google-genai 0.3.0__py3-none-any.whl → 0.4.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- google/genai/__init__.py +2 -1
- google/genai/_api_client.py +85 -36
- google/genai/_automatic_function_calling_util.py +14 -14
- google/genai/_replay_api_client.py +22 -28
- google/genai/batches.py +16 -16
- google/genai/caches.py +18 -18
- google/genai/chats.py +2 -2
- google/genai/client.py +6 -3
- google/genai/files.py +22 -22
- google/genai/live.py +28 -5
- google/genai/models.py +97 -77
- google/genai/tunings.py +17 -17
- google/genai/types.py +150 -80
- google/genai/version.py +16 -0
- {google_genai-0.3.0.dist-info → google_genai-0.4.0.dist-info}/METADATA +57 -17
- google_genai-0.4.0.dist-info/RECORD +25 -0
- {google_genai-0.3.0.dist-info → google_genai-0.4.0.dist-info}/WHEEL +1 -1
- google_genai-0.3.0.dist-info/RECORD +0 -24
- {google_genai-0.3.0.dist-info → google_genai-0.4.0.dist-info}/LICENSE +0 -0
- {google_genai-0.3.0.dist-info → google_genai-0.4.0.dist-info}/top_level.txt +0 -0
google/genai/types.py
CHANGED
@@ -569,7 +569,9 @@ class Content(_common.BaseModel):
|
|
569
569
|
)
|
570
570
|
role: Optional[str] = Field(
|
571
571
|
default=None,
|
572
|
-
description="""Optional. The producer of the content. Must be either 'user' or
|
572
|
+
description="""Optional. The producer of the content. Must be either 'user' or
|
573
|
+
'model'. Useful to set for multi-turn conversations, otherwise can be
|
574
|
+
left blank or unset. If role is not specified, SDK will determine the role.""",
|
573
575
|
)
|
574
576
|
|
575
577
|
|
@@ -581,7 +583,9 @@ class ContentDict(TypedDict, total=False):
|
|
581
583
|
a different IANA MIME type."""
|
582
584
|
|
583
585
|
role: Optional[str]
|
584
|
-
"""Optional. The producer of the content. Must be either 'user' or
|
586
|
+
"""Optional. The producer of the content. Must be either 'user' or
|
587
|
+
'model'. Useful to set for multi-turn conversations, otherwise can be
|
588
|
+
left blank or unset. If role is not specified, SDK will determine the role."""
|
585
589
|
|
586
590
|
|
587
591
|
ContentOrDict = Union[Content, ContentDict]
|
@@ -598,7 +602,7 @@ class Schema(_common.BaseModel):
|
|
598
602
|
Represents a select subset of an OpenAPI 3.0 schema object.
|
599
603
|
"""
|
600
604
|
|
601
|
-
min_items: Optional[
|
605
|
+
min_items: Optional[int] = Field(
|
602
606
|
default=None,
|
603
607
|
description="""Optional. Minimum number of the elements for Type.ARRAY.""",
|
604
608
|
)
|
@@ -625,22 +629,22 @@ class Schema(_common.BaseModel):
|
|
625
629
|
default=None,
|
626
630
|
description="""Optional. The value should be validated against any (one or more) of the subschemas in the list.""",
|
627
631
|
)
|
628
|
-
max_length: Optional[
|
632
|
+
max_length: Optional[int] = Field(
|
629
633
|
default=None,
|
630
634
|
description="""Optional. Maximum length of the Type.STRING""",
|
631
635
|
)
|
632
636
|
title: Optional[str] = Field(
|
633
637
|
default=None, description="""Optional. The title of the Schema."""
|
634
638
|
)
|
635
|
-
min_length: Optional[
|
639
|
+
min_length: Optional[int] = Field(
|
636
640
|
default=None,
|
637
641
|
description="""Optional. SCHEMA FIELDS FOR TYPE STRING Minimum length of the Type.STRING""",
|
638
642
|
)
|
639
|
-
min_properties: Optional[
|
643
|
+
min_properties: Optional[int] = Field(
|
640
644
|
default=None,
|
641
645
|
description="""Optional. Minimum number of the properties for Type.OBJECT.""",
|
642
646
|
)
|
643
|
-
max_items: Optional[
|
647
|
+
max_items: Optional[int] = Field(
|
644
648
|
default=None,
|
645
649
|
description="""Optional. Maximum number of the elements for Type.ARRAY.""",
|
646
650
|
)
|
@@ -652,7 +656,7 @@ class Schema(_common.BaseModel):
|
|
652
656
|
default=None,
|
653
657
|
description="""Optional. Indicates if the value may be null.""",
|
654
658
|
)
|
655
|
-
max_properties: Optional[
|
659
|
+
max_properties: Optional[int] = Field(
|
656
660
|
default=None,
|
657
661
|
description="""Optional. Maximum number of the properties for Type.OBJECT.""",
|
658
662
|
)
|
@@ -690,7 +694,7 @@ class SchemaDict(TypedDict, total=False):
|
|
690
694
|
Represents a select subset of an OpenAPI 3.0 schema object.
|
691
695
|
"""
|
692
696
|
|
693
|
-
min_items: Optional[
|
697
|
+
min_items: Optional[int]
|
694
698
|
"""Optional. Minimum number of the elements for Type.ARRAY."""
|
695
699
|
|
696
700
|
example: Optional[Any]
|
@@ -711,19 +715,19 @@ class SchemaDict(TypedDict, total=False):
|
|
711
715
|
any_of: list["SchemaDict"]
|
712
716
|
"""Optional. The value should be validated against any (one or more) of the subschemas in the list."""
|
713
717
|
|
714
|
-
max_length: Optional[
|
718
|
+
max_length: Optional[int]
|
715
719
|
"""Optional. Maximum length of the Type.STRING"""
|
716
720
|
|
717
721
|
title: Optional[str]
|
718
722
|
"""Optional. The title of the Schema."""
|
719
723
|
|
720
|
-
min_length: Optional[
|
724
|
+
min_length: Optional[int]
|
721
725
|
"""Optional. SCHEMA FIELDS FOR TYPE STRING Minimum length of the Type.STRING"""
|
722
726
|
|
723
|
-
min_properties: Optional[
|
727
|
+
min_properties: Optional[int]
|
724
728
|
"""Optional. Minimum number of the properties for Type.OBJECT."""
|
725
729
|
|
726
|
-
max_items: Optional[
|
730
|
+
max_items: Optional[int]
|
727
731
|
"""Optional. Maximum number of the elements for Type.ARRAY."""
|
728
732
|
|
729
733
|
maximum: Optional[float]
|
@@ -732,7 +736,7 @@ class SchemaDict(TypedDict, total=False):
|
|
732
736
|
nullable: Optional[bool]
|
733
737
|
"""Optional. Indicates if the value may be null."""
|
734
738
|
|
735
|
-
max_properties: Optional[
|
739
|
+
max_properties: Optional[int]
|
736
740
|
"""Optional. Maximum number of the properties for Type.OBJECT."""
|
737
741
|
|
738
742
|
type: Optional[Type]
|
@@ -820,11 +824,35 @@ class FunctionDeclaration(_common.BaseModel):
|
|
820
824
|
description="""Optional. Describes the parameters to this function in JSON Schema Object format. Reflects the Open API 3.03 Parameter Object. string Key: the name of the parameter. Parameter names are case sensitive. Schema Value: the Schema defining the type used for the parameter. For function with no parameters, this can be left unset. Parameter names must start with a letter or an underscore and must only contain chars a-z, A-Z, 0-9, or underscores with a maximum length of 64. Example with 1 required and 1 optional parameter: type: OBJECT properties: param1: type: STRING param2: type: INTEGER required: - param1""",
|
821
825
|
)
|
822
826
|
|
823
|
-
@
|
824
|
-
def
|
825
|
-
"""
|
827
|
+
@classmethod
|
828
|
+
def _get_variant(cls, client) -> str:
|
829
|
+
"""Returns the function variant based on the provided client object."""
|
830
|
+
if client.vertexai:
|
831
|
+
return "VERTEX_AI"
|
832
|
+
else:
|
833
|
+
return "GOOGLE_AI"
|
834
|
+
|
835
|
+
@classmethod
|
836
|
+
def from_function_with_options(
|
837
|
+
cls,
|
838
|
+
func: Callable,
|
839
|
+
variant: Literal["GOOGLE_AI", "VERTEX_AI", "DEFAULT"] = "GOOGLE_AI",
|
840
|
+
) -> "FunctionDeclaration":
|
841
|
+
"""Converts a function to a FunctionDeclaration based on an API endpoint.
|
842
|
+
|
843
|
+
Supported endpoints are: 'GOOGLE_AI', 'VERTEX_AI', or 'DEFAULT'.
|
844
|
+
"""
|
826
845
|
from . import _automatic_function_calling_util
|
827
846
|
|
847
|
+
supported_variants = ["GOOGLE_AI", "VERTEX_AI", "DEFAULT"]
|
848
|
+
if variant not in supported_variants:
|
849
|
+
raise ValueError(
|
850
|
+
f"Unsupported variant: {variant}. Supported variants are:"
|
851
|
+
f" {', '.join(supported_variants)}"
|
852
|
+
)
|
853
|
+
|
854
|
+
# TODO: b/382524014 - Add support for DEFAULT API endpoint.
|
855
|
+
|
828
856
|
parameters_properties = {}
|
829
857
|
for name, param in inspect.signature(func).parameters.items():
|
830
858
|
if param.kind in (
|
@@ -833,7 +861,7 @@ class FunctionDeclaration(_common.BaseModel):
|
|
833
861
|
inspect.Parameter.POSITIONAL_ONLY,
|
834
862
|
):
|
835
863
|
schema = _automatic_function_calling_util._parse_schema_from_parameter(
|
836
|
-
|
864
|
+
variant, param, func.__name__
|
837
865
|
)
|
838
866
|
parameters_properties[name] = schema
|
839
867
|
declaration = FunctionDeclaration(
|
@@ -845,13 +873,13 @@ class FunctionDeclaration(_common.BaseModel):
|
|
845
873
|
type="OBJECT",
|
846
874
|
properties=parameters_properties,
|
847
875
|
)
|
848
|
-
if
|
876
|
+
if variant == "VERTEX_AI":
|
849
877
|
declaration.parameters.required = (
|
850
878
|
_automatic_function_calling_util._get_required_fields(
|
851
879
|
declaration.parameters
|
852
880
|
)
|
853
881
|
)
|
854
|
-
if not
|
882
|
+
if not variant == "VERTEX_AI":
|
855
883
|
return declaration
|
856
884
|
|
857
885
|
return_annotation = inspect.signature(func).return_annotation
|
@@ -860,7 +888,7 @@ class FunctionDeclaration(_common.BaseModel):
|
|
860
888
|
|
861
889
|
declaration.response = (
|
862
890
|
_automatic_function_calling_util._parse_schema_from_parameter(
|
863
|
-
|
891
|
+
variant,
|
864
892
|
inspect.Parameter(
|
865
893
|
"return_value",
|
866
894
|
inspect.Parameter.POSITIONAL_OR_KEYWORD,
|
@@ -871,6 +899,14 @@ class FunctionDeclaration(_common.BaseModel):
|
|
871
899
|
)
|
872
900
|
return declaration
|
873
901
|
|
902
|
+
@classmethod
|
903
|
+
def from_function(cls, client, func: Callable) -> "FunctionDeclaration":
|
904
|
+
"""Converts a function to a FunctionDeclaration."""
|
905
|
+
return cls.from_function_with_options(
|
906
|
+
variant=cls._get_variant(client),
|
907
|
+
func=func,
|
908
|
+
)
|
909
|
+
|
874
910
|
|
875
911
|
class FunctionDeclarationDict(TypedDict, total=False):
|
876
912
|
"""Defines a function that the model can generate JSON inputs for.
|
@@ -2417,7 +2453,10 @@ class GenerateContentResponse(_common.BaseModel):
|
|
2417
2453
|
default=None, description="""Usage metadata about the response(s)."""
|
2418
2454
|
)
|
2419
2455
|
automatic_function_calling_history: Optional[list[Content]] = None
|
2420
|
-
parsed: Union[pydantic.BaseModel, dict] =
|
2456
|
+
parsed: Union[pydantic.BaseModel, dict] = Field(
|
2457
|
+
default=None,
|
2458
|
+
description="""Parsed response if response_schema is provided. Not available for streaming.""",
|
2459
|
+
)
|
2421
2460
|
|
2422
2461
|
@property
|
2423
2462
|
def text(self) -> Optional[str]:
|
@@ -2453,6 +2492,28 @@ class GenerateContentResponse(_common.BaseModel):
|
|
2453
2492
|
# part.text == '' is different from part.text is None
|
2454
2493
|
return text if any_text_part_text else None
|
2455
2494
|
|
2495
|
+
@property
|
2496
|
+
def function_calls(self) -> Optional[list[FunctionCall]]:
|
2497
|
+
"""Returns the list of function calls in the response."""
|
2498
|
+
if (
|
2499
|
+
not self.candidates
|
2500
|
+
or not self.candidates[0].content
|
2501
|
+
or not self.candidates[0].content.parts
|
2502
|
+
):
|
2503
|
+
return None
|
2504
|
+
if len(self.candidates) > 1:
|
2505
|
+
logging.warning(
|
2506
|
+
"Warning: there are multiple candidates in the response, returning"
|
2507
|
+
" function calls from the first one."
|
2508
|
+
)
|
2509
|
+
function_calls = [
|
2510
|
+
part.function_call
|
2511
|
+
for part in self.candidates[0].content.parts
|
2512
|
+
if part.function_call is not None
|
2513
|
+
]
|
2514
|
+
|
2515
|
+
return function_calls if function_calls else None
|
2516
|
+
|
2456
2517
|
@classmethod
|
2457
2518
|
def _from_response(
|
2458
2519
|
cls, response: dict[str, object], kwargs: dict[str, object]
|
@@ -2467,12 +2528,21 @@ class GenerateContentResponse(_common.BaseModel):
|
|
2467
2528
|
response_schema, pydantic.BaseModel
|
2468
2529
|
):
|
2469
2530
|
# Pydantic schema.
|
2470
|
-
|
2531
|
+
try:
|
2532
|
+
result.parsed = response_schema.model_validate_json(result.text)
|
2533
|
+
# may not be a valid json per stream response
|
2534
|
+
except pydantic.ValidationError:
|
2535
|
+
pass
|
2536
|
+
|
2471
2537
|
elif isinstance(response_schema, dict) or isinstance(
|
2472
2538
|
response_schema, pydantic.BaseModel
|
2473
2539
|
):
|
2474
2540
|
# JSON schema.
|
2475
|
-
|
2541
|
+
try:
|
2542
|
+
result.parsed = json.loads(result.text)
|
2543
|
+
# may not be a valid json per stream response
|
2544
|
+
except json.decoder.JSONDecodeError:
|
2545
|
+
pass
|
2476
2546
|
|
2477
2547
|
return result
|
2478
2548
|
|
@@ -3522,10 +3592,6 @@ class _UpscaleImageAPIConfig(_common.BaseModel):
|
|
3522
3592
|
http_options: Optional[dict[str, Any]] = Field(
|
3523
3593
|
default=None, description="""Used to override HTTP request options."""
|
3524
3594
|
)
|
3525
|
-
upscale_factor: Optional[str] = Field(
|
3526
|
-
default=None,
|
3527
|
-
description="""The factor to which the image will be upscaled.""",
|
3528
|
-
)
|
3529
3595
|
include_rai_reason: Optional[bool] = Field(
|
3530
3596
|
default=None,
|
3531
3597
|
description="""Whether to include a reason for filtered-out images in the
|
@@ -3554,9 +3620,6 @@ class _UpscaleImageAPIConfigDict(TypedDict, total=False):
|
|
3554
3620
|
http_options: Optional[dict[str, Any]]
|
3555
3621
|
"""Used to override HTTP request options."""
|
3556
3622
|
|
3557
|
-
upscale_factor: Optional[str]
|
3558
|
-
"""The factor to which the image will be upscaled."""
|
3559
|
-
|
3560
3623
|
include_rai_reason: Optional[bool]
|
3561
3624
|
"""Whether to include a reason for filtered-out images in the
|
3562
3625
|
response."""
|
@@ -3589,6 +3652,10 @@ class _UpscaleImageAPIParameters(_common.BaseModel):
|
|
3589
3652
|
image: Optional[Image] = Field(
|
3590
3653
|
default=None, description="""The input image to upscale."""
|
3591
3654
|
)
|
3655
|
+
upscale_factor: Optional[str] = Field(
|
3656
|
+
default=None,
|
3657
|
+
description="""The factor to upscale the image (x2 or x4).""",
|
3658
|
+
)
|
3592
3659
|
config: Optional[_UpscaleImageAPIConfig] = Field(
|
3593
3660
|
default=None, description="""Configuration for upscaling."""
|
3594
3661
|
)
|
@@ -3603,6 +3670,9 @@ class _UpscaleImageAPIParametersDict(TypedDict, total=False):
|
|
3603
3670
|
image: Optional[ImageDict]
|
3604
3671
|
"""The input image to upscale."""
|
3605
3672
|
|
3673
|
+
upscale_factor: Optional[str]
|
3674
|
+
"""The factor to upscale the image (x2 or x4)."""
|
3675
|
+
|
3606
3676
|
config: Optional[_UpscaleImageAPIConfigDict]
|
3607
3677
|
"""Configuration for upscaling."""
|
3608
3678
|
|
@@ -4193,7 +4263,7 @@ class TokensInfo(_common.BaseModel):
|
|
4193
4263
|
default=None,
|
4194
4264
|
description="""Optional. Optional fields for the role from the corresponding Content.""",
|
4195
4265
|
)
|
4196
|
-
token_ids: Optional[list[
|
4266
|
+
token_ids: Optional[list[int]] = Field(
|
4197
4267
|
default=None, description="""A list of token ids from the input."""
|
4198
4268
|
)
|
4199
4269
|
tokens: Optional[list[bytes]] = Field(
|
@@ -4207,7 +4277,7 @@ class TokensInfoDict(TypedDict, total=False):
|
|
4207
4277
|
role: Optional[str]
|
4208
4278
|
"""Optional. Optional fields for the role from the corresponding Content."""
|
4209
4279
|
|
4210
|
-
token_ids: Optional[list[
|
4280
|
+
token_ids: Optional[list[int]]
|
4211
4281
|
"""A list of token ids from the input."""
|
4212
4282
|
|
4213
4283
|
tokens: Optional[list[bytes]]
|
@@ -4355,7 +4425,7 @@ class SupervisedHyperParameters(_common.BaseModel):
|
|
4355
4425
|
adapter_size: Optional[AdapterSize] = Field(
|
4356
4426
|
default=None, description="""Optional. Adapter size for tuning."""
|
4357
4427
|
)
|
4358
|
-
epoch_count: Optional[
|
4428
|
+
epoch_count: Optional[int] = Field(
|
4359
4429
|
default=None,
|
4360
4430
|
description="""Optional. Number of complete passes the model makes over the entire training dataset during training.""",
|
4361
4431
|
)
|
@@ -4371,7 +4441,7 @@ class SupervisedHyperParametersDict(TypedDict, total=False):
|
|
4371
4441
|
adapter_size: Optional[AdapterSize]
|
4372
4442
|
"""Optional. Adapter size for tuning."""
|
4373
4443
|
|
4374
|
-
epoch_count: Optional[
|
4444
|
+
epoch_count: Optional[int]
|
4375
4445
|
"""Optional. Number of complete passes the model makes over the entire training dataset during training."""
|
4376
4446
|
|
4377
4447
|
learning_rate_multiplier: Optional[float]
|
@@ -4420,7 +4490,7 @@ SupervisedTuningSpecOrDict = Union[
|
|
4420
4490
|
class DatasetDistributionDistributionBucket(_common.BaseModel):
|
4421
4491
|
"""Dataset bucket used to create a histogram for the distribution given a population of values."""
|
4422
4492
|
|
4423
|
-
count: Optional[
|
4493
|
+
count: Optional[int] = Field(
|
4424
4494
|
default=None,
|
4425
4495
|
description="""Output only. Number of values in the bucket.""",
|
4426
4496
|
)
|
@@ -4435,7 +4505,7 @@ class DatasetDistributionDistributionBucket(_common.BaseModel):
|
|
4435
4505
|
class DatasetDistributionDistributionBucketDict(TypedDict, total=False):
|
4436
4506
|
"""Dataset bucket used to create a histogram for the distribution given a population of values."""
|
4437
4507
|
|
4438
|
-
count: Optional[
|
4508
|
+
count: Optional[int]
|
4439
4509
|
"""Output only. Number of values in the bucket."""
|
4440
4510
|
|
4441
4511
|
left: Optional[float]
|
@@ -4521,19 +4591,19 @@ DatasetDistributionOrDict = Union[DatasetDistribution, DatasetDistributionDict]
|
|
4521
4591
|
class DatasetStats(_common.BaseModel):
|
4522
4592
|
"""Statistics computed over a tuning dataset."""
|
4523
4593
|
|
4524
|
-
total_billable_character_count: Optional[
|
4594
|
+
total_billable_character_count: Optional[int] = Field(
|
4525
4595
|
default=None,
|
4526
4596
|
description="""Output only. Number of billable characters in the tuning dataset.""",
|
4527
4597
|
)
|
4528
|
-
total_tuning_character_count: Optional[
|
4598
|
+
total_tuning_character_count: Optional[int] = Field(
|
4529
4599
|
default=None,
|
4530
4600
|
description="""Output only. Number of tuning characters in the tuning dataset.""",
|
4531
4601
|
)
|
4532
|
-
tuning_dataset_example_count: Optional[
|
4602
|
+
tuning_dataset_example_count: Optional[int] = Field(
|
4533
4603
|
default=None,
|
4534
4604
|
description="""Output only. Number of examples in the tuning dataset.""",
|
4535
4605
|
)
|
4536
|
-
tuning_step_count: Optional[
|
4606
|
+
tuning_step_count: Optional[int] = Field(
|
4537
4607
|
default=None,
|
4538
4608
|
description="""Output only. Number of tuning steps for this Tuning Job.""",
|
4539
4609
|
)
|
@@ -4558,16 +4628,16 @@ class DatasetStats(_common.BaseModel):
|
|
4558
4628
|
class DatasetStatsDict(TypedDict, total=False):
|
4559
4629
|
"""Statistics computed over a tuning dataset."""
|
4560
4630
|
|
4561
|
-
total_billable_character_count: Optional[
|
4631
|
+
total_billable_character_count: Optional[int]
|
4562
4632
|
"""Output only. Number of billable characters in the tuning dataset."""
|
4563
4633
|
|
4564
|
-
total_tuning_character_count: Optional[
|
4634
|
+
total_tuning_character_count: Optional[int]
|
4565
4635
|
"""Output only. Number of tuning characters in the tuning dataset."""
|
4566
4636
|
|
4567
|
-
tuning_dataset_example_count: Optional[
|
4637
|
+
tuning_dataset_example_count: Optional[int]
|
4568
4638
|
"""Output only. Number of examples in the tuning dataset."""
|
4569
4639
|
|
4570
|
-
tuning_step_count: Optional[
|
4640
|
+
tuning_step_count: Optional[int]
|
4571
4641
|
"""Output only. Number of tuning steps for this Tuning Job."""
|
4572
4642
|
|
4573
4643
|
user_dataset_examples: Optional[list[ContentDict]]
|
@@ -4646,7 +4716,7 @@ SupervisedTuningDatasetDistributionDatasetBucketOrDict = Union[
|
|
4646
4716
|
class SupervisedTuningDatasetDistribution(_common.BaseModel):
|
4647
4717
|
"""Dataset distribution for Supervised Tuning."""
|
4648
4718
|
|
4649
|
-
billable_sum: Optional[
|
4719
|
+
billable_sum: Optional[int] = Field(
|
4650
4720
|
default=None,
|
4651
4721
|
description="""Output only. Sum of a given population of values that are billable.""",
|
4652
4722
|
)
|
@@ -4680,7 +4750,7 @@ class SupervisedTuningDatasetDistribution(_common.BaseModel):
|
|
4680
4750
|
default=None,
|
4681
4751
|
description="""Output only. The 95th percentile of the values in the population.""",
|
4682
4752
|
)
|
4683
|
-
sum: Optional[
|
4753
|
+
sum: Optional[int] = Field(
|
4684
4754
|
default=None,
|
4685
4755
|
description="""Output only. Sum of a given population of values.""",
|
4686
4756
|
)
|
@@ -4689,7 +4759,7 @@ class SupervisedTuningDatasetDistribution(_common.BaseModel):
|
|
4689
4759
|
class SupervisedTuningDatasetDistributionDict(TypedDict, total=False):
|
4690
4760
|
"""Dataset distribution for Supervised Tuning."""
|
4691
4761
|
|
4692
|
-
billable_sum: Optional[
|
4762
|
+
billable_sum: Optional[int]
|
4693
4763
|
"""Output only. Sum of a given population of values that are billable."""
|
4694
4764
|
|
4695
4765
|
buckets: Optional[list[SupervisedTuningDatasetDistributionDatasetBucketDict]]
|
@@ -4713,7 +4783,7 @@ class SupervisedTuningDatasetDistributionDict(TypedDict, total=False):
|
|
4713
4783
|
p95: Optional[float]
|
4714
4784
|
"""Output only. The 95th percentile of the values in the population."""
|
4715
4785
|
|
4716
|
-
sum: Optional[
|
4786
|
+
sum: Optional[int]
|
4717
4787
|
"""Output only. Sum of a given population of values."""
|
4718
4788
|
|
4719
4789
|
|
@@ -4725,31 +4795,31 @@ SupervisedTuningDatasetDistributionOrDict = Union[
|
|
4725
4795
|
class SupervisedTuningDataStats(_common.BaseModel):
|
4726
4796
|
"""Tuning data statistics for Supervised Tuning."""
|
4727
4797
|
|
4728
|
-
total_billable_character_count: Optional[
|
4798
|
+
total_billable_character_count: Optional[int] = Field(
|
4729
4799
|
default=None,
|
4730
4800
|
description="""Output only. Number of billable characters in the tuning dataset.""",
|
4731
4801
|
)
|
4732
|
-
total_billable_token_count: Optional[
|
4802
|
+
total_billable_token_count: Optional[int] = Field(
|
4733
4803
|
default=None,
|
4734
4804
|
description="""Output only. Number of billable tokens in the tuning dataset.""",
|
4735
4805
|
)
|
4736
|
-
total_truncated_example_count: Optional[
|
4806
|
+
total_truncated_example_count: Optional[int] = Field(
|
4737
4807
|
default=None,
|
4738
4808
|
description="""The number of examples in the dataset that have been truncated by any amount.""",
|
4739
4809
|
)
|
4740
|
-
total_tuning_character_count: Optional[
|
4810
|
+
total_tuning_character_count: Optional[int] = Field(
|
4741
4811
|
default=None,
|
4742
4812
|
description="""Output only. Number of tuning characters in the tuning dataset.""",
|
4743
4813
|
)
|
4744
|
-
truncated_example_indices: Optional[list[
|
4814
|
+
truncated_example_indices: Optional[list[int]] = Field(
|
4745
4815
|
default=None,
|
4746
4816
|
description="""A partial sample of the indices (starting from 1) of the truncated examples.""",
|
4747
4817
|
)
|
4748
|
-
tuning_dataset_example_count: Optional[
|
4818
|
+
tuning_dataset_example_count: Optional[int] = Field(
|
4749
4819
|
default=None,
|
4750
4820
|
description="""Output only. Number of examples in the tuning dataset.""",
|
4751
4821
|
)
|
4752
|
-
tuning_step_count: Optional[
|
4822
|
+
tuning_step_count: Optional[int] = Field(
|
4753
4823
|
default=None,
|
4754
4824
|
description="""Output only. Number of tuning steps for this Tuning Job.""",
|
4755
4825
|
)
|
@@ -4780,25 +4850,25 @@ class SupervisedTuningDataStats(_common.BaseModel):
|
|
4780
4850
|
class SupervisedTuningDataStatsDict(TypedDict, total=False):
|
4781
4851
|
"""Tuning data statistics for Supervised Tuning."""
|
4782
4852
|
|
4783
|
-
total_billable_character_count: Optional[
|
4853
|
+
total_billable_character_count: Optional[int]
|
4784
4854
|
"""Output only. Number of billable characters in the tuning dataset."""
|
4785
4855
|
|
4786
|
-
total_billable_token_count: Optional[
|
4856
|
+
total_billable_token_count: Optional[int]
|
4787
4857
|
"""Output only. Number of billable tokens in the tuning dataset."""
|
4788
4858
|
|
4789
|
-
total_truncated_example_count: Optional[
|
4859
|
+
total_truncated_example_count: Optional[int]
|
4790
4860
|
"""The number of examples in the dataset that have been truncated by any amount."""
|
4791
4861
|
|
4792
|
-
total_tuning_character_count: Optional[
|
4862
|
+
total_tuning_character_count: Optional[int]
|
4793
4863
|
"""Output only. Number of tuning characters in the tuning dataset."""
|
4794
4864
|
|
4795
|
-
truncated_example_indices: Optional[list[
|
4865
|
+
truncated_example_indices: Optional[list[int]]
|
4796
4866
|
"""A partial sample of the indices (starting from 1) of the truncated examples."""
|
4797
4867
|
|
4798
|
-
tuning_dataset_example_count: Optional[
|
4868
|
+
tuning_dataset_example_count: Optional[int]
|
4799
4869
|
"""Output only. Number of examples in the tuning dataset."""
|
4800
4870
|
|
4801
|
-
tuning_step_count: Optional[
|
4871
|
+
tuning_step_count: Optional[int]
|
4802
4872
|
"""Output only. Number of tuning steps for this Tuning Job."""
|
4803
4873
|
|
4804
4874
|
user_dataset_examples: Optional[list[ContentDict]]
|
@@ -4874,7 +4944,7 @@ class DistillationHyperParameters(_common.BaseModel):
|
|
4874
4944
|
adapter_size: Optional[AdapterSize] = Field(
|
4875
4945
|
default=None, description="""Optional. Adapter size for distillation."""
|
4876
4946
|
)
|
4877
|
-
epoch_count: Optional[
|
4947
|
+
epoch_count: Optional[int] = Field(
|
4878
4948
|
default=None,
|
4879
4949
|
description="""Optional. Number of complete passes the model makes over the entire training dataset during training.""",
|
4880
4950
|
)
|
@@ -4890,7 +4960,7 @@ class DistillationHyperParametersDict(TypedDict, total=False):
|
|
4890
4960
|
adapter_size: Optional[AdapterSize]
|
4891
4961
|
"""Optional. Adapter size for distillation."""
|
4892
4962
|
|
4893
|
-
epoch_count: Optional[
|
4963
|
+
epoch_count: Optional[int]
|
4894
4964
|
"""Optional. Number of complete passes the model makes over the entire training dataset during training."""
|
4895
4965
|
|
4896
4966
|
learning_rate_multiplier: Optional[float]
|
@@ -6492,7 +6562,7 @@ class CreateBatchJobConfig(_common.BaseModel):
|
|
6492
6562
|
)
|
6493
6563
|
dest: Optional[str] = Field(
|
6494
6564
|
default=None,
|
6495
|
-
description="""GCS or
|
6565
|
+
description="""GCS or BigQuery URI prefix for the output predictions. Example:
|
6496
6566
|
"gs://path/to/output/data" or "bq://projectId.bqDatasetId.bqTableId".
|
6497
6567
|
""",
|
6498
6568
|
)
|
@@ -6509,7 +6579,7 @@ class CreateBatchJobConfigDict(TypedDict, total=False):
|
|
6509
6579
|
"""
|
6510
6580
|
|
6511
6581
|
dest: Optional[str]
|
6512
|
-
"""GCS or
|
6582
|
+
"""GCS or BigQuery URI prefix for the output predictions. Example:
|
6513
6583
|
"gs://path/to/output/data" or "bq://projectId.bqDatasetId.bqTableId".
|
6514
6584
|
"""
|
6515
6585
|
|
@@ -6529,7 +6599,7 @@ class _CreateBatchJobParameters(_common.BaseModel):
|
|
6529
6599
|
)
|
6530
6600
|
src: Optional[str] = Field(
|
6531
6601
|
default=None,
|
6532
|
-
description="""GCS URI(-s) or
|
6602
|
+
description="""GCS URI(-s) or BigQuery URI to your input data to run batch job.
|
6533
6603
|
Example: "gs://path/to/input/data" or "bq://projectId.bqDatasetId.bqTableId".
|
6534
6604
|
""",
|
6535
6605
|
)
|
@@ -6548,7 +6618,7 @@ class _CreateBatchJobParametersDict(TypedDict, total=False):
|
|
6548
6618
|
"""
|
6549
6619
|
|
6550
6620
|
src: Optional[str]
|
6551
|
-
"""GCS URI(-s) or
|
6621
|
+
"""GCS URI(-s) or BigQuery URI to your input data to run batch job.
|
6552
6622
|
Example: "gs://path/to/input/data" or "bq://projectId.bqDatasetId.bqTableId".
|
6553
6623
|
"""
|
6554
6624
|
|
@@ -7150,10 +7220,6 @@ class UpscaleImageConfig(_common.BaseModel):
|
|
7150
7220
|
http_options: Optional[dict[str, Any]] = Field(
|
7151
7221
|
default=None, description="""Used to override HTTP request options."""
|
7152
7222
|
)
|
7153
|
-
upscale_factor: Optional[str] = Field(
|
7154
|
-
default=None,
|
7155
|
-
description="""The factor to which the image will be upscaled.""",
|
7156
|
-
)
|
7157
7223
|
include_rai_reason: Optional[bool] = Field(
|
7158
7224
|
default=None,
|
7159
7225
|
description="""Whether to include a reason for filtered-out images in the
|
@@ -7181,9 +7247,6 @@ class UpscaleImageConfigDict(TypedDict, total=False):
|
|
7181
7247
|
http_options: Optional[dict[str, Any]]
|
7182
7248
|
"""Used to override HTTP request options."""
|
7183
7249
|
|
7184
|
-
upscale_factor: Optional[str]
|
7185
|
-
"""The factor to which the image will be upscaled."""
|
7186
|
-
|
7187
7250
|
include_rai_reason: Optional[bool]
|
7188
7251
|
"""Whether to include a reason for filtered-out images in the
|
7189
7252
|
response."""
|
@@ -7208,6 +7271,10 @@ class UpscaleImageParameters(_common.BaseModel):
|
|
7208
7271
|
image: Optional[Image] = Field(
|
7209
7272
|
default=None, description="""The input image to upscale."""
|
7210
7273
|
)
|
7274
|
+
upscale_factor: Optional[str] = Field(
|
7275
|
+
default=None,
|
7276
|
+
description="""The factor to upscale the image (x2 or x4).""",
|
7277
|
+
)
|
7211
7278
|
config: Optional[UpscaleImageConfig] = Field(
|
7212
7279
|
default=None, description="""Configuration for upscaling."""
|
7213
7280
|
)
|
@@ -7222,6 +7289,9 @@ class UpscaleImageParametersDict(TypedDict, total=False):
|
|
7222
7289
|
image: Optional[ImageDict]
|
7223
7290
|
"""The input image to upscale."""
|
7224
7291
|
|
7292
|
+
upscale_factor: Optional[str]
|
7293
|
+
"""The factor to upscale the image (x2 or x4)."""
|
7294
|
+
|
7225
7295
|
config: Optional[UpscaleImageConfigDict]
|
7226
7296
|
"""Configuration for upscaling."""
|
7227
7297
|
|
@@ -7655,7 +7725,7 @@ class LiveServerToolCallCancellation(_common.BaseModel):
|
|
7655
7725
|
server turns.
|
7656
7726
|
"""
|
7657
7727
|
|
7658
|
-
ids: Optional[list[
|
7728
|
+
ids: Optional[list[str]] = Field(
|
7659
7729
|
default=None, description="""The ids of the tool calls to be cancelled."""
|
7660
7730
|
)
|
7661
7731
|
|
@@ -7668,7 +7738,7 @@ class LiveServerToolCallCancellationDict(TypedDict, total=False):
|
|
7668
7738
|
server turns.
|
7669
7739
|
"""
|
7670
7740
|
|
7671
|
-
ids: Optional[list[
|
7741
|
+
ids: Optional[list[str]]
|
7672
7742
|
"""The ids of the tool calls to be cancelled."""
|
7673
7743
|
|
7674
7744
|
|
@@ -7956,7 +8026,7 @@ class LiveClientMessage(_common.BaseModel):
|
|
7956
8026
|
default=None,
|
7957
8027
|
description="""Incremental update of the current conversation delivered from the client.""",
|
7958
8028
|
)
|
7959
|
-
|
8029
|
+
realtime_input: Optional[LiveClientRealtimeInput] = Field(
|
7960
8030
|
default=None, description="""User input that is sent in real time."""
|
7961
8031
|
)
|
7962
8032
|
tool_response: Optional[LiveClientToolResponse] = Field(
|
@@ -7974,7 +8044,7 @@ class LiveClientMessageDict(TypedDict, total=False):
|
|
7974
8044
|
client_content: Optional[LiveClientContentDict]
|
7975
8045
|
"""Incremental update of the current conversation delivered from the client."""
|
7976
8046
|
|
7977
|
-
|
8047
|
+
realtime_input: Optional[LiveClientRealtimeInputDict]
|
7978
8048
|
"""User input that is sent in real time."""
|
7979
8049
|
|
7980
8050
|
tool_response: Optional[LiveClientToolResponseDict]
|
google/genai/version.py
ADDED
@@ -0,0 +1,16 @@
|
|
1
|
+
# Copyright 2024 Google LLC
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
#
|
15
|
+
|
16
|
+
__version__ = '0.4.0' # x-release-please-version
|