auth_lock_creation_lock is None:
919
+ self._async_auth_lock_creation_lock = asyncio.Lock()
920
+
921
+ async with self._async_auth_lock_creation_lock:
922
+ if self._async_auth_lock is None:
923
+ self._async_auth_lock = asyncio.Lock()
924
+
925
+ return self._async_auth_lock
926
+
906
927
  async def _async_access_token(self) -> Union[str, Any]:
907
928
  """Retrieves the access token for the credentials asynchronously."""
908
929
  if not self._credentials:
909
- async with self._async_auth_lock:
930
+ async_auth_lock = await self._get_async_auth_lock()
931
+ async with async_auth_lock:
910
932
  # This ensures that only one coroutine can execute the auth logic at a
911
933
  # time for thread safety.
912
934
  if not self._credentials:
@@ -920,7 +942,8 @@ class BaseApiClient:
920
942
  if self._credentials:
921
943
  if self._credentials.expired or not self._credentials.token:
922
944
  # Only refresh when it needs to. Default expiration is 3600 seconds.
923
- async with self._async_auth_lock:
945
+ async_auth_lock = await self._get_async_auth_lock()
946
+ async with async_auth_lock:
924
947
  if self._credentials.expired or not self._credentials.token:
925
948
  # Double check that the credentials expired before refreshing.
926
949
  await asyncio.to_thread(refresh_auth, self._credentials)
@@ -0,0 +1,26 @@
1
+ # Copyright 2025 Google LLC
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ #
15
+
16
+ """Base transformers for Google GenAI SDK."""
17
+ import base64
18
+
19
+ # Some fields don't accept url safe base64 encoding.
20
+ # We shouldn't use this transformer if the backend adhere to Cloud Type
21
+ # format https://cloud.google.com/docs/discovery/type-format.
22
+ # TODO(b/389133914,b/390320301): Remove the hack after backend fix the issue.
23
+ def t_bytes(data: bytes) -> str:
24
+ if not isinstance(data, bytes):
25
+ return data
26
+ return base64.b64encode(data).decode('ascii')
@@ -0,0 +1,223 @@
1
+ # Copyright 2025 Google LLC
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ #
15
+
16
+ import dataclasses
17
+ import functools
18
+ import hashlib
19
+ import os
20
+ import tempfile
21
+ from typing import Optional, cast
22
+ import uuid
23
+
24
+ import requests # type: ignore
25
+ import sentencepiece as spm
26
+ from sentencepiece import sentencepiece_model_pb2
27
+
28
+
29
+ # Source of truth: https://cloud.google.com/vertex-ai/generative-ai/docs/learn/models
30
+ _GEMINI_MODELS_TO_TOKENIZER_NAMES = {
31
+ "gemini-1.0-pro": "gemma2",
32
+ "gemini-1.5-pro": "gemma2",
33
+ "gemini-1.5-flash": "gemma2",
34
+ "gemini-2.5-pro": "gemma3",
35
+ "gemini-2.5-flash": "gemma3",
36
+ "gemini-2.5-flash-lite": "gemma3",
37
+ "gemini-2.0-flash": "gemma3",
38
+ "gemini-2.0-flash-lite": "gemma3",
39
+ }
40
+ _GEMINI_STABLE_MODELS_TO_TOKENIZER_NAMES = {
41
+ "gemini-1.0-pro-001": "gemma2",
42
+ "gemini-1.0-pro-002": "gemma2",
43
+ "gemini-1.5-pro-001": "gemma2",
44
+ "gemini-1.5-flash-001": "gemma2",
45
+ "gemini-1.5-flash-002": "gemma2",
46
+ "gemini-1.5-pro-002": "gemma2",
47
+ "gemini-2.5-pro-preview-06-05": "gemma3",
48
+ "gemini-2.5-pro-preview-05-06": "gemma3",
49
+ "gemini-2.5-pro-exp-03-25": "gemma3",
50
+ "gemini-live-2.5-flash": "gemma3",
51
+ "gemini-2.5-flash-preview-05-20": "gemma3",
52
+ "gemini-2.5-flash-preview-04-17": "gemma3",
53
+ "gemini-2.5-flash-lite-preview-06-17": "gemma3",
54
+ "gemini-2.0-flash-001": "gemma3",
55
+ "gemini-2.0-flash-lite-001": "gemma3",
56
+ }
57
+
58
+
59
+ @dataclasses.dataclass(frozen=True)
60
+ class _TokenizerConfig:
61
+ model_url: str
62
+ model_hash: str
63
+
64
+
65
+ # TODO: update gemma3 tokenizer
66
+ _TOKENIZERS = {
67
+ "gemma2": _TokenizerConfig(
68
+ model_url="https://raw.githubusercontent.com/google/gemma_pytorch/33b652c465537c6158f9a472ea5700e5e770ad3f/tokenizer/tokenizer.model",
69
+ model_hash=(
70
+ "61a7b147390c64585d6c3543dd6fc636906c9af3865a5548f27f31aee1d4c8e2"
71
+ ),
72
+ ),
73
+ "gemma3": _TokenizerConfig(
74
+ model_url="https://raw.githubusercontent.com/google/gemma_pytorch/014acb7ac4563a5f77c76d7ff98f31b568c16508/tokenizer/gemma3_cleaned_262144_v2.spiece.model",
75
+ model_hash=(
76
+ "1299c11d7cf632ef3b4e11937501358ada021bbdf7c47638d13c0ee982f2e79c"
77
+ ),
78
+ ),
79
+ }
80
+
81
+
82
+ def _load_file(file_url_path: str) -> bytes:
83
+ """Loads file bytes from the given file url path."""
84
+ resp = requests.get(file_url_path)
85
+ resp.raise_for_status()
86
+ return cast(bytes, resp.content)
87
+
88
+
89
+ def _is_valid_model(*, model_data: bytes, expected_hash: str) -> bool:
90
+ """Returns true if the content is valid by checking the hash."""
91
+ if not expected_hash:
92
+ raise ValueError("expected_hash is required")
93
+ return hashlib.sha256(model_data).hexdigest() == expected_hash
94
+
95
+
96
+ def _maybe_remove_file(file_path: str) -> None:
97
+ """Removes the file if exists."""
98
+ if not os.path.exists(file_path):
99
+ return
100
+ try:
101
+ os.remove(file_path)
102
+ except OSError:
103
+ # Don't raise if we cannot remove file.
104
+ pass
105
+
106
+
107
+ def _maybe_load_from_cache(
108
+ *, file_path: str, expected_hash: str
109
+ ) -> Optional[bytes]:
110
+ """Loads the content from the cache path."""
111
+ if not os.path.exists(file_path):
112
+ return None
113
+ with open(file_path, "rb") as f:
114
+ content = f.read()
115
+ if _is_valid_model(model_data=content, expected_hash=expected_hash):
116
+ return content
117
+
118
+ # Cached file corrupted.
119
+ _maybe_remove_file(file_path)
120
+ return None
121
+
122
+
123
+ def _maybe_save_to_cache(
124
+ *, cache_dir: str, cache_path: str, content: bytes
125
+ ) -> None:
126
+ """Saves the content to the cache path."""
127
+ try:
128
+ os.makedirs(cache_dir, exist_ok=True)
129
+ tmp_path = cache_dir + "." + str(uuid.uuid4()) + ".tmp"
130
+ with open(tmp_path, "wb") as f:
131
+ f.write(content)
132
+ os.rename(tmp_path, cache_path)
133
+ except OSError:
134
+ # Don't raise if we cannot write file.
135
+ pass
136
+
137
+
138
+ def _load_from_url(*, file_url: str, expected_hash: str) -> bytes:
139
+ """Loads model bytes from the given file url."""
140
+ content = _load_file(file_url)
141
+ if not _is_valid_model(model_data=content, expected_hash=expected_hash):
142
+ actual_hash = hashlib.sha256(content).hexdigest()
143
+ raise ValueError(
144
+ "Downloaded model file is corrupted."
145
+ f" Expected hash {expected_hash}. Got file hash {actual_hash}."
146
+ )
147
+ return content
148
+
149
+
150
+ def _load(*, file_url: str, expected_hash: str) -> bytes:
151
+ """Loads model bytes from the given file url.
152
+
153
+ 1. If the find local cached file for the given url and the cached file hash
154
+ matches the expected hash, the cached file is returned.
155
+ 2. If local cached file is not found or the hash does not match, the file is
156
+ downloaded from the given url. And write to local cache and return the
157
+ file bytes.
158
+ 3. If the file downloaded from the given url does not match the expected
159
+ hash, raise ValueError.
160
+
161
+ Args:
162
+ file_url: The url of the file to load.
163
+ expected_hash: The expected hash of the file.
164
+
165
+ Returns:
166
+ The file bytes.
167
+ """
168
+ model_dir = os.path.join(tempfile.gettempdir(), "vertexai_tokenizer_model")
169
+ filename = hashlib.sha1(file_url.encode()).hexdigest()
170
+ model_path = os.path.join(model_dir, filename)
171
+
172
+ model_data = _maybe_load_from_cache(
173
+ file_path=model_path, expected_hash=expected_hash
174
+ )
175
+ if not model_data:
176
+ model_data = _load_from_url(file_url=file_url, expected_hash=expected_hash)
177
+
178
+ _maybe_save_to_cache(
179
+ cache_dir=model_dir, cache_path=model_path, content=model_data
180
+ )
181
+ return model_data
182
+
183
+
184
+ def _load_model_proto_bytes(tokenizer_name: str) -> bytes:
185
+ """Loads model proto bytes from the given tokenizer name."""
186
+ if tokenizer_name not in _TOKENIZERS:
187
+ raise ValueError(
188
+ f"Tokenizer {tokenizer_name} is not supported."
189
+ f"Supported tokenizers: {list(_TOKENIZERS.keys())}"
190
+ )
191
+ return _load(
192
+ file_url=_TOKENIZERS[tokenizer_name].model_url,
193
+ expected_hash=_TOKENIZERS[tokenizer_name].model_hash,
194
+ )
195
+
196
+
197
+ @functools.lru_cache()
198
+ def load_model_proto(
199
+ tokenizer_name: str,
200
+ ) -> sentencepiece_model_pb2.ModelProto:
201
+ """Loads model proto from the given tokenizer name."""
202
+ model_proto = sentencepiece_model_pb2.ModelProto()
203
+ model_proto.ParseFromString(_load_model_proto_bytes(tokenizer_name))
204
+ return model_proto
205
+
206
+
207
+ def get_tokenizer_name(model_name: str) -> str:
208
+ """Gets the tokenizer name for the given model name."""
209
+ if model_name in _GEMINI_MODELS_TO_TOKENIZER_NAMES.keys():
210
+ return _GEMINI_MODELS_TO_TOKENIZER_NAMES[model_name]
211
+ if model_name in _GEMINI_STABLE_MODELS_TO_TOKENIZER_NAMES.keys():
212
+ return _GEMINI_STABLE_MODELS_TO_TOKENIZER_NAMES[model_name]
213
+ raise ValueError(
214
+ f"Model {model_name} is not supported. Supported models: {', '.join(_GEMINI_MODELS_TO_TOKENIZER_NAMES.keys())}, {', '.join(_GEMINI_STABLE_MODELS_TO_TOKENIZER_NAMES.keys())}.\n" # pylint: disable=line-too-long
215
+ )
216
+
217
+
218
+ @functools.lru_cache()
219
+ def get_sentencepiece(tokenizer_name: str) -> spm.SentencePieceProcessor:
220
+ """Loads sentencepiece tokenizer from the given tokenizer name."""
221
+ processor = spm.SentencePieceProcessor()
222
+ processor.LoadFromSerializedProto(_load_model_proto_bytes(tokenizer_name))
223
+ return processor
@@ -0,0 +1,307 @@
1
+ # Copyright 2025 Google LLC
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ #
15
+
16
+ # Code generated by the Google Gen AI SDK generator DO NOT EDIT.
17
+
18
+ from typing import Any, Optional, Union
19
+ from . import _base_transformers as base_t
20
+ from ._common import get_value_by_path as getv
21
+ from ._common import set_value_by_path as setv
22
+
23
+
24
+ def _FetchPredictOperationParameters_to_mldev(
25
+ from_object: Union[dict[str, Any], object],
26
+ parent_object: Optional[dict[str, Any]] = None,
27
+ ) -> dict[str, Any]:
28
+ to_object: dict[str, Any] = {}
29
+ if getv(from_object, ['operation_name']) is not None:
30
+ raise ValueError('operation_name parameter is not supported in Gemini API.')
31
+
32
+ if getv(from_object, ['resource_name']) is not None:
33
+ raise ValueError('resource_name parameter is not supported in Gemini API.')
34
+
35
+ if getv(from_object, ['config']) is not None:
36
+ raise ValueError('config parameter is not supported in Gemini API.')
37
+
38
+ return to_object
39
+
40
+
41
+ def _GetOperationParameters_to_mldev(
42
+ from_object: Union[dict[str, Any], object],
43
+ parent_object: Optional[dict[str, Any]] = None,
44
+ ) -> dict[str, Any]:
45
+ to_object: dict[str, Any] = {}
46
+ if getv(from_object, ['operation_name']) is not None:
47
+ setv(
48
+ to_object,
49
+ ['_url', 'operationName'],
50
+ getv(from_object, ['operation_name']),
51
+ )
52
+
53
+ if getv(from_object, ['config']) is not None:
54
+ setv(to_object, ['config'], getv(from_object, ['config']))
55
+
56
+ return to_object
57
+
58
+
59
+ def _FetchPredictOperationParameters_to_vertex(
60
+ from_object: Union[dict[str, Any], object],
61
+ parent_object: Optional[dict[str, Any]] = None,
62
+ ) -> dict[str, Any]:
63
+ to_object: dict[str, Any] = {}
64
+ if getv(from_object, ['operation_name']) is not None:
65
+ setv(to_object, ['operationName'], getv(from_object, ['operation_name']))
66
+
67
+ if getv(from_object, ['resource_name']) is not None:
68
+ setv(
69
+ to_object,
70
+ ['_url', 'resourceName'],
71
+ getv(from_object, ['resource_name']),
72
+ )
73
+
74
+ if getv(from_object, ['config']) is not None:
75
+ setv(to_object, ['config'], getv(from_object, ['config']))
76
+
77
+ return to_object
78
+
79
+
80
+ def _GetOperationParameters_to_vertex(
81
+ from_object: Union[dict[str, Any], object],
82
+ parent_object: Optional[dict[str, Any]] = None,
83
+ ) -> dict[str, Any]:
84
+ to_object: dict[str, Any] = {}
85
+ if getv(from_object, ['operation_name']) is not None:
86
+ setv(
87
+ to_object,
88
+ ['_url', 'operationName'],
89
+ getv(from_object, ['operation_name']),
90
+ )
91
+
92
+ if getv(from_object, ['config']) is not None:
93
+ setv(to_object, ['config'], getv(from_object, ['config']))
94
+
95
+ return to_object
96
+
97
+
98
+ def _Video_from_mldev(
99
+ from_object: Union[dict[str, Any], object],
100
+ parent_object: Optional[dict[str, Any]] = None,
101
+ ) -> dict[str, Any]:
102
+ to_object: dict[str, Any] = {}
103
+ if getv(from_object, ['video', 'uri']) is not None:
104
+ setv(to_object, ['uri'], getv(from_object, ['video', 'uri']))
105
+
106
+ if getv(from_object, ['video', 'encodedVideo']) is not None:
107
+ setv(
108
+ to_object,
109
+ ['video_bytes'],
110
+ base_t.t_bytes(getv(from_object, ['video', 'encodedVideo'])),
111
+ )
112
+
113
+ if getv(from_object, ['encoding']) is not None:
114
+ setv(to_object, ['mime_type'], getv(from_object, ['encoding']))
115
+
116
+ return to_object
117
+
118
+
119
+ def _GeneratedVideo_from_mldev(
120
+ from_object: Union[dict[str, Any], object],
121
+ parent_object: Optional[dict[str, Any]] = None,
122
+ ) -> dict[str, Any]:
123
+ to_object: dict[str, Any] = {}
124
+ if getv(from_object, ['_self']) is not None:
125
+ setv(
126
+ to_object,
127
+ ['video'],
128
+ _Video_from_mldev(getv(from_object, ['_self']), to_object),
129
+ )
130
+
131
+ return to_object
132
+
133
+
134
+ def _GenerateVideosResponse_from_mldev(
135
+ from_object: Union[dict[str, Any], object],
136
+ parent_object: Optional[dict[str, Any]] = None,
137
+ ) -> dict[str, Any]:
138
+ to_object: dict[str, Any] = {}
139
+ if getv(from_object, ['generatedSamples']) is not None:
140
+ setv(
141
+ to_object,
142
+ ['generated_videos'],
143
+ [
144
+ _GeneratedVideo_from_mldev(item, to_object)
145
+ for item in getv(from_object, ['generatedSamples'])
146
+ ],
147
+ )
148
+
149
+ if getv(from_object, ['raiMediaFilteredCount']) is not None:
150
+ setv(
151
+ to_object,
152
+ ['rai_media_filtered_count'],
153
+ getv(from_object, ['raiMediaFilteredCount']),
154
+ )
155
+
156
+ if getv(from_object, ['raiMediaFilteredReasons']) is not None:
157
+ setv(
158
+ to_object,
159
+ ['rai_media_filtered_reasons'],
160
+ getv(from_object, ['raiMediaFilteredReasons']),
161
+ )
162
+
163
+ return to_object
164
+
165
+
166
+ def _GenerateVideosOperation_from_mldev(
167
+ from_object: Union[dict[str, Any], object],
168
+ parent_object: Optional[dict[str, Any]] = None,
169
+ ) -> dict[str, Any]:
170
+ to_object: dict[str, Any] = {}
171
+ if getv(from_object, ['name']) is not None:
172
+ setv(to_object, ['name'], getv(from_object, ['name']))
173
+
174
+ if getv(from_object, ['metadata']) is not None:
175
+ setv(to_object, ['metadata'], getv(from_object, ['metadata']))
176
+
177
+ if getv(from_object, ['done']) is not None:
178
+ setv(to_object, ['done'], getv(from_object, ['done']))
179
+
180
+ if getv(from_object, ['error']) is not None:
181
+ setv(to_object, ['error'], getv(from_object, ['error']))
182
+
183
+ if getv(from_object, ['response', 'generateVideoResponse']) is not None:
184
+ setv(
185
+ to_object,
186
+ ['response'],
187
+ _GenerateVideosResponse_from_mldev(
188
+ getv(from_object, ['response', 'generateVideoResponse']), to_object
189
+ ),
190
+ )
191
+
192
+ if getv(from_object, ['response', 'generateVideoResponse']) is not None:
193
+ setv(
194
+ to_object,
195
+ ['result'],
196
+ _GenerateVideosResponse_from_mldev(
197
+ getv(from_object, ['response', 'generateVideoResponse']), to_object
198
+ ),
199
+ )
200
+
201
+ return to_object
202
+
203
+
204
+ def _Video_from_vertex(
205
+ from_object: Union[dict[str, Any], object],
206
+ parent_object: Optional[dict[str, Any]] = None,
207
+ ) -> dict[str, Any]:
208
+ to_object: dict[str, Any] = {}
209
+ if getv(from_object, ['gcsUri']) is not None:
210
+ setv(to_object, ['uri'], getv(from_object, ['gcsUri']))
211
+
212
+ if getv(from_object, ['bytesBase64Encoded']) is not None:
213
+ setv(
214
+ to_object,
215
+ ['video_bytes'],
216
+ base_t.t_bytes(getv(from_object, ['bytesBase64Encoded'])),
217
+ )
218
+
219
+ if getv(from_object, ['mimeType']) is not None:
220
+ setv(to_object, ['mime_type'], getv(from_object, ['mimeType']))
221
+
222
+ return to_object
223
+
224
+
225
+ def _GeneratedVideo_from_vertex(
226
+ from_object: Union[dict[str, Any], object],
227
+ parent_object: Optional[dict[str, Any]] = None,
228
+ ) -> dict[str, Any]:
229
+ to_object: dict[str, Any] = {}
230
+ if getv(from_object, ['_self']) is not None:
231
+ setv(
232
+ to_object,
233
+ ['video'],
234
+ _Video_from_vertex(getv(from_object, ['_self']), to_object),
235
+ )
236
+
237
+ return to_object
238
+
239
+
240
+ def _GenerateVideosResponse_from_vertex(
241
+ from_object: Union[dict[str, Any], object],
242
+ parent_object: Optional[dict[str, Any]] = None,
243
+ ) -> dict[str, Any]:
244
+ to_object: dict[str, Any] = {}
245
+ if getv(from_object, ['videos']) is not None:
246
+ setv(
247
+ to_object,
248
+ ['generated_videos'],
249
+ [
250
+ _GeneratedVideo_from_vertex(item, to_object)
251
+ for item in getv(from_object, ['videos'])
252
+ ],
253
+ )
254
+
255
+ if getv(from_object, ['raiMediaFilteredCount']) is not None:
256
+ setv(
257
+ to_object,
258
+ ['rai_media_filtered_count'],
259
+ getv(from_object, ['raiMediaFilteredCount']),
260
+ )
261
+
262
+ if getv(from_object, ['raiMediaFilteredReasons']) is not None:
263
+ setv(
264
+ to_object,
265
+ ['rai_media_filtered_reasons'],
266
+ getv(from_object, ['raiMediaFilteredReasons']),
267
+ )
268
+
269
+ return to_object
270
+
271
+
272
+ def _GenerateVideosOperation_from_vertex(
273
+ from_object: Union[dict[str, Any], object],
274
+ parent_object: Optional[dict[str, Any]] = None,
275
+ ) -> dict[str, Any]:
276
+ to_object: dict[str, Any] = {}
277
+ if getv(from_object, ['name']) is not None:
278
+ setv(to_object, ['name'], getv(from_object, ['name']))
279
+
280
+ if getv(from_object, ['metadata']) is not None:
281
+ setv(to_object, ['metadata'], getv(from_object, ['metadata']))
282
+
283
+ if getv(from_object, ['done']) is not None:
284
+ setv(to_object, ['done'], getv(from_object, ['done']))
285
+
286
+ if getv(from_object, ['error']) is not None:
287
+ setv(to_object, ['error'], getv(from_object, ['error']))
288
+
289
+ if getv(from_object, ['response']) is not None:
290
+ setv(
291
+ to_object,
292
+ ['response'],
293
+ _GenerateVideosResponse_from_vertex(
294
+ getv(from_object, ['response']), to_object
295
+ ),
296
+ )
297
+
298
+ if getv(from_object, ['response']) is not None:
299
+ setv(
300
+ to_object,
301
+ ['result'],
302
+ _GenerateVideosResponse_from_vertex(
303
+ getv(from_object, ['response']), to_object
304
+ ),
305
+ )
306
+
307
+ return to_object
@@ -471,6 +471,21 @@ class ReplayApiClient(BaseApiClient):
471
471
  expected = interaction.response.sdk_response_segments[
472
472
  self._sdk_response_index
473
473
  ]
474
+ # The sdk_http_response.body has format in the string, need to get rid of
475
+ # the format information before comparing.
476
+ if isinstance(expected, dict):
477
+ if 'sdk_http_response' in expected and isinstance(
478
+ expected['sdk_http_response'], dict
479
+ ):
480
+ if 'body' in expected['sdk_http_response']:
481
+ raw_body = expected['sdk_http_response']['body']
482
+ print('raw_body length: ', len(raw_body))
483
+ print('raw_body: ', raw_body)
484
+ if isinstance(raw_body, str) and raw_body != '':
485
+ raw_body = json.loads(raw_body)
486
+ raw_body = json.dumps(raw_body)
487
+ expected['sdk_http_response']['body'] = raw_body
488
+
474
489
  assert (
475
490
  actual == expected
476
491
  ), f'SDK response mismatch:\nActual: {actual}\nExpected: {expected}'
@@ -1156,16 +1156,6 @@ def t_tuning_job_status(status: str) -> Union[types.JobState, str]:
1156
1156
  return status
1157
1157
 
1158
1158
 
1159
- # Some fields don't accept url safe base64 encoding.
1160
- # We shouldn't use this transformer if the backend adhere to Cloud Type
1161
- # format https://cloud.google.com/docs/discovery/type-format.
1162
- # TODO(b/389133914,b/390320301): Remove the hack after backend fix the issue.
1163
- def t_bytes(data: bytes) -> str:
1164
- if not isinstance(data, bytes):
1165
- return data
1166
- return base64.b64encode(data).decode('ascii')
1167
-
1168
-
1169
1159
  def t_content_strict(content: types.ContentOrDict) -> types.Content:
1170
1160
  if isinstance(content, dict):
1171
1161
  return types.Content.model_validate(content)