google-cloud-pipeline-components 2.20.1__py3-none-any.whl → 2.21.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of google-cloud-pipeline-components might be problematic. Click here for more details.

Files changed (59) hide show
  1. google_cloud_pipeline_components/_implementation/starry_net/get_training_artifacts/component.py +3 -1
  2. google_cloud_pipeline_components/_implementation/starry_net/maybe_set_tfrecord_args/component.py +1 -1
  3. google_cloud_pipeline_components/_implementation/starry_net/set_dataprep_args/component.py +1 -1
  4. google_cloud_pipeline_components/_implementation/starry_net/set_eval_args/component.py +1 -1
  5. google_cloud_pipeline_components/_implementation/starry_net/set_test_set/component.py +3 -1
  6. google_cloud_pipeline_components/_implementation/starry_net/set_tfrecord_args/component.py +1 -1
  7. google_cloud_pipeline_components/_implementation/starry_net/set_train_args/component.py +1 -1
  8. google_cloud_pipeline_components/_implementation/starry_net/upload_decomposition_plots/component.py +2 -1
  9. google_cloud_pipeline_components/preview/automl/forecasting/forecasting_ensemble.py +1 -1
  10. google_cloud_pipeline_components/preview/automl/forecasting/forecasting_stage_1_tuner.py +2 -2
  11. google_cloud_pipeline_components/preview/automl/forecasting/forecasting_stage_2_tuner.py +2 -2
  12. google_cloud_pipeline_components/preview/automl/forecasting/learn_to_learn_forecasting_pipeline.yaml +40 -40
  13. google_cloud_pipeline_components/preview/automl/forecasting/sequence_to_sequence_forecasting_pipeline.yaml +40 -40
  14. google_cloud_pipeline_components/preview/automl/forecasting/temporal_fusion_transformer_forecasting_pipeline.yaml +40 -40
  15. google_cloud_pipeline_components/preview/automl/forecasting/time_series_dense_encoder_forecasting_pipeline.yaml +40 -40
  16. google_cloud_pipeline_components/preview/automl/tabular/auto_feature_engineering.py +1 -1
  17. google_cloud_pipeline_components/preview/automl/tabular/automl_tabular_feature_selection_pipeline.yaml +39 -39
  18. google_cloud_pipeline_components/preview/automl/tabular/automl_tabular_v2_pipeline.yaml +41 -41
  19. google_cloud_pipeline_components/preview/automl/tabular/distillation_stage_feature_transform_engine.py +2 -2
  20. google_cloud_pipeline_components/preview/automl/tabular/feature_selection.py +2 -2
  21. google_cloud_pipeline_components/preview/automl/tabular/feature_selection_pipeline.yaml +4 -4
  22. google_cloud_pipeline_components/preview/automl/tabular/feature_transform_engine.py +3 -3
  23. google_cloud_pipeline_components/preview/automl/tabular/tabnet_hyperparameter_tuning_job.py +2 -2
  24. google_cloud_pipeline_components/preview/automl/tabular/tabnet_hyperparameter_tuning_job_pipeline.yaml +15 -15
  25. google_cloud_pipeline_components/preview/automl/tabular/tabnet_trainer.py +2 -2
  26. google_cloud_pipeline_components/preview/automl/tabular/tabnet_trainer_pipeline.yaml +13 -13
  27. google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_hyperparameter_tuning_job.py +2 -2
  28. google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_hyperparameter_tuning_job_pipeline.yaml +14 -14
  29. google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_trainer.py +2 -2
  30. google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_trainer_pipeline.yaml +13 -13
  31. google_cloud_pipeline_components/preview/automl/tabular/xgboost_hyperparameter_tuning_job_pipeline.yaml +14 -14
  32. google_cloud_pipeline_components/preview/automl/tabular/xgboost_trainer_pipeline.yaml +13 -13
  33. google_cloud_pipeline_components/v1/automl/forecasting/bqml_arima_predict_pipeline.yaml +10 -10
  34. google_cloud_pipeline_components/v1/automl/forecasting/bqml_arima_train_pipeline.yaml +31 -31
  35. google_cloud_pipeline_components/v1/automl/forecasting/prophet_predict_pipeline.yaml +13 -13
  36. google_cloud_pipeline_components/v1/automl/forecasting/prophet_trainer.py +3 -3
  37. google_cloud_pipeline_components/v1/automl/forecasting/prophet_trainer_pipeline.yaml +14 -14
  38. google_cloud_pipeline_components/v1/automl/tabular/automl_tabular_pipeline.yaml +37 -37
  39. google_cloud_pipeline_components/v1/automl/tabular/cv_trainer.py +2 -2
  40. google_cloud_pipeline_components/v1/automl/tabular/ensemble.py +2 -2
  41. google_cloud_pipeline_components/v1/automl/tabular/finalizer.py +1 -1
  42. google_cloud_pipeline_components/v1/automl/tabular/infra_validator.py +1 -1
  43. google_cloud_pipeline_components/v1/automl/tabular/split_materialized_data.py +1 -1
  44. google_cloud_pipeline_components/v1/automl/tabular/stage_1_tuner.py +2 -2
  45. google_cloud_pipeline_components/v1/automl/tabular/stats_and_example_gen.py +2 -2
  46. google_cloud_pipeline_components/v1/automl/tabular/training_configurator_and_validator.py +1 -1
  47. google_cloud_pipeline_components/v1/automl/tabular/transform.py +2 -2
  48. google_cloud_pipeline_components/v1/custom_job/component.py +4 -1
  49. google_cloud_pipeline_components/v1/custom_job/utils.py +6 -1
  50. google_cloud_pipeline_components/version.py +1 -1
  51. {google_cloud_pipeline_components-2.20.1.dist-info → google_cloud_pipeline_components-2.21.0.dist-info}/METADATA +23 -33
  52. {google_cloud_pipeline_components-2.20.1.dist-info → google_cloud_pipeline_components-2.21.0.dist-info}/RECORD +55 -59
  53. {google_cloud_pipeline_components-2.20.1.dist-info → google_cloud_pipeline_components-2.21.0.dist-info}/WHEEL +1 -1
  54. google_cloud_pipeline_components/proto/README.md +0 -49
  55. google_cloud_pipeline_components/proto/gcp_resources.proto +0 -25
  56. google_cloud_pipeline_components/proto/task_error.proto +0 -11
  57. google_cloud_pipeline_components/proto/template_metadata.proto +0 -323
  58. {google_cloud_pipeline_components-2.20.1.dist-info/licenses → google_cloud_pipeline_components-2.21.0.dist-info}/LICENSE +0 -0
  59. {google_cloud_pipeline_components-2.20.1.dist-info → google_cloud_pipeline_components-2.21.0.dist-info}/top_level.txt +0 -0
@@ -2875,7 +2875,7 @@ deploymentSpec:
2875
2875
  \"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
2876
2876
  "\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
2877
2877
  {\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
2878
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20250129_0625", "\",
2878
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20250827_0525", "\",
2879
2879
  \"args\": [\"cancel_l2l_tuner\", \"--error_file_path=", "{{$.inputs.parameters[''root_dir'']}}",
2880
2880
  "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb\", \"--cleanup_lro_job_infos=",
2881
2881
  "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/lro\"]}}]}}"]}'
@@ -2890,7 +2890,7 @@ deploymentSpec:
2890
2890
  args:
2891
2891
  - --executor_input
2892
2892
  - '{{$}}'
2893
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:20250129_0625
2893
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:20250827_0525
2894
2894
  resources:
2895
2895
  cpuLimit: 8.0
2896
2896
  memoryLimit: 52.0
@@ -2915,7 +2915,7 @@ deploymentSpec:
2915
2915
  \ *\n\ndef _bool_identity(value: bool) -> str:\n \"\"\"Returns boolean\
2916
2916
  \ value.\n\n Args:\n value: Boolean value to return\n\n Returns:\n\
2917
2917
  \ Boolean value.\n \"\"\"\n return 'true' if value else 'false'\n\n"
2918
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
2918
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
2919
2919
  exec-feature-transform-engine:
2920
2920
  container:
2921
2921
  args:
@@ -3000,8 +3000,8 @@ deploymentSpec:
3000
3000
  "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/dataflow_tmp"]}'
3001
3001
  - '{"Concat": ["--dataflow_max_num_workers=", "{{$.inputs.parameters[''dataflow_max_num_workers'']}}"]}'
3002
3002
  - '{"Concat": ["--dataflow_machine_type=", "{{$.inputs.parameters[''dataflow_machine_type'']}}"]}'
3003
- - --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20250129_0625
3004
- - --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20250129_0625
3003
+ - --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20250827_0525
3004
+ - --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20250827_0525
3005
3005
  - '{"Concat": ["--dataflow_disk_size_gb=", "{{$.inputs.parameters[''dataflow_disk_size_gb'']}}"]}'
3006
3006
  - '{"Concat": ["--dataflow_subnetwork_fully_qualified=", "{{$.inputs.parameters[''dataflow_subnetwork'']}}"]}'
3007
3007
  - '{"Concat": ["--dataflow_use_public_ips=", "{{$.inputs.parameters[''dataflow_use_public_ips'']}}"]}'
@@ -3018,7 +3018,7 @@ deploymentSpec:
3018
3018
  - '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
3019
3019
  ["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
3020
3020
  - '{"Concat": ["--encryption_spec_key_name=", "{{$.inputs.parameters[''encryption_spec_key_name'']}}"]}'
3021
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20250129_0625
3021
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20250827_0525
3022
3022
  resources:
3023
3023
  cpuLimit: 8.0
3024
3024
  memoryLimit: 30.0
@@ -3048,7 +3048,7 @@ deploymentSpec:
3048
3048
  \n return collections.namedtuple(\n 'Outputs',\n [\n \
3049
3049
  \ 'model_display_name',\n ],\n )(\n model_display_name,\n )\n\
3050
3050
  \n"
3051
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
3051
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
3052
3052
  exec-model-batch-predict:
3053
3053
  container:
3054
3054
  args:
@@ -3289,7 +3289,7 @@ deploymentSpec:
3289
3289
  \ 'training_disk_spec',\n 'eval_machine_spec',\n 'eval_replica_count',\n\
3290
3290
  \ ],\n )(\n training_machine_spec,\n training_disk_spec,\n\
3291
3291
  \ eval_machine_spec,\n eval_replica_count,\n )\n\n"
3292
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
3292
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
3293
3293
  exec-set-optional-inputs:
3294
3294
  container:
3295
3295
  args:
@@ -3337,7 +3337,7 @@ deploymentSpec:
3337
3337
  \ 'data_source_csv_filenames',\n 'data_source_bigquery_table_path',\n\
3338
3338
  \ ],\n )(\n data_source_csv_filenames,\n data_source_bigquery_table_path,\n\
3339
3339
  \ )\n\n"
3340
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
3340
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
3341
3341
  exec-split-materialized-data:
3342
3342
  container:
3343
3343
  args:
@@ -3383,7 +3383,7 @@ deploymentSpec:
3383
3383
  \ 'w') as f:\n f.write(file_patterns[0])\n\n with tf.io.gfile.GFile(materialized_eval_split,\
3384
3384
  \ 'w') as f:\n f.write(file_patterns[1])\n\n with tf.io.gfile.GFile(materialized_test_split,\
3385
3385
  \ 'w') as f:\n f.write(file_patterns[2])\n\n"
3386
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20250129_0625
3386
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20250827_0525
3387
3387
  exec-tabnet-trainer:
3388
3388
  container:
3389
3389
  args:
@@ -3401,11 +3401,11 @@ deploymentSpec:
3401
3401
  "\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\":\"", "1",
3402
3402
  "\", \"machine_spec\": ", "{{$.inputs.parameters[''training_machine_spec'']}}",
3403
3403
  ", \"disk_spec\": ", "{{$.inputs.parameters[''training_disk_spec'']}}",
3404
- ", \"container_spec\": {\"image_uri\":\"", "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/tabnet-training:20250129_0625",
3404
+ ", \"container_spec\": {\"image_uri\":\"", "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/tabnet-training:20250827_0525",
3405
3405
  "\", \"args\": [\"--target_column=", "{{$.inputs.parameters[''target_column'']}}",
3406
3406
  "\", \"--weight_column=", "{{$.inputs.parameters[''weight_column'']}}",
3407
3407
  "\", \"--model_type=", "{{$.inputs.parameters[''prediction_type'']}}", "\",
3408
- \"--prediction_docker_uri=", "us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:20250129_0625",
3408
+ \"--prediction_docker_uri=", "us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:20250827_0525",
3409
3409
  "\", \"--baseline_path=", "{{$.inputs.artifacts[''instance_baseline''].uri}}",
3410
3410
  "\", \"--metadata_path=", "{{$.inputs.artifacts[''metadata''].uri}}", "\",
3411
3411
  \"--transform_output_path=", "{{$.inputs.artifacts[''transform_output''].uri}}",
@@ -3492,7 +3492,7 @@ deploymentSpec:
3492
3492
  ["--temporal_total_weight=", "{{$.inputs.parameters[''temporal_total_weight'']}}"]}}}'
3493
3493
  - '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
3494
3494
  ["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
3495
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20250129_0625
3495
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20250827_0525
3496
3496
  pipelineInfo:
3497
3497
  description: 'Train a model using the Tabular Workflow for TabNet pipelines.
3498
3498
 
@@ -158,7 +158,7 @@ def wide_and_deep_hyperparameter_tuning_job(
158
158
  ', "disk_spec": ',
159
159
  training_disk_spec,
160
160
  ', "container_spec": {"image_uri":"',
161
- 'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/wide-and-deep-training:20250129_0625',
161
+ 'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/wide-and-deep-training:20250827_0525',
162
162
  '", "args": ["--target_column=',
163
163
  target_column,
164
164
  '", "--weight_column=',
@@ -166,7 +166,7 @@ def wide_and_deep_hyperparameter_tuning_job(
166
166
  '", "--model_type=',
167
167
  prediction_type,
168
168
  '", "--prediction_docker_uri=',
169
- 'us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:20250129_0625',
169
+ 'us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:20250827_0525',
170
170
  '", "--prediction_docker_uri_artifact_path=',
171
171
  prediction_docker_uri_output,
172
172
  '", "--baseline_path=',
@@ -2632,7 +2632,7 @@ deploymentSpec:
2632
2632
  \"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
2633
2633
  "\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
2634
2634
  {\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
2635
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20250129_0625", "\",
2635
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20250827_0525", "\",
2636
2636
  \"args\": [\"cancel_l2l_tuner\", \"--error_file_path=", "{{$.inputs.parameters[''root_dir'']}}",
2637
2637
  "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb\", \"--cleanup_lro_job_infos=",
2638
2638
  "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/lro\"]}}]}}"]}'
@@ -2647,7 +2647,7 @@ deploymentSpec:
2647
2647
  args:
2648
2648
  - --executor_input
2649
2649
  - '{{$}}'
2650
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:20250129_0625
2650
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:20250827_0525
2651
2651
  resources:
2652
2652
  cpuLimit: 8.0
2653
2653
  memoryLimit: 52.0
@@ -2672,7 +2672,7 @@ deploymentSpec:
2672
2672
  \ *\n\ndef _bool_identity(value: bool) -> str:\n \"\"\"Returns boolean\
2673
2673
  \ value.\n\n Args:\n value: Boolean value to return\n\n Returns:\n\
2674
2674
  \ Boolean value.\n \"\"\"\n return 'true' if value else 'false'\n\n"
2675
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
2675
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
2676
2676
  exec-feature-transform-engine:
2677
2677
  container:
2678
2678
  args:
@@ -2757,8 +2757,8 @@ deploymentSpec:
2757
2757
  "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/dataflow_tmp"]}'
2758
2758
  - '{"Concat": ["--dataflow_max_num_workers=", "{{$.inputs.parameters[''dataflow_max_num_workers'']}}"]}'
2759
2759
  - '{"Concat": ["--dataflow_machine_type=", "{{$.inputs.parameters[''dataflow_machine_type'']}}"]}'
2760
- - --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20250129_0625
2761
- - --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20250129_0625
2760
+ - --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20250827_0525
2761
+ - --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20250827_0525
2762
2762
  - '{"Concat": ["--dataflow_disk_size_gb=", "{{$.inputs.parameters[''dataflow_disk_size_gb'']}}"]}'
2763
2763
  - '{"Concat": ["--dataflow_subnetwork_fully_qualified=", "{{$.inputs.parameters[''dataflow_subnetwork'']}}"]}'
2764
2764
  - '{"Concat": ["--dataflow_use_public_ips=", "{{$.inputs.parameters[''dataflow_use_public_ips'']}}"]}'
@@ -2775,7 +2775,7 @@ deploymentSpec:
2775
2775
  - '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
2776
2776
  ["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
2777
2777
  - '{"Concat": ["--encryption_spec_key_name=", "{{$.inputs.parameters[''encryption_spec_key_name'']}}"]}'
2778
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20250129_0625
2778
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20250827_0525
2779
2779
  resources:
2780
2780
  cpuLimit: 8.0
2781
2781
  memoryLimit: 30.0
@@ -2843,7 +2843,7 @@ deploymentSpec:
2843
2843
  \ = {\n 'instanceSchemaUri': instance_schema_uri,\n 'predictionSchemaUri':\
2844
2844
  \ prediction_schema_uri,\n }\n unmanaged_container_model.uri = os.path.join(\n\
2845
2845
  \ trials_dir, 'trial_{}'.format(best_trial['id']), 'model'\n )\n\n"
2846
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
2846
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
2847
2847
  exec-get-model-display-name:
2848
2848
  container:
2849
2849
  args:
@@ -2870,7 +2870,7 @@ deploymentSpec:
2870
2870
  \n return collections.namedtuple(\n 'Outputs',\n [\n \
2871
2871
  \ 'model_display_name',\n ],\n )(\n model_display_name,\n )\n\
2872
2872
  \n"
2873
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
2873
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
2874
2874
  exec-get-wide-and-deep-study-spec-parameters:
2875
2875
  container:
2876
2876
  args:
@@ -3147,7 +3147,7 @@ deploymentSpec:
3147
3147
  \ 'training_disk_spec',\n 'eval_machine_spec',\n 'eval_replica_count',\n\
3148
3148
  \ ],\n )(\n training_machine_spec,\n training_disk_spec,\n\
3149
3149
  \ eval_machine_spec,\n eval_replica_count,\n )\n\n"
3150
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
3150
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
3151
3151
  exec-set-optional-inputs:
3152
3152
  container:
3153
3153
  args:
@@ -3195,7 +3195,7 @@ deploymentSpec:
3195
3195
  \ 'data_source_csv_filenames',\n 'data_source_bigquery_table_path',\n\
3196
3196
  \ ],\n )(\n data_source_csv_filenames,\n data_source_bigquery_table_path,\n\
3197
3197
  \ )\n\n"
3198
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
3198
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
3199
3199
  exec-split-materialized-data:
3200
3200
  container:
3201
3201
  args:
@@ -3241,7 +3241,7 @@ deploymentSpec:
3241
3241
  \ 'w') as f:\n f.write(file_patterns[0])\n\n with tf.io.gfile.GFile(materialized_eval_split,\
3242
3242
  \ 'w') as f:\n f.write(file_patterns[1])\n\n with tf.io.gfile.GFile(materialized_test_split,\
3243
3243
  \ 'w') as f:\n f.write(file_patterns[2])\n\n"
3244
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20250129_0625
3244
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20250827_0525
3245
3245
  exec-training-configurator-and-validator:
3246
3246
  container:
3247
3247
  args:
@@ -3286,7 +3286,7 @@ deploymentSpec:
3286
3286
  ["--temporal_total_weight=", "{{$.inputs.parameters[''temporal_total_weight'']}}"]}}}'
3287
3287
  - '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
3288
3288
  ["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
3289
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20250129_0625
3289
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20250827_0525
3290
3290
  exec-wide-and-deep-hyperparameter-tuning-job:
3291
3291
  container:
3292
3292
  args:
@@ -3314,11 +3314,11 @@ deploymentSpec:
3314
3314
  ", \"trial_job_spec\": {\"worker_pool_specs\": [{\"replica_count\":\"",
3315
3315
  "1", "\", \"machine_spec\": ", "{{$.inputs.parameters[''training_machine_spec'']}}",
3316
3316
  ", \"disk_spec\": ", "{{$.inputs.parameters[''training_disk_spec'']}}",
3317
- ", \"container_spec\": {\"image_uri\":\"", "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/wide-and-deep-training:20250129_0625",
3317
+ ", \"container_spec\": {\"image_uri\":\"", "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/wide-and-deep-training:20250827_0525",
3318
3318
  "\", \"args\": [\"--target_column=", "{{$.inputs.parameters[''target_column'']}}",
3319
3319
  "\", \"--weight_column=", "{{$.inputs.parameters[''weight_column'']}}",
3320
3320
  "\", \"--model_type=", "{{$.inputs.parameters[''prediction_type'']}}", "\",
3321
- \"--prediction_docker_uri=", "us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:20250129_0625",
3321
+ \"--prediction_docker_uri=", "us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:20250827_0525",
3322
3322
  "\", \"--prediction_docker_uri_artifact_path=", "{{$.outputs.parameters[''prediction_docker_uri_output''].output_file}}",
3323
3323
  "\", \"--baseline_path=", "{{$.inputs.artifacts[''instance_baseline''].uri}}",
3324
3324
  "\", \"--metadata_path=", "{{$.inputs.artifacts[''metadata''].uri}}", "\",
@@ -161,7 +161,7 @@ def wide_and_deep_trainer(
161
161
  ', "disk_spec": ',
162
162
  training_disk_spec,
163
163
  ', "container_spec": {"image_uri":"',
164
- 'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/wide-and-deep-training:20250129_0625',
164
+ 'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/wide-and-deep-training:20250827_0525',
165
165
  '", "args": ["--target_column=',
166
166
  target_column,
167
167
  '", "--weight_column=',
@@ -169,7 +169,7 @@ def wide_and_deep_trainer(
169
169
  '", "--model_type=',
170
170
  prediction_type,
171
171
  '", "--prediction_docker_uri=',
172
- 'us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:20250129_0625',
172
+ 'us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:20250827_0525',
173
173
  '", "--baseline_path=',
174
174
  instance_baseline.uri,
175
175
  '", "--metadata_path=',
@@ -2674,7 +2674,7 @@ deploymentSpec:
2674
2674
  \"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
2675
2675
  "\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
2676
2676
  {\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
2677
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20250129_0625", "\",
2677
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20250827_0525", "\",
2678
2678
  \"args\": [\"cancel_l2l_tuner\", \"--error_file_path=", "{{$.inputs.parameters[''root_dir'']}}",
2679
2679
  "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb\", \"--cleanup_lro_job_infos=",
2680
2680
  "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/lro\"]}}]}}"]}'
@@ -2689,7 +2689,7 @@ deploymentSpec:
2689
2689
  args:
2690
2690
  - --executor_input
2691
2691
  - '{{$}}'
2692
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:20250129_0625
2692
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:20250827_0525
2693
2693
  resources:
2694
2694
  cpuLimit: 8.0
2695
2695
  memoryLimit: 52.0
@@ -2714,7 +2714,7 @@ deploymentSpec:
2714
2714
  \ *\n\ndef _bool_identity(value: bool) -> str:\n \"\"\"Returns boolean\
2715
2715
  \ value.\n\n Args:\n value: Boolean value to return\n\n Returns:\n\
2716
2716
  \ Boolean value.\n \"\"\"\n return 'true' if value else 'false'\n\n"
2717
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
2717
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
2718
2718
  exec-feature-transform-engine:
2719
2719
  container:
2720
2720
  args:
@@ -2799,8 +2799,8 @@ deploymentSpec:
2799
2799
  "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/dataflow_tmp"]}'
2800
2800
  - '{"Concat": ["--dataflow_max_num_workers=", "{{$.inputs.parameters[''dataflow_max_num_workers'']}}"]}'
2801
2801
  - '{"Concat": ["--dataflow_machine_type=", "{{$.inputs.parameters[''dataflow_machine_type'']}}"]}'
2802
- - --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20250129_0625
2803
- - --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20250129_0625
2802
+ - --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20250827_0525
2803
+ - --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20250827_0525
2804
2804
  - '{"Concat": ["--dataflow_disk_size_gb=", "{{$.inputs.parameters[''dataflow_disk_size_gb'']}}"]}'
2805
2805
  - '{"Concat": ["--dataflow_subnetwork_fully_qualified=", "{{$.inputs.parameters[''dataflow_subnetwork'']}}"]}'
2806
2806
  - '{"Concat": ["--dataflow_use_public_ips=", "{{$.inputs.parameters[''dataflow_use_public_ips'']}}"]}'
@@ -2817,7 +2817,7 @@ deploymentSpec:
2817
2817
  - '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
2818
2818
  ["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
2819
2819
  - '{"Concat": ["--encryption_spec_key_name=", "{{$.inputs.parameters[''encryption_spec_key_name'']}}"]}'
2820
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20250129_0625
2820
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20250827_0525
2821
2821
  resources:
2822
2822
  cpuLimit: 8.0
2823
2823
  memoryLimit: 30.0
@@ -2847,7 +2847,7 @@ deploymentSpec:
2847
2847
  \n return collections.namedtuple(\n 'Outputs',\n [\n \
2848
2848
  \ 'model_display_name',\n ],\n )(\n model_display_name,\n )\n\
2849
2849
  \n"
2850
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
2850
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
2851
2851
  exec-model-batch-predict:
2852
2852
  container:
2853
2853
  args:
@@ -3040,7 +3040,7 @@ deploymentSpec:
3040
3040
  \ 'training_disk_spec',\n 'eval_machine_spec',\n 'eval_replica_count',\n\
3041
3041
  \ ],\n )(\n training_machine_spec,\n training_disk_spec,\n\
3042
3042
  \ eval_machine_spec,\n eval_replica_count,\n )\n\n"
3043
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
3043
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
3044
3044
  exec-set-optional-inputs:
3045
3045
  container:
3046
3046
  args:
@@ -3088,7 +3088,7 @@ deploymentSpec:
3088
3088
  \ 'data_source_csv_filenames',\n 'data_source_bigquery_table_path',\n\
3089
3089
  \ ],\n )(\n data_source_csv_filenames,\n data_source_bigquery_table_path,\n\
3090
3090
  \ )\n\n"
3091
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
3091
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
3092
3092
  exec-split-materialized-data:
3093
3093
  container:
3094
3094
  args:
@@ -3134,7 +3134,7 @@ deploymentSpec:
3134
3134
  \ 'w') as f:\n f.write(file_patterns[0])\n\n with tf.io.gfile.GFile(materialized_eval_split,\
3135
3135
  \ 'w') as f:\n f.write(file_patterns[1])\n\n with tf.io.gfile.GFile(materialized_test_split,\
3136
3136
  \ 'w') as f:\n f.write(file_patterns[2])\n\n"
3137
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20250129_0625
3137
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20250827_0525
3138
3138
  exec-training-configurator-and-validator:
3139
3139
  container:
3140
3140
  args:
@@ -3179,7 +3179,7 @@ deploymentSpec:
3179
3179
  ["--temporal_total_weight=", "{{$.inputs.parameters[''temporal_total_weight'']}}"]}}}'
3180
3180
  - '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
3181
3181
  ["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
3182
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20250129_0625
3182
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20250827_0525
3183
3183
  exec-wide-and-deep-trainer:
3184
3184
  container:
3185
3185
  args:
@@ -3197,11 +3197,11 @@ deploymentSpec:
3197
3197
  "\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\":\"", "1",
3198
3198
  "\", \"machine_spec\": ", "{{$.inputs.parameters[''training_machine_spec'']}}",
3199
3199
  ", \"disk_spec\": ", "{{$.inputs.parameters[''training_disk_spec'']}}",
3200
- ", \"container_spec\": {\"image_uri\":\"", "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/wide-and-deep-training:20250129_0625",
3200
+ ", \"container_spec\": {\"image_uri\":\"", "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/wide-and-deep-training:20250827_0525",
3201
3201
  "\", \"args\": [\"--target_column=", "{{$.inputs.parameters[''target_column'']}}",
3202
3202
  "\", \"--weight_column=", "{{$.inputs.parameters[''weight_column'']}}",
3203
3203
  "\", \"--model_type=", "{{$.inputs.parameters[''prediction_type'']}}", "\",
3204
- \"--prediction_docker_uri=", "us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:20250129_0625",
3204
+ \"--prediction_docker_uri=", "us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:20250827_0525",
3205
3205
  "\", \"--baseline_path=", "{{$.inputs.artifacts[''instance_baseline''].uri}}",
3206
3206
  "\", \"--metadata_path=", "{{$.inputs.artifacts[''metadata''].uri}}", "\",
3207
3207
  \"--transform_output_path=", "{{$.inputs.artifacts[''transform_output''].uri}}",
@@ -2620,7 +2620,7 @@ deploymentSpec:
2620
2620
  \"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
2621
2621
  "\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
2622
2622
  {\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
2623
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20250129_0625", "\",
2623
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20250827_0525", "\",
2624
2624
  \"args\": [\"cancel_l2l_tuner\", \"--error_file_path=", "{{$.inputs.parameters[''root_dir'']}}",
2625
2625
  "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb\", \"--cleanup_lro_job_infos=",
2626
2626
  "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/lro\"]}}]}}"]}'
@@ -2651,7 +2651,7 @@ deploymentSpec:
2651
2651
  \ *\n\ndef _bool_identity(value: bool) -> str:\n \"\"\"Returns boolean\
2652
2652
  \ value.\n\n Args:\n value: Boolean value to return\n\n Returns:\n\
2653
2653
  \ Boolean value.\n \"\"\"\n return 'true' if value else 'false'\n\n"
2654
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
2654
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
2655
2655
  exec-feature-transform-engine:
2656
2656
  container:
2657
2657
  args:
@@ -2736,8 +2736,8 @@ deploymentSpec:
2736
2736
  "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/dataflow_tmp"]}'
2737
2737
  - '{"Concat": ["--dataflow_max_num_workers=", "{{$.inputs.parameters[''dataflow_max_num_workers'']}}"]}'
2738
2738
  - '{"Concat": ["--dataflow_machine_type=", "{{$.inputs.parameters[''dataflow_machine_type'']}}"]}'
2739
- - --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20250129_0625
2740
- - --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20250129_0625
2739
+ - --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20250827_0525
2740
+ - --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20250827_0525
2741
2741
  - '{"Concat": ["--dataflow_disk_size_gb=", "{{$.inputs.parameters[''dataflow_disk_size_gb'']}}"]}'
2742
2742
  - '{"Concat": ["--dataflow_subnetwork_fully_qualified=", "{{$.inputs.parameters[''dataflow_subnetwork'']}}"]}'
2743
2743
  - '{"Concat": ["--dataflow_use_public_ips=", "{{$.inputs.parameters[''dataflow_use_public_ips'']}}"]}'
@@ -2754,7 +2754,7 @@ deploymentSpec:
2754
2754
  - '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
2755
2755
  ["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
2756
2756
  - '{"Concat": ["--encryption_spec_key_name=", "{{$.inputs.parameters[''encryption_spec_key_name'']}}"]}'
2757
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20250129_0625
2757
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20250827_0525
2758
2758
  resources:
2759
2759
  cpuLimit: 8.0
2760
2760
  memoryLimit: 30.0
@@ -2818,7 +2818,7 @@ deploymentSpec:
2818
2818
  \ return re.sub(r'^/gcs/', r'gs://', path)\n\n master_worker_pool_spec\
2819
2819
  \ = {\n 'replica_count': 1,\n 'machine_spec': {\n 'machine_type':\
2820
2820
  \ machine_type,\n },\n 'container_spec': {\n 'image_uri':\
2821
- \ 'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/xgboost-training:20250129_0625',\n\
2821
+ \ 'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/xgboost-training:20250827_0525',\n\
2822
2822
  \ 'args': [\n f'--job_dir={get_gcs_path(job_dir)}',\n\
2823
2823
  \ f'--instance_schema_path={get_gcs_path(instance_schema_uri)}',\n\
2824
2824
  \ f'--prediction_schema_path={get_gcs_path(prediction_schema_uri)}',\n\
@@ -2831,7 +2831,7 @@ deploymentSpec:
2831
2831
  \ f'--baseline_path={get_gcs_path(instance_baseline)}',\n \
2832
2832
  \ f'--eval_metric={eval_metric}',\n f'--disable_default_eval_metric={disable_default_eval_metric}',\n\
2833
2833
  \ f'--seed={seed}',\n f'--seed_per_iteration={seed_per_iteration}',\n\
2834
- \ '--prediction_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/xgboost-prediction-server:20250129_0625',\n\
2834
+ \ '--prediction_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/xgboost-prediction-server:20250827_0525',\n\
2835
2835
  \ ],\n },\n }\n\n # Add optional arguments if set\n if\
2836
2836
  \ weight_column:\n master_worker_pool_spec['container_spec']['args'].append(\n\
2837
2837
  \ f'--weight_column={weight_column}'\n )\n\n # Add accelerator_type\
@@ -2850,7 +2850,7 @@ deploymentSpec:
2850
2850
  \ ],\n )(\n worker_pool_specs_lst,\n get_gcs_path(instance_schema_uri),\n\
2851
2851
  \ get_gcs_path(prediction_schema_uri),\n get_gcs_path(trials),\n\
2852
2852
  \ get_gcs_path(prediction_docker_uri_output),\n )\n\n"
2853
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
2853
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
2854
2854
  exec-get-best-hyperparameter-tuning-job-trial:
2855
2855
  container:
2856
2856
  args:
@@ -2915,7 +2915,7 @@ deploymentSpec:
2915
2915
  \ = {\n 'instanceSchemaUri': instance_schema_uri,\n 'predictionSchemaUri':\
2916
2916
  \ prediction_schema_uri,\n }\n unmanaged_container_model.uri = os.path.join(\n\
2917
2917
  \ trials_dir, 'trial_{}'.format(best_trial['id']), 'model'\n )\n\n"
2918
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
2918
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
2919
2919
  exec-get-model-display-name:
2920
2920
  container:
2921
2921
  args:
@@ -2942,7 +2942,7 @@ deploymentSpec:
2942
2942
  \n return collections.namedtuple(\n 'Outputs',\n [\n \
2943
2943
  \ 'model_display_name',\n ],\n )(\n model_display_name,\n )\n\
2944
2944
  \n"
2945
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
2945
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
2946
2946
  exec-get-prediction-type-for-xgboost:
2947
2947
  container:
2948
2948
  args:
@@ -2971,7 +2971,7 @@ deploymentSpec:
2971
2971
  \ Must be one of'\n ' [reg:squarederror, reg:squaredlogerror, reg:logistic,\
2972
2972
  \ reg:gamma,'\n ' reg:tweedie, reg:pseudohubererror, binary:logistic,'\n\
2973
2973
  \ ' multi:softprob].'\n )\n\n"
2974
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
2974
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
2975
2975
  exec-get-xgboost-study-spec-parameters:
2976
2976
  container:
2977
2977
  args:
@@ -3546,7 +3546,7 @@ deploymentSpec:
3546
3546
  \ 'data_source_csv_filenames',\n 'data_source_bigquery_table_path',\n\
3547
3547
  \ ],\n )(\n data_source_csv_filenames,\n data_source_bigquery_table_path,\n\
3548
3548
  \ )\n\n"
3549
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
3549
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
3550
3550
  exec-split-materialized-data:
3551
3551
  container:
3552
3552
  args:
@@ -3592,7 +3592,7 @@ deploymentSpec:
3592
3592
  \ 'w') as f:\n f.write(file_patterns[0])\n\n with tf.io.gfile.GFile(materialized_eval_split,\
3593
3593
  \ 'w') as f:\n f.write(file_patterns[1])\n\n with tf.io.gfile.GFile(materialized_test_split,\
3594
3594
  \ 'w') as f:\n f.write(file_patterns[2])\n\n"
3595
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20250129_0625
3595
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20250827_0525
3596
3596
  exec-training-configurator-and-validator:
3597
3597
  container:
3598
3598
  args:
@@ -3637,7 +3637,7 @@ deploymentSpec:
3637
3637
  ["--temporal_total_weight=", "{{$.inputs.parameters[''temporal_total_weight'']}}"]}}}'
3638
3638
  - '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
3639
3639
  ["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
3640
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20250129_0625
3640
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20250827_0525
3641
3641
  exec-xgboost-hyperparameter-tuning-job:
3642
3642
  container:
3643
3643
  args:
@@ -2844,7 +2844,7 @@ deploymentSpec:
2844
2844
  \"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
2845
2845
  "\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
2846
2846
  {\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
2847
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20250129_0625", "\",
2847
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20250827_0525", "\",
2848
2848
  \"args\": [\"cancel_l2l_tuner\", \"--error_file_path=", "{{$.inputs.parameters[''root_dir'']}}",
2849
2849
  "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb\", \"--cleanup_lro_job_infos=",
2850
2850
  "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/lro\"]}}]}}"]}'
@@ -2875,7 +2875,7 @@ deploymentSpec:
2875
2875
  \ *\n\ndef _bool_identity(value: bool) -> str:\n \"\"\"Returns boolean\
2876
2876
  \ value.\n\n Args:\n value: Boolean value to return\n\n Returns:\n\
2877
2877
  \ Boolean value.\n \"\"\"\n return 'true' if value else 'false'\n\n"
2878
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
2878
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
2879
2879
  exec-feature-transform-engine:
2880
2880
  container:
2881
2881
  args:
@@ -2960,8 +2960,8 @@ deploymentSpec:
2960
2960
  "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/dataflow_tmp"]}'
2961
2961
  - '{"Concat": ["--dataflow_max_num_workers=", "{{$.inputs.parameters[''dataflow_max_num_workers'']}}"]}'
2962
2962
  - '{"Concat": ["--dataflow_machine_type=", "{{$.inputs.parameters[''dataflow_machine_type'']}}"]}'
2963
- - --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20250129_0625
2964
- - --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20250129_0625
2963
+ - --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20250827_0525
2964
+ - --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20250827_0525
2965
2965
  - '{"Concat": ["--dataflow_disk_size_gb=", "{{$.inputs.parameters[''dataflow_disk_size_gb'']}}"]}'
2966
2966
  - '{"Concat": ["--dataflow_subnetwork_fully_qualified=", "{{$.inputs.parameters[''dataflow_subnetwork'']}}"]}'
2967
2967
  - '{"Concat": ["--dataflow_use_public_ips=", "{{$.inputs.parameters[''dataflow_use_public_ips'']}}"]}'
@@ -2978,7 +2978,7 @@ deploymentSpec:
2978
2978
  - '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
2979
2979
  ["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
2980
2980
  - '{"Concat": ["--encryption_spec_key_name=", "{{$.inputs.parameters[''encryption_spec_key_name'']}}"]}'
2981
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20250129_0625
2981
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20250827_0525
2982
2982
  resources:
2983
2983
  cpuLimit: 8.0
2984
2984
  memoryLimit: 30.0
@@ -3098,10 +3098,10 @@ deploymentSpec:
3098
3098
  \ worker pool specs.\n \"\"\"\n import copy\n import collections\n import\
3099
3099
  \ os\n import re\n\n def get_gcs_path(path):\n return re.sub(r'/gcs/',\
3100
3100
  \ 'gs://', path)\n\n formatted_job_dir = get_gcs_path(job_dir)\n prediction_docker_uri\
3101
- \ = (\n 'us-docker.pkg.dev/vertex-ai/automl-tabular/xgboost-prediction-server:20250129_0625'\n\
3101
+ \ = (\n 'us-docker.pkg.dev/vertex-ai/automl-tabular/xgboost-prediction-server:20250827_0525'\n\
3102
3102
  \ )\n master_worker_pool_spec = {\n 'replica_count': 1,\n 'machine_spec':\
3103
3103
  \ {\n 'machine_type': machine_type,\n },\n 'container_spec':\
3104
- \ {\n 'image_uri': 'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/xgboost-training:20250129_0625',\n\
3104
+ \ {\n 'image_uri': 'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/xgboost-training:20250827_0525',\n\
3105
3105
  \ 'args': [\n f'--job_dir={formatted_job_dir}',\n\
3106
3106
  \ f'--target_column={target_column}',\n f'--objective={objective}',\n\
3107
3107
  \ f'--training_data_path={get_gcs_path(materialized_train_split)}',\n\
@@ -3159,7 +3159,7 @@ deploymentSpec:
3159
3159
  \ 'predictionSchemaUri': os.path.join(model_dir, 'prediction_schema.yaml'),\n\
3160
3160
  \ }\n unmanaged_container_model.uri = model_dir\n\n return collections.namedtuple('Outputs',\
3161
3161
  \ ['worker_pool_specs'])(\n worker_pool_specs_lst\n )\n\n"
3162
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
3162
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
3163
3163
  exec-get-model-display-name:
3164
3164
  container:
3165
3165
  args:
@@ -3186,7 +3186,7 @@ deploymentSpec:
3186
3186
  \n return collections.namedtuple(\n 'Outputs',\n [\n \
3187
3187
  \ 'model_display_name',\n ],\n )(\n model_display_name,\n )\n\
3188
3188
  \n"
3189
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
3189
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
3190
3190
  exec-get-prediction-type-for-xgboost:
3191
3191
  container:
3192
3192
  args:
@@ -3215,7 +3215,7 @@ deploymentSpec:
3215
3215
  \ Must be one of'\n ' [reg:squarederror, reg:squaredlogerror, reg:logistic,\
3216
3216
  \ reg:gamma,'\n ' reg:tweedie, reg:pseudohubererror, binary:logistic,'\n\
3217
3217
  \ ' multi:softprob].'\n )\n\n"
3218
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
3218
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
3219
3219
  exec-model-batch-predict:
3220
3220
  container:
3221
3221
  args:
@@ -3407,7 +3407,7 @@ deploymentSpec:
3407
3407
  \ 'data_source_csv_filenames',\n 'data_source_bigquery_table_path',\n\
3408
3408
  \ ],\n )(\n data_source_csv_filenames,\n data_source_bigquery_table_path,\n\
3409
3409
  \ )\n\n"
3410
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
3410
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
3411
3411
  exec-split-materialized-data:
3412
3412
  container:
3413
3413
  args:
@@ -3453,7 +3453,7 @@ deploymentSpec:
3453
3453
  \ 'w') as f:\n f.write(file_patterns[0])\n\n with tf.io.gfile.GFile(materialized_eval_split,\
3454
3454
  \ 'w') as f:\n f.write(file_patterns[1])\n\n with tf.io.gfile.GFile(materialized_test_split,\
3455
3455
  \ 'w') as f:\n f.write(file_patterns[2])\n\n"
3456
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20250129_0625
3456
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20250827_0525
3457
3457
  exec-training-configurator-and-validator:
3458
3458
  container:
3459
3459
  args:
@@ -3498,7 +3498,7 @@ deploymentSpec:
3498
3498
  ["--temporal_total_weight=", "{{$.inputs.parameters[''temporal_total_weight'']}}"]}}}'
3499
3499
  - '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
3500
3500
  ["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
3501
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20250129_0625
3501
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20250827_0525
3502
3502
  exec-xgboost-trainer:
3503
3503
  container:
3504
3504
  args: