google-cloud-pipeline-components 2.18.0__py3-none-any.whl → 2.19.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- google_cloud_pipeline_components/container/v1/custom_job/remote_runner.py +13 -3
- google_cloud_pipeline_components/preview/automl/forecasting/forecasting_ensemble.py +1 -1
- google_cloud_pipeline_components/preview/automl/forecasting/forecasting_stage_1_tuner.py +2 -2
- google_cloud_pipeline_components/preview/automl/forecasting/forecasting_stage_2_tuner.py +2 -2
- google_cloud_pipeline_components/preview/automl/forecasting/learn_to_learn_forecasting_pipeline.yaml +34 -34
- google_cloud_pipeline_components/preview/automl/forecasting/sequence_to_sequence_forecasting_pipeline.yaml +34 -34
- google_cloud_pipeline_components/preview/automl/forecasting/temporal_fusion_transformer_forecasting_pipeline.yaml +34 -34
- google_cloud_pipeline_components/preview/automl/forecasting/time_series_dense_encoder_forecasting_pipeline.yaml +34 -34
- google_cloud_pipeline_components/preview/automl/tabular/auto_feature_engineering.py +1 -1
- google_cloud_pipeline_components/preview/automl/tabular/automl_tabular_feature_selection_pipeline.yaml +39 -39
- google_cloud_pipeline_components/preview/automl/tabular/automl_tabular_v2_pipeline.yaml +41 -41
- google_cloud_pipeline_components/preview/automl/tabular/distillation_stage_feature_transform_engine.py +2 -2
- google_cloud_pipeline_components/preview/automl/tabular/feature_selection.py +2 -2
- google_cloud_pipeline_components/preview/automl/tabular/feature_selection_pipeline.yaml +4 -4
- google_cloud_pipeline_components/preview/automl/tabular/feature_transform_engine.py +3 -3
- google_cloud_pipeline_components/preview/automl/tabular/tabnet_hyperparameter_tuning_job.py +2 -2
- google_cloud_pipeline_components/preview/automl/tabular/tabnet_hyperparameter_tuning_job_pipeline.yaml +15 -15
- google_cloud_pipeline_components/preview/automl/tabular/tabnet_trainer.py +2 -2
- google_cloud_pipeline_components/preview/automl/tabular/tabnet_trainer_pipeline.yaml +13 -13
- google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_hyperparameter_tuning_job.py +2 -2
- google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_hyperparameter_tuning_job_pipeline.yaml +14 -14
- google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_trainer.py +2 -2
- google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_trainer_pipeline.yaml +13 -13
- google_cloud_pipeline_components/preview/automl/tabular/xgboost_hyperparameter_tuning_job_pipeline.yaml +14 -14
- google_cloud_pipeline_components/preview/automl/tabular/xgboost_trainer_pipeline.yaml +13 -13
- google_cloud_pipeline_components/v1/automl/forecasting/bqml_arima_predict_pipeline.yaml +10 -10
- google_cloud_pipeline_components/v1/automl/forecasting/bqml_arima_train_pipeline.yaml +31 -31
- google_cloud_pipeline_components/v1/automl/forecasting/prophet_predict_pipeline.yaml +13 -13
- google_cloud_pipeline_components/v1/automl/forecasting/prophet_trainer.py +3 -3
- google_cloud_pipeline_components/v1/automl/forecasting/prophet_trainer_pipeline.yaml +14 -14
- google_cloud_pipeline_components/v1/automl/tabular/automl_tabular_pipeline.yaml +37 -37
- google_cloud_pipeline_components/v1/automl/tabular/cv_trainer.py +2 -2
- google_cloud_pipeline_components/v1/automl/tabular/ensemble.py +2 -2
- google_cloud_pipeline_components/v1/automl/tabular/finalizer.py +1 -1
- google_cloud_pipeline_components/v1/automl/tabular/infra_validator.py +1 -1
- google_cloud_pipeline_components/v1/automl/tabular/split_materialized_data.py +1 -1
- google_cloud_pipeline_components/v1/automl/tabular/stage_1_tuner.py +2 -2
- google_cloud_pipeline_components/v1/automl/tabular/stats_and_example_gen.py +2 -2
- google_cloud_pipeline_components/v1/automl/tabular/training_configurator_and_validator.py +1 -1
- google_cloud_pipeline_components/v1/automl/tabular/transform.py +2 -2
- google_cloud_pipeline_components/v1/custom_job/component.py +3 -0
- google_cloud_pipeline_components/v1/custom_job/utils.py +3 -0
- google_cloud_pipeline_components/version.py +1 -1
- {google_cloud_pipeline_components-2.18.0.dist-info → google_cloud_pipeline_components-2.19.0.dist-info}/METADATA +1 -1
- {google_cloud_pipeline_components-2.18.0.dist-info → google_cloud_pipeline_components-2.19.0.dist-info}/RECORD +48 -48
- {google_cloud_pipeline_components-2.18.0.dist-info → google_cloud_pipeline_components-2.19.0.dist-info}/LICENSE +0 -0
- {google_cloud_pipeline_components-2.18.0.dist-info → google_cloud_pipeline_components-2.19.0.dist-info}/WHEEL +0 -0
- {google_cloud_pipeline_components-2.18.0.dist-info → google_cloud_pipeline_components-2.19.0.dist-info}/top_level.txt +0 -0
|
@@ -658,7 +658,7 @@ deploymentSpec:
|
|
|
658
658
|
\ = client.create_dataset(dataset=dataset, exists_ok=exists_ok)\n return\
|
|
659
659
|
\ collections.namedtuple('Outputs', ['project_id', 'dataset_id'])(\n \
|
|
660
660
|
\ ref.project, ref.dataset_id)\n\n"
|
|
661
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
661
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
|
|
662
662
|
exec-bigquery-create-dataset-2:
|
|
663
663
|
container:
|
|
664
664
|
args:
|
|
@@ -693,7 +693,7 @@ deploymentSpec:
|
|
|
693
693
|
\ = client.create_dataset(dataset=dataset, exists_ok=exists_ok)\n return\
|
|
694
694
|
\ collections.namedtuple('Outputs', ['project_id', 'dataset_id'])(\n \
|
|
695
695
|
\ ref.project, ref.dataset_id)\n\n"
|
|
696
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
696
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
|
|
697
697
|
exec-bigquery-delete-dataset-with-prefix:
|
|
698
698
|
container:
|
|
699
699
|
args:
|
|
@@ -727,7 +727,7 @@ deploymentSpec:
|
|
|
727
727
|
\ if dataset.dataset_id.startswith(dataset_prefix):\n client.delete_dataset(\n\
|
|
728
728
|
\ dataset=dataset.dataset_id,\n delete_contents=delete_contents)\n\
|
|
729
729
|
\n"
|
|
730
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
730
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
|
|
731
731
|
exec-bigquery-query-job:
|
|
732
732
|
container:
|
|
733
733
|
args:
|
|
@@ -788,7 +788,7 @@ deploymentSpec:
|
|
|
788
788
|
\ 'datasetId': dataset_id,\n 'tableId': table_id,\n }\n\
|
|
789
789
|
\ if write_disposition:\n config['write_disposition'] = write_disposition\n\
|
|
790
790
|
\ return config\n\n"
|
|
791
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
791
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
|
|
792
792
|
exec-get-first-valid:
|
|
793
793
|
container:
|
|
794
794
|
args:
|
|
@@ -812,7 +812,7 @@ deploymentSpec:
|
|
|
812
812
|
\ import json\n # pylint: enable=g-import-not-at-top,import-outside-toplevel,redefined-outer-name,reimported\n\
|
|
813
813
|
\n for value in json.loads(values):\n if value:\n return value\n\
|
|
814
814
|
\ raise ValueError('No valid values.')\n\n"
|
|
815
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
815
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
|
|
816
816
|
exec-get-model-metadata:
|
|
817
817
|
container:
|
|
818
818
|
args:
|
|
@@ -851,7 +851,7 @@ deploymentSpec:
|
|
|
851
851
|
\ 'forecast_horizon',\n ],\n )(\n options.time_series_timestamp_column,\n\
|
|
852
852
|
\ options.time_series_id_column,\n options.time_series_data_column,\n\
|
|
853
853
|
\ options.horizon,\n )\n\n"
|
|
854
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
854
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
|
|
855
855
|
exec-get-table-location:
|
|
856
856
|
container:
|
|
857
857
|
args:
|
|
@@ -887,7 +887,7 @@ deploymentSpec:
|
|
|
887
887
|
\ if table.startswith('bq://'):\n table = table[len('bq://'):]\n elif\
|
|
888
888
|
\ table.startswith('bigquery://'):\n table = table[len('bigquery://'):]\n\
|
|
889
889
|
\ return client.get_table(table).location\n\n"
|
|
890
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
890
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
|
|
891
891
|
exec-load-table-from-uri:
|
|
892
892
|
container:
|
|
893
893
|
args:
|
|
@@ -928,7 +928,7 @@ deploymentSpec:
|
|
|
928
928
|
\ source_format=source_format)\n client.load_table_from_uri(\n source_uris=csv_list,\n\
|
|
929
929
|
\ destination=destination,\n project=project,\n location=location,\n\
|
|
930
930
|
\ job_config=job_config).result()\n return destination\n\n"
|
|
931
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
931
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
|
|
932
932
|
exec-maybe-replace-with-default:
|
|
933
933
|
container:
|
|
934
934
|
args:
|
|
@@ -950,7 +950,7 @@ deploymentSpec:
|
|
|
950
950
|
\ *\n\ndef maybe_replace_with_default(value: str, default: str = '') ->\
|
|
951
951
|
\ str:\n \"\"\"Replaces string with another value if it is a dash.\"\"\"\
|
|
952
952
|
\n return default if not value else value\n\n"
|
|
953
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
953
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
|
|
954
954
|
exec-validate-inputs:
|
|
955
955
|
container:
|
|
956
956
|
args:
|
|
@@ -1046,7 +1046,7 @@ deploymentSpec:
|
|
|
1046
1046
|
\ raise ValueError(\n 'Granularity unit should be one of the\
|
|
1047
1047
|
\ following: '\n f'{valid_data_granularity_units}, got: {data_granularity_unit}.')\n\
|
|
1048
1048
|
\n"
|
|
1049
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
1049
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
|
|
1050
1050
|
pipelineInfo:
|
|
1051
1051
|
description: Forecasts using a BQML ARIMA_PLUS model.
|
|
1052
1052
|
name: automl-tabular-bqml-arima-prediction
|
|
@@ -3399,7 +3399,7 @@ deploymentSpec:
|
|
|
3399
3399
|
\ = client.create_dataset(dataset=dataset, exists_ok=exists_ok)\n return\
|
|
3400
3400
|
\ collections.namedtuple('Outputs', ['project_id', 'dataset_id'])(\n \
|
|
3401
3401
|
\ ref.project, ref.dataset_id)\n\n"
|
|
3402
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
3402
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
|
|
3403
3403
|
exec-bigquery-create-dataset-2:
|
|
3404
3404
|
container:
|
|
3405
3405
|
args:
|
|
@@ -3434,7 +3434,7 @@ deploymentSpec:
|
|
|
3434
3434
|
\ = client.create_dataset(dataset=dataset, exists_ok=exists_ok)\n return\
|
|
3435
3435
|
\ collections.namedtuple('Outputs', ['project_id', 'dataset_id'])(\n \
|
|
3436
3436
|
\ ref.project, ref.dataset_id)\n\n"
|
|
3437
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
3437
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
|
|
3438
3438
|
exec-bigquery-create-model-job:
|
|
3439
3439
|
container:
|
|
3440
3440
|
args:
|
|
@@ -3494,7 +3494,7 @@ deploymentSpec:
|
|
|
3494
3494
|
\ if dataset.dataset_id.startswith(dataset_prefix):\n client.delete_dataset(\n\
|
|
3495
3495
|
\ dataset=dataset.dataset_id,\n delete_contents=delete_contents)\n\
|
|
3496
3496
|
\n"
|
|
3497
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
3497
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
|
|
3498
3498
|
exec-bigquery-list-rows:
|
|
3499
3499
|
container:
|
|
3500
3500
|
args:
|
|
@@ -3532,7 +3532,7 @@ deploymentSpec:
|
|
|
3532
3532
|
\ metadata['datasetId'], metadata['tableId']]))\n result = []\n for row\
|
|
3533
3533
|
\ in rows:\n result.append({col: str(value) for col, value in dict(row).items()})\n\
|
|
3534
3534
|
\ return result\n\n"
|
|
3535
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
3535
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
|
|
3536
3536
|
exec-bigquery-list-rows-2:
|
|
3537
3537
|
container:
|
|
3538
3538
|
args:
|
|
@@ -3570,7 +3570,7 @@ deploymentSpec:
|
|
|
3570
3570
|
\ metadata['datasetId'], metadata['tableId']]))\n result = []\n for row\
|
|
3571
3571
|
\ in rows:\n result.append({col: str(value) for col, value in dict(row).items()})\n\
|
|
3572
3572
|
\ return result\n\n"
|
|
3573
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
3573
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
|
|
3574
3574
|
exec-bigquery-query-job:
|
|
3575
3575
|
container:
|
|
3576
3576
|
args:
|
|
@@ -3739,7 +3739,7 @@ deploymentSpec:
|
|
|
3739
3739
|
\ 'datasetId': dataset_id,\n 'tableId': table_id,\n }\n\
|
|
3740
3740
|
\ if write_disposition:\n config['write_disposition'] = write_disposition\n\
|
|
3741
3741
|
\ return config\n\n"
|
|
3742
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
3742
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
|
|
3743
3743
|
exec-build-job-configuration-query-2:
|
|
3744
3744
|
container:
|
|
3745
3745
|
args:
|
|
@@ -3773,7 +3773,7 @@ deploymentSpec:
|
|
|
3773
3773
|
\ 'datasetId': dataset_id,\n 'tableId': table_id,\n }\n\
|
|
3774
3774
|
\ if write_disposition:\n config['write_disposition'] = write_disposition\n\
|
|
3775
3775
|
\ return config\n\n"
|
|
3776
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
3776
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
|
|
3777
3777
|
exec-build-job-configuration-query-3:
|
|
3778
3778
|
container:
|
|
3779
3779
|
args:
|
|
@@ -3807,7 +3807,7 @@ deploymentSpec:
|
|
|
3807
3807
|
\ 'datasetId': dataset_id,\n 'tableId': table_id,\n }\n\
|
|
3808
3808
|
\ if write_disposition:\n config['write_disposition'] = write_disposition\n\
|
|
3809
3809
|
\ return config\n\n"
|
|
3810
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
3810
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
|
|
3811
3811
|
exec-build-job-configuration-query-4:
|
|
3812
3812
|
container:
|
|
3813
3813
|
args:
|
|
@@ -3841,7 +3841,7 @@ deploymentSpec:
|
|
|
3841
3841
|
\ 'datasetId': dataset_id,\n 'tableId': table_id,\n }\n\
|
|
3842
3842
|
\ if write_disposition:\n config['write_disposition'] = write_disposition\n\
|
|
3843
3843
|
\ return config\n\n"
|
|
3844
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
3844
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
|
|
3845
3845
|
exec-build-job-configuration-query-5:
|
|
3846
3846
|
container:
|
|
3847
3847
|
args:
|
|
@@ -3875,7 +3875,7 @@ deploymentSpec:
|
|
|
3875
3875
|
\ 'datasetId': dataset_id,\n 'tableId': table_id,\n }\n\
|
|
3876
3876
|
\ if write_disposition:\n config['write_disposition'] = write_disposition\n\
|
|
3877
3877
|
\ return config\n\n"
|
|
3878
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
3878
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
|
|
3879
3879
|
exec-build-job-configuration-query-6:
|
|
3880
3880
|
container:
|
|
3881
3881
|
args:
|
|
@@ -3909,7 +3909,7 @@ deploymentSpec:
|
|
|
3909
3909
|
\ 'datasetId': dataset_id,\n 'tableId': table_id,\n }\n\
|
|
3910
3910
|
\ if write_disposition:\n config['write_disposition'] = write_disposition\n\
|
|
3911
3911
|
\ return config\n\n"
|
|
3912
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
3912
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
|
|
3913
3913
|
exec-build-serialized-query-parameters:
|
|
3914
3914
|
container:
|
|
3915
3915
|
args:
|
|
@@ -3980,7 +3980,7 @@ deploymentSpec:
|
|
|
3980
3980
|
\ 'name': 'start_time',\n 'parameterType': {\n 'type':\
|
|
3981
3981
|
\ 'TIMESTAMP'\n },\n 'parameterValue': {\n 'value': start_time\n\
|
|
3982
3982
|
\ },\n })\n return query_parameters\n\n"
|
|
3983
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
3983
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
|
|
3984
3984
|
exec-build-serialized-query-parameters-2:
|
|
3985
3985
|
container:
|
|
3986
3986
|
args:
|
|
@@ -4051,7 +4051,7 @@ deploymentSpec:
|
|
|
4051
4051
|
\ 'name': 'start_time',\n 'parameterType': {\n 'type':\
|
|
4052
4052
|
\ 'TIMESTAMP'\n },\n 'parameterValue': {\n 'value': start_time\n\
|
|
4053
4053
|
\ },\n })\n return query_parameters\n\n"
|
|
4054
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
4054
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
|
|
4055
4055
|
exec-build-serialized-query-parameters-3:
|
|
4056
4056
|
container:
|
|
4057
4057
|
args:
|
|
@@ -4122,7 +4122,7 @@ deploymentSpec:
|
|
|
4122
4122
|
\ 'name': 'start_time',\n 'parameterType': {\n 'type':\
|
|
4123
4123
|
\ 'TIMESTAMP'\n },\n 'parameterValue': {\n 'value': start_time\n\
|
|
4124
4124
|
\ },\n })\n return query_parameters\n\n"
|
|
4125
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
4125
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
|
|
4126
4126
|
exec-cond:
|
|
4127
4127
|
container:
|
|
4128
4128
|
args:
|
|
@@ -4144,7 +4144,7 @@ deploymentSpec:
|
|
|
4144
4144
|
\ *\n\ndef cond(predicate: bool, true_str: str, false_str: str) -> str:\n\
|
|
4145
4145
|
\ \"\"\"Returns true_str if predicate is true, else false_str.\"\"\"\n\
|
|
4146
4146
|
\ return true_str if predicate else false_str\n\n"
|
|
4147
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
4147
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
|
|
4148
4148
|
exec-create-metrics-artifact:
|
|
4149
4149
|
container:
|
|
4150
4150
|
args:
|
|
@@ -4170,7 +4170,7 @@ deploymentSpec:
|
|
|
4170
4170
|
\ 'MAPE': 'meanAbsolutePercentageError',\n }\n metrics = {metric_name_map[k]:\
|
|
4171
4171
|
\ v for k, v in dict(metrics_rows[0]).items()}\n evaluation_metrics.metadata\
|
|
4172
4172
|
\ = metrics\n\n"
|
|
4173
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
4173
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
|
|
4174
4174
|
exec-feature-transform-engine:
|
|
4175
4175
|
container:
|
|
4176
4176
|
args:
|
|
@@ -4255,8 +4255,8 @@ deploymentSpec:
|
|
|
4255
4255
|
"/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/dataflow_tmp"]}'
|
|
4256
4256
|
- '{"Concat": ["--dataflow_max_num_workers=", "{{$.inputs.parameters[''dataflow_max_num_workers'']}}"]}'
|
|
4257
4257
|
- '{"Concat": ["--dataflow_machine_type=", "{{$.inputs.parameters[''dataflow_machine_type'']}}"]}'
|
|
4258
|
-
- --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:
|
|
4259
|
-
- --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:
|
|
4258
|
+
- --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20250129_0625
|
|
4259
|
+
- --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20250129_0625
|
|
4260
4260
|
- '{"Concat": ["--dataflow_disk_size_gb=", "{{$.inputs.parameters[''dataflow_disk_size_gb'']}}"]}'
|
|
4261
4261
|
- '{"Concat": ["--dataflow_subnetwork_fully_qualified=", "{{$.inputs.parameters[''dataflow_subnetwork'']}}"]}'
|
|
4262
4262
|
- '{"Concat": ["--dataflow_use_public_ips=", "{{$.inputs.parameters[''dataflow_use_public_ips'']}}"]}'
|
|
@@ -4273,7 +4273,7 @@ deploymentSpec:
|
|
|
4273
4273
|
- '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
|
|
4274
4274
|
["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
|
|
4275
4275
|
- '{"Concat": ["--encryption_spec_key_name=", "{{$.inputs.parameters[''encryption_spec_key_name'']}}"]}'
|
|
4276
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:
|
|
4276
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20250129_0625
|
|
4277
4277
|
exec-get-fte-suffix:
|
|
4278
4278
|
container:
|
|
4279
4279
|
args:
|
|
@@ -4301,7 +4301,7 @@ deploymentSpec:
|
|
|
4301
4301
|
\ table.table_id.startswith(fte_table):\n return table.table_id[len(fte_table)\
|
|
4302
4302
|
\ + 1:]\n raise ValueError(\n f'No FTE output tables found in {bigquery_staging_full_dataset_id}.')\n\
|
|
4303
4303
|
\n"
|
|
4304
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
4304
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
|
|
4305
4305
|
exec-get-table-location:
|
|
4306
4306
|
container:
|
|
4307
4307
|
args:
|
|
@@ -4337,7 +4337,7 @@ deploymentSpec:
|
|
|
4337
4337
|
\ if table.startswith('bq://'):\n table = table[len('bq://'):]\n elif\
|
|
4338
4338
|
\ table.startswith('bigquery://'):\n table = table[len('bigquery://'):]\n\
|
|
4339
4339
|
\ return client.get_table(table).location\n\n"
|
|
4340
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
4340
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
|
|
4341
4341
|
exec-get-value:
|
|
4342
4342
|
container:
|
|
4343
4343
|
args:
|
|
@@ -4358,7 +4358,7 @@ deploymentSpec:
|
|
|
4358
4358
|
- "\nimport kfp\nfrom kfp import dsl\nfrom kfp.dsl import *\nfrom typing import\
|
|
4359
4359
|
\ *\n\ndef get_value(d: Dict[str, str], key: str) -> str:\n return d[key]\n\
|
|
4360
4360
|
\n"
|
|
4361
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
4361
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
|
|
4362
4362
|
exec-get-window-query-priority:
|
|
4363
4363
|
container:
|
|
4364
4364
|
args:
|
|
@@ -4382,7 +4382,7 @@ deploymentSpec:
|
|
|
4382
4382
|
\ depending on the window number.\"\"\"\n if int(window['window_number'])\
|
|
4383
4383
|
\ <= max_interactive:\n return 'INTERACTIVE'\n else:\n return 'BATCH'\n\
|
|
4384
4384
|
\n"
|
|
4385
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
4385
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
|
|
4386
4386
|
exec-maybe-replace-with-default:
|
|
4387
4387
|
container:
|
|
4388
4388
|
args:
|
|
@@ -4404,7 +4404,7 @@ deploymentSpec:
|
|
|
4404
4404
|
\ *\n\ndef maybe_replace_with_default(value: str, default: str = '') ->\
|
|
4405
4405
|
\ str:\n \"\"\"Replaces string with another value if it is a dash.\"\"\"\
|
|
4406
4406
|
\n return default if not value else value\n\n"
|
|
4407
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
4407
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
|
|
4408
4408
|
exec-query-with-retry:
|
|
4409
4409
|
container:
|
|
4410
4410
|
args:
|
|
@@ -4458,7 +4458,7 @@ deploymentSpec:
|
|
|
4458
4458
|
\ 'Query failed with %s. Retrying after %d seconds.', e, wait_time)\n\
|
|
4459
4459
|
\ time.sleep(wait_time)\n retry_count += 1\n return destination_uri\n\
|
|
4460
4460
|
\n"
|
|
4461
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
4461
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
|
|
4462
4462
|
exec-query-with-retry-2:
|
|
4463
4463
|
container:
|
|
4464
4464
|
args:
|
|
@@ -4512,7 +4512,7 @@ deploymentSpec:
|
|
|
4512
4512
|
\ 'Query failed with %s. Retrying after %d seconds.', e, wait_time)\n\
|
|
4513
4513
|
\ time.sleep(wait_time)\n retry_count += 1\n return destination_uri\n\
|
|
4514
4514
|
\n"
|
|
4515
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
4515
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
|
|
4516
4516
|
exec-query-with-retry-3:
|
|
4517
4517
|
container:
|
|
4518
4518
|
args:
|
|
@@ -4566,7 +4566,7 @@ deploymentSpec:
|
|
|
4566
4566
|
\ 'Query failed with %s. Retrying after %d seconds.', e, wait_time)\n\
|
|
4567
4567
|
\ time.sleep(wait_time)\n retry_count += 1\n return destination_uri\n\
|
|
4568
4568
|
\n"
|
|
4569
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
4569
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
|
|
4570
4570
|
exec-table-to-uri:
|
|
4571
4571
|
container:
|
|
4572
4572
|
args:
|
|
@@ -4596,7 +4596,7 @@ deploymentSpec:
|
|
|
4596
4596
|
\ if use_bq_prefix:\n bq_uri = 'bq://' + bq_uri\n outputs.append(bq_uri)\n\
|
|
4597
4597
|
\ return collections.namedtuple(\n 'Outputs',\n ['project_id',\
|
|
4598
4598
|
\ 'dataset_id', 'table_id', 'uri'],\n )(*outputs)\n\n"
|
|
4599
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
4599
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
|
|
4600
4600
|
exec-table-to-uri-2:
|
|
4601
4601
|
container:
|
|
4602
4602
|
args:
|
|
@@ -4626,7 +4626,7 @@ deploymentSpec:
|
|
|
4626
4626
|
\ if use_bq_prefix:\n bq_uri = 'bq://' + bq_uri\n outputs.append(bq_uri)\n\
|
|
4627
4627
|
\ return collections.namedtuple(\n 'Outputs',\n ['project_id',\
|
|
4628
4628
|
\ 'dataset_id', 'table_id', 'uri'],\n )(*outputs)\n\n"
|
|
4629
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
4629
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
|
|
4630
4630
|
exec-validate-inputs:
|
|
4631
4631
|
container:
|
|
4632
4632
|
args:
|
|
@@ -4722,7 +4722,7 @@ deploymentSpec:
|
|
|
4722
4722
|
\ raise ValueError(\n 'Granularity unit should be one of the\
|
|
4723
4723
|
\ following: '\n f'{valid_data_granularity_units}, got: {data_granularity_unit}.')\n\
|
|
4724
4724
|
\n"
|
|
4725
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
4725
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
|
|
4726
4726
|
exec-wrapped-in-list:
|
|
4727
4727
|
container:
|
|
4728
4728
|
args:
|
|
@@ -4743,7 +4743,7 @@ deploymentSpec:
|
|
|
4743
4743
|
- "\nimport kfp\nfrom kfp import dsl\nfrom kfp.dsl import *\nfrom typing import\
|
|
4744
4744
|
\ *\n\ndef wrapped_in_list(value: str) -> List[str]:\n \"\"\"Wraps a string\
|
|
4745
4745
|
\ in a list.\"\"\"\n return [value]\n\n"
|
|
4746
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
4746
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
|
|
4747
4747
|
pipelineInfo:
|
|
4748
4748
|
description: Trains a BQML ARIMA_PLUS model.
|
|
4749
4749
|
name: automl-tabular-bqml-arima-train
|
|
@@ -1461,7 +1461,7 @@ deploymentSpec:
|
|
|
1461
1461
|
\ = client.create_dataset(dataset=dataset, exists_ok=exists_ok)\n return\
|
|
1462
1462
|
\ collections.namedtuple('Outputs', ['project_id', 'dataset_id'])(\n \
|
|
1463
1463
|
\ ref.project, ref.dataset_id)\n\n"
|
|
1464
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
1464
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
|
|
1465
1465
|
exec-bigquery-delete-dataset-with-prefix:
|
|
1466
1466
|
container:
|
|
1467
1467
|
args:
|
|
@@ -1495,7 +1495,7 @@ deploymentSpec:
|
|
|
1495
1495
|
\ if dataset.dataset_id.startswith(dataset_prefix):\n client.delete_dataset(\n\
|
|
1496
1496
|
\ dataset=dataset.dataset_id,\n delete_contents=delete_contents)\n\
|
|
1497
1497
|
\n"
|
|
1498
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
1498
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
|
|
1499
1499
|
exec-bigquery-query-job:
|
|
1500
1500
|
container:
|
|
1501
1501
|
args:
|
|
@@ -1583,7 +1583,7 @@ deploymentSpec:
|
|
|
1583
1583
|
\ 'datasetId': dataset_id,\n 'tableId': table_id,\n }\n\
|
|
1584
1584
|
\ if write_disposition:\n config['write_disposition'] = write_disposition\n\
|
|
1585
1585
|
\ return config\n\n"
|
|
1586
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
1586
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
|
|
1587
1587
|
exec-build-job-configuration-query-2:
|
|
1588
1588
|
container:
|
|
1589
1589
|
args:
|
|
@@ -1617,7 +1617,7 @@ deploymentSpec:
|
|
|
1617
1617
|
\ 'datasetId': dataset_id,\n 'tableId': table_id,\n }\n\
|
|
1618
1618
|
\ if write_disposition:\n config['write_disposition'] = write_disposition\n\
|
|
1619
1619
|
\ return config\n\n"
|
|
1620
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
1620
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
|
|
1621
1621
|
exec-get-first-valid:
|
|
1622
1622
|
container:
|
|
1623
1623
|
args:
|
|
@@ -1641,7 +1641,7 @@ deploymentSpec:
|
|
|
1641
1641
|
\ import json\n # pylint: enable=g-import-not-at-top,import-outside-toplevel,redefined-outer-name,reimported\n\
|
|
1642
1642
|
\n for value in json.loads(values):\n if value:\n return value\n\
|
|
1643
1643
|
\ raise ValueError('No valid values.')\n\n"
|
|
1644
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
1644
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
|
|
1645
1645
|
exec-get-table-location:
|
|
1646
1646
|
container:
|
|
1647
1647
|
args:
|
|
@@ -1677,7 +1677,7 @@ deploymentSpec:
|
|
|
1677
1677
|
\ if table.startswith('bq://'):\n table = table[len('bq://'):]\n elif\
|
|
1678
1678
|
\ table.startswith('bigquery://'):\n table = table[len('bigquery://'):]\n\
|
|
1679
1679
|
\ return client.get_table(table).location\n\n"
|
|
1680
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
1680
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
|
|
1681
1681
|
exec-get-table-location-2:
|
|
1682
1682
|
container:
|
|
1683
1683
|
args:
|
|
@@ -1713,7 +1713,7 @@ deploymentSpec:
|
|
|
1713
1713
|
\ if table.startswith('bq://'):\n table = table[len('bq://'):]\n elif\
|
|
1714
1714
|
\ table.startswith('bigquery://'):\n table = table[len('bigquery://'):]\n\
|
|
1715
1715
|
\ return client.get_table(table).location\n\n"
|
|
1716
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
1716
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
|
|
1717
1717
|
exec-load-table-from-uri:
|
|
1718
1718
|
container:
|
|
1719
1719
|
args:
|
|
@@ -1754,7 +1754,7 @@ deploymentSpec:
|
|
|
1754
1754
|
\ source_format=source_format)\n client.load_table_from_uri(\n source_uris=csv_list,\n\
|
|
1755
1755
|
\ destination=destination,\n project=project,\n location=location,\n\
|
|
1756
1756
|
\ job_config=job_config).result()\n return destination\n\n"
|
|
1757
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
1757
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
|
|
1758
1758
|
exec-make-vertex-model-artifact:
|
|
1759
1759
|
container:
|
|
1760
1760
|
args:
|
|
@@ -1778,7 +1778,7 @@ deploymentSpec:
|
|
|
1778
1778
|
Creates a google.VertexModel artifact.\"\"\"\n vertex_model.metadata =\
|
|
1779
1779
|
\ {'resourceName': model_resource_name}\n vertex_model.uri = (f'https://{location}-aiplatform.googleapis.com'\n\
|
|
1780
1780
|
\ f'/v1/{model_resource_name}')\n\n"
|
|
1781
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
1781
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
|
|
1782
1782
|
exec-maybe-replace-with-default:
|
|
1783
1783
|
container:
|
|
1784
1784
|
args:
|
|
@@ -1800,7 +1800,7 @@ deploymentSpec:
|
|
|
1800
1800
|
\ *\n\ndef maybe_replace_with_default(value: str, default: str = '') ->\
|
|
1801
1801
|
\ str:\n \"\"\"Replaces string with another value if it is a dash.\"\"\"\
|
|
1802
1802
|
\n return default if not value else value\n\n"
|
|
1803
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
1803
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
|
|
1804
1804
|
exec-model-batch-predict:
|
|
1805
1805
|
container:
|
|
1806
1806
|
args:
|
|
@@ -1879,7 +1879,7 @@ deploymentSpec:
|
|
|
1879
1879
|
\ if use_bq_prefix:\n bq_uri = 'bq://' + bq_uri\n outputs.append(bq_uri)\n\
|
|
1880
1880
|
\ return collections.namedtuple(\n 'Outputs',\n ['project_id',\
|
|
1881
1881
|
\ 'dataset_id', 'table_id', 'uri'],\n )(*outputs)\n\n"
|
|
1882
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
1882
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
|
|
1883
1883
|
exec-table-to-uri-2:
|
|
1884
1884
|
container:
|
|
1885
1885
|
args:
|
|
@@ -1909,7 +1909,7 @@ deploymentSpec:
|
|
|
1909
1909
|
\ if use_bq_prefix:\n bq_uri = 'bq://' + bq_uri\n outputs.append(bq_uri)\n\
|
|
1910
1910
|
\ return collections.namedtuple(\n 'Outputs',\n ['project_id',\
|
|
1911
1911
|
\ 'dataset_id', 'table_id', 'uri'],\n )(*outputs)\n\n"
|
|
1912
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
1912
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
|
|
1913
1913
|
exec-validate-inputs:
|
|
1914
1914
|
container:
|
|
1915
1915
|
args:
|
|
@@ -2005,7 +2005,7 @@ deploymentSpec:
|
|
|
2005
2005
|
\ raise ValueError(\n 'Granularity unit should be one of the\
|
|
2006
2006
|
\ following: '\n f'{valid_data_granularity_units}, got: {data_granularity_unit}.')\n\
|
|
2007
2007
|
\n"
|
|
2008
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
2008
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
|
|
2009
2009
|
pipelineInfo:
|
|
2010
2010
|
description: Creates a batch prediction using a Prophet model.
|
|
2011
2011
|
name: prophet-predict
|
|
@@ -108,17 +108,17 @@ def prophet_trainer(
|
|
|
108
108
|
'"machine_spec": {"machine_type": "n1-standard-4"}, ',
|
|
109
109
|
(
|
|
110
110
|
'"container_spec":'
|
|
111
|
-
' {"image_uri":"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:
|
|
111
|
+
' {"image_uri":"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20250129_0625", '
|
|
112
112
|
),
|
|
113
113
|
'"args": ["prophet_trainer", "',
|
|
114
114
|
(
|
|
115
115
|
f'--job_name=dataflow-{dsl.PIPELINE_JOB_NAME_PLACEHOLDER}", "'
|
|
116
116
|
),
|
|
117
117
|
(
|
|
118
|
-
'--dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:
|
|
118
|
+
'--dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20250129_0625", "'
|
|
119
119
|
),
|
|
120
120
|
(
|
|
121
|
-
'--prediction_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/fte-prediction-server:
|
|
121
|
+
'--prediction_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/fte-prediction-server:20250129_0625", "'
|
|
122
122
|
),
|
|
123
123
|
'--artifacts_dir=',
|
|
124
124
|
root_dir,
|
|
@@ -2021,7 +2021,7 @@ deploymentSpec:
|
|
|
2021
2021
|
\ = client.create_dataset(dataset=dataset, exists_ok=exists_ok)\n return\
|
|
2022
2022
|
\ collections.namedtuple('Outputs', ['project_id', 'dataset_id'])(\n \
|
|
2023
2023
|
\ ref.project, ref.dataset_id)\n\n"
|
|
2024
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
2024
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
|
|
2025
2025
|
exec-bigquery-delete-dataset-with-prefix:
|
|
2026
2026
|
container:
|
|
2027
2027
|
args:
|
|
@@ -2055,7 +2055,7 @@ deploymentSpec:
|
|
|
2055
2055
|
\ if dataset.dataset_id.startswith(dataset_prefix):\n client.delete_dataset(\n\
|
|
2056
2056
|
\ dataset=dataset.dataset_id,\n delete_contents=delete_contents)\n\
|
|
2057
2057
|
\n"
|
|
2058
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
2058
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
|
|
2059
2059
|
exec-bigquery-query-job:
|
|
2060
2060
|
container:
|
|
2061
2061
|
args:
|
|
@@ -2116,7 +2116,7 @@ deploymentSpec:
|
|
|
2116
2116
|
\ 'datasetId': dataset_id,\n 'tableId': table_id,\n }\n\
|
|
2117
2117
|
\ if write_disposition:\n config['write_disposition'] = write_disposition\n\
|
|
2118
2118
|
\ return config\n\n"
|
|
2119
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
2119
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
|
|
2120
2120
|
exec-feature-transform-engine:
|
|
2121
2121
|
container:
|
|
2122
2122
|
args:
|
|
@@ -2201,8 +2201,8 @@ deploymentSpec:
|
|
|
2201
2201
|
"/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/dataflow_tmp"]}'
|
|
2202
2202
|
- '{"Concat": ["--dataflow_max_num_workers=", "{{$.inputs.parameters[''dataflow_max_num_workers'']}}"]}'
|
|
2203
2203
|
- '{"Concat": ["--dataflow_machine_type=", "{{$.inputs.parameters[''dataflow_machine_type'']}}"]}'
|
|
2204
|
-
- --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:
|
|
2205
|
-
- --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:
|
|
2204
|
+
- --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20250129_0625
|
|
2205
|
+
- --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20250129_0625
|
|
2206
2206
|
- '{"Concat": ["--dataflow_disk_size_gb=", "{{$.inputs.parameters[''dataflow_disk_size_gb'']}}"]}'
|
|
2207
2207
|
- '{"Concat": ["--dataflow_subnetwork_fully_qualified=", "{{$.inputs.parameters[''dataflow_subnetwork'']}}"]}'
|
|
2208
2208
|
- '{"Concat": ["--dataflow_use_public_ips=", "{{$.inputs.parameters[''dataflow_use_public_ips'']}}"]}'
|
|
@@ -2219,7 +2219,7 @@ deploymentSpec:
|
|
|
2219
2219
|
- '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
|
|
2220
2220
|
["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
|
|
2221
2221
|
- '{"Concat": ["--encryption_spec_key_name=", "{{$.inputs.parameters[''encryption_spec_key_name'']}}"]}'
|
|
2222
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:
|
|
2222
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20250129_0625
|
|
2223
2223
|
exec-get-fte-suffix:
|
|
2224
2224
|
container:
|
|
2225
2225
|
args:
|
|
@@ -2247,7 +2247,7 @@ deploymentSpec:
|
|
|
2247
2247
|
\ table.table_id.startswith(fte_table):\n return table.table_id[len(fte_table)\
|
|
2248
2248
|
\ + 1:]\n raise ValueError(\n f'No FTE output tables found in {bigquery_staging_full_dataset_id}.')\n\
|
|
2249
2249
|
\n"
|
|
2250
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
2250
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
|
|
2251
2251
|
exec-get-table-location:
|
|
2252
2252
|
container:
|
|
2253
2253
|
args:
|
|
@@ -2283,7 +2283,7 @@ deploymentSpec:
|
|
|
2283
2283
|
\ if table.startswith('bq://'):\n table = table[len('bq://'):]\n elif\
|
|
2284
2284
|
\ table.startswith('bigquery://'):\n table = table[len('bigquery://'):]\n\
|
|
2285
2285
|
\ return client.get_table(table).location\n\n"
|
|
2286
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
2286
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
|
|
2287
2287
|
exec-model-evaluation-regression:
|
|
2288
2288
|
container:
|
|
2289
2289
|
args:
|
|
@@ -2394,10 +2394,10 @@ deploymentSpec:
|
|
|
2394
2394
|
", "\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
|
|
2395
2395
|
"\"}, ", "\"job_spec\": {\"worker_pool_specs\": [{\"replica_count\":\"1\",
|
|
2396
2396
|
", "\"machine_spec\": {\"machine_type\": \"n1-standard-4\"}, ", "\"container_spec\":
|
|
2397
|
-
{\"image_uri\":\"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:
|
|
2397
|
+
{\"image_uri\":\"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20250129_0625\",
|
|
2398
2398
|
", "\"args\": [\"prophet_trainer\", \"", "--job_name=dataflow-{{$.pipeline_job_name}}\",
|
|
2399
|
-
\"", "--dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:
|
|
2400
|
-
\"", "--prediction_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/fte-prediction-server:
|
|
2399
|
+
\"", "--dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20250129_0625\",
|
|
2400
|
+
\"", "--prediction_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/fte-prediction-server:20250129_0625\",
|
|
2401
2401
|
\"", "--artifacts_dir=", "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/model/\",
|
|
2402
2402
|
\"", "--evaluated_examples_dir=", "{{$.inputs.parameters[''root_dir'']}}",
|
|
2403
2403
|
"/{{$.pipeline_job_uuid}}/eval/\", \"", "--region=", "{{$.inputs.parameters[''location'']}}",
|
|
@@ -2458,7 +2458,7 @@ deploymentSpec:
|
|
|
2458
2458
|
\ if use_bq_prefix:\n bq_uri = 'bq://' + bq_uri\n outputs.append(bq_uri)\n\
|
|
2459
2459
|
\ return collections.namedtuple(\n 'Outputs',\n ['project_id',\
|
|
2460
2460
|
\ 'dataset_id', 'table_id', 'uri'],\n )(*outputs)\n\n"
|
|
2461
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
2461
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
|
|
2462
2462
|
exec-validate-inputs:
|
|
2463
2463
|
container:
|
|
2464
2464
|
args:
|
|
@@ -2554,7 +2554,7 @@ deploymentSpec:
|
|
|
2554
2554
|
\ raise ValueError(\n 'Granularity unit should be one of the\
|
|
2555
2555
|
\ following: '\n f'{valid_data_granularity_units}, got: {data_granularity_unit}.')\n\
|
|
2556
2556
|
\n"
|
|
2557
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
2557
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
|
|
2558
2558
|
exec-wrapped-in-list:
|
|
2559
2559
|
container:
|
|
2560
2560
|
args:
|
|
@@ -2575,7 +2575,7 @@ deploymentSpec:
|
|
|
2575
2575
|
- "\nimport kfp\nfrom kfp import dsl\nfrom kfp.dsl import *\nfrom typing import\
|
|
2576
2576
|
\ *\n\ndef wrapped_in_list(value: str) -> List[str]:\n \"\"\"Wraps a string\
|
|
2577
2577
|
\ in a list.\"\"\"\n return [value]\n\n"
|
|
2578
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
2578
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
|
|
2579
2579
|
pipelineInfo:
|
|
2580
2580
|
description: Trains one Prophet model per time series.
|
|
2581
2581
|
name: prophet-train
|