google-cloud-pipeline-components 2.16.1__py3-none-any.whl → 2.18.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of google-cloud-pipeline-components might be problematic. Click here for more details.

Files changed (64) hide show
  1. google_cloud_pipeline_components/_implementation/llm/generated/refined_image_versions.py +1 -1
  2. google_cloud_pipeline_components/_implementation/model_evaluation/import_evaluation/__init__.py +14 -0
  3. google_cloud_pipeline_components/_implementation/model_evaluation/import_evaluation/component.py +208 -0
  4. google_cloud_pipeline_components/_implementation/model_evaluation/llm_evaluation/component.py +3 -0
  5. google_cloud_pipeline_components/_implementation/model_evaluation/llm_evaluation_preprocessor/component.py +2 -4
  6. google_cloud_pipeline_components/_implementation/model_evaluation/version.py +1 -1
  7. google_cloud_pipeline_components/preview/automl/forecasting/forecasting_ensemble.py +1 -1
  8. google_cloud_pipeline_components/preview/automl/forecasting/forecasting_stage_1_tuner.py +2 -2
  9. google_cloud_pipeline_components/preview/automl/forecasting/forecasting_stage_2_tuner.py +2 -2
  10. google_cloud_pipeline_components/preview/automl/forecasting/learn_to_learn_forecasting_pipeline.yaml +34 -34
  11. google_cloud_pipeline_components/preview/automl/forecasting/sequence_to_sequence_forecasting_pipeline.yaml +34 -34
  12. google_cloud_pipeline_components/preview/automl/forecasting/temporal_fusion_transformer_forecasting_pipeline.yaml +34 -34
  13. google_cloud_pipeline_components/preview/automl/forecasting/time_series_dense_encoder_forecasting_pipeline.yaml +34 -34
  14. google_cloud_pipeline_components/preview/automl/tabular/auto_feature_engineering.py +1 -1
  15. google_cloud_pipeline_components/preview/automl/tabular/automl_tabular_feature_selection_pipeline.yaml +39 -39
  16. google_cloud_pipeline_components/preview/automl/tabular/automl_tabular_v2_pipeline.yaml +41 -41
  17. google_cloud_pipeline_components/preview/automl/tabular/distillation_stage_feature_transform_engine.py +2 -2
  18. google_cloud_pipeline_components/preview/automl/tabular/feature_selection.py +2 -2
  19. google_cloud_pipeline_components/preview/automl/tabular/feature_selection_pipeline.yaml +4 -4
  20. google_cloud_pipeline_components/preview/automl/tabular/feature_transform_engine.py +3 -3
  21. google_cloud_pipeline_components/preview/automl/tabular/tabnet_hyperparameter_tuning_job.py +2 -2
  22. google_cloud_pipeline_components/preview/automl/tabular/tabnet_hyperparameter_tuning_job_pipeline.yaml +15 -15
  23. google_cloud_pipeline_components/preview/automl/tabular/tabnet_trainer.py +2 -2
  24. google_cloud_pipeline_components/preview/automl/tabular/tabnet_trainer_pipeline.yaml +13 -13
  25. google_cloud_pipeline_components/preview/automl/tabular/utils.py +1 -1
  26. google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_hyperparameter_tuning_job.py +2 -2
  27. google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_hyperparameter_tuning_job_pipeline.yaml +14 -14
  28. google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_trainer.py +2 -2
  29. google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_trainer_pipeline.yaml +13 -13
  30. google_cloud_pipeline_components/preview/automl/tabular/xgboost_hyperparameter_tuning_job_pipeline.yaml +14 -14
  31. google_cloud_pipeline_components/preview/automl/tabular/xgboost_trainer_pipeline.yaml +13 -13
  32. google_cloud_pipeline_components/preview/custom_job/__init__.py +9 -0
  33. google_cloud_pipeline_components/preview/model_evaluation/evaluation_llm_classification_pipeline.py +180 -0
  34. google_cloud_pipeline_components/preview/model_evaluation/evaluation_llm_text_generation_pipeline.py +178 -0
  35. google_cloud_pipeline_components/preview/model_evaluation/model_based_llm_evaluation/__init__.py +20 -0
  36. google_cloud_pipeline_components/preview/model_evaluation/model_based_llm_evaluation/autosxs/__init__.py +13 -0
  37. google_cloud_pipeline_components/preview/model_evaluation/model_based_llm_evaluation/autosxs/autosxs_pipeline.py +109 -0
  38. google_cloud_pipeline_components/proto/preflight_validations_pb2.py +58 -0
  39. google_cloud_pipeline_components/v1/automl/forecasting/bqml_arima_predict_pipeline.yaml +10 -10
  40. google_cloud_pipeline_components/v1/automl/forecasting/bqml_arima_train_pipeline.yaml +31 -31
  41. google_cloud_pipeline_components/v1/automl/forecasting/prophet_predict_pipeline.yaml +13 -13
  42. google_cloud_pipeline_components/v1/automl/forecasting/prophet_trainer.py +3 -3
  43. google_cloud_pipeline_components/v1/automl/forecasting/prophet_trainer_pipeline.yaml +14 -14
  44. google_cloud_pipeline_components/v1/automl/tabular/automl_tabular_pipeline.yaml +37 -37
  45. google_cloud_pipeline_components/v1/automl/tabular/cv_trainer.py +2 -2
  46. google_cloud_pipeline_components/v1/automl/tabular/ensemble.py +2 -2
  47. google_cloud_pipeline_components/v1/automl/tabular/finalizer.py +1 -1
  48. google_cloud_pipeline_components/v1/automl/tabular/infra_validator.py +1 -1
  49. google_cloud_pipeline_components/v1/automl/tabular/split_materialized_data.py +1 -1
  50. google_cloud_pipeline_components/v1/automl/tabular/stage_1_tuner.py +2 -2
  51. google_cloud_pipeline_components/v1/automl/tabular/stats_and_example_gen.py +2 -2
  52. google_cloud_pipeline_components/v1/automl/tabular/training_configurator_and_validator.py +1 -1
  53. google_cloud_pipeline_components/v1/automl/tabular/transform.py +2 -2
  54. google_cloud_pipeline_components/v1/automl/tabular/utils.py +1 -1
  55. google_cloud_pipeline_components/v1/custom_job/component.py +5 -2
  56. google_cloud_pipeline_components/v1/custom_job/utils.py +23 -0
  57. google_cloud_pipeline_components/v1/model_evaluation/evaluation_llm_text_generation_pipeline.py +2 -1
  58. google_cloud_pipeline_components/v1/model_evaluation/regression_component.py +1 -1
  59. google_cloud_pipeline_components/version.py +1 -1
  60. {google_cloud_pipeline_components-2.16.1.dist-info → google_cloud_pipeline_components-2.18.0.dist-info}/METADATA +23 -18
  61. {google_cloud_pipeline_components-2.16.1.dist-info → google_cloud_pipeline_components-2.18.0.dist-info}/RECORD +64 -56
  62. {google_cloud_pipeline_components-2.16.1.dist-info → google_cloud_pipeline_components-2.18.0.dist-info}/WHEEL +1 -1
  63. {google_cloud_pipeline_components-2.16.1.dist-info → google_cloud_pipeline_components-2.18.0.dist-info}/LICENSE +0 -0
  64. {google_cloud_pipeline_components-2.16.1.dist-info → google_cloud_pipeline_components-2.18.0.dist-info}/top_level.txt +0 -0
@@ -5559,7 +5559,7 @@ deploymentSpec:
5559
5559
  - '{"display_name": "automl-forecasting-ensemble-{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}",
5560
5560
  "encryption_spec": {"kms_key_name": "{{$.inputs.parameters[''encryption_spec_key_name'']}}"},
5561
5561
  "job_spec": {"worker_pool_specs": [{"replica_count": 1, "machine_spec":
5562
- {"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240808_0625",
5562
+ {"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20241121_0625",
5563
5563
  "args": ["forecasting_mp_ensemble", "--transform_output_path={{$.inputs.artifacts[''transform_output''].uri}}",
5564
5564
  "--error_file_path={{$.inputs.parameters[''root_dir'']}}/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb",
5565
5565
  "--metadata_path={{$.inputs.artifacts[''metadata''].uri}}", "--tuning_result_input_path={{$.inputs.artifacts[''tuning_result_input''].uri}}",
@@ -5593,7 +5593,7 @@ deploymentSpec:
5593
5593
  - '{"display_name": "automl-forecasting-ensemble-{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}",
5594
5594
  "encryption_spec": {"kms_key_name": "{{$.inputs.parameters[''encryption_spec_key_name'']}}"},
5595
5595
  "job_spec": {"worker_pool_specs": [{"replica_count": 1, "machine_spec":
5596
- {"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240808_0625",
5596
+ {"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20241121_0625",
5597
5597
  "args": ["forecasting_mp_ensemble", "--transform_output_path={{$.inputs.artifacts[''transform_output''].uri}}",
5598
5598
  "--error_file_path={{$.inputs.parameters[''root_dir'']}}/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb",
5599
5599
  "--metadata_path={{$.inputs.artifacts[''metadata''].uri}}", "--tuning_result_input_path={{$.inputs.artifacts[''tuning_result_input''].uri}}",
@@ -5628,11 +5628,11 @@ deploymentSpec:
5628
5628
  \"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
5629
5629
  "\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
5630
5630
  {\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
5631
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240808_0625",
5631
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20241121_0625",
5632
5632
  "\", \"args\": [\"forecasting_mp_l2l_stage_1_tuner", "\", \"--region=",
5633
5633
  "{{$.inputs.parameters[''location'']}}", "\", \"--transform_output_path=",
5634
5634
  "{{$.inputs.artifacts[''transform_output''].uri}}", "\", \"--training_docker_uri=",
5635
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240808_0625",
5635
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20241121_0625",
5636
5636
  "\", \"--reduce_search_space_mode=", "{{$.inputs.parameters[''reduce_search_space_mode'']}}",
5637
5637
  "\", \"--component_id={{$.pipeline_task_uuid}}", "\", \"--training_base_dir=",
5638
5638
  "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/train",
@@ -5671,11 +5671,11 @@ deploymentSpec:
5671
5671
  \"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
5672
5672
  "\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
5673
5673
  {\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
5674
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240808_0625",
5674
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20241121_0625",
5675
5675
  "\", \"args\": [\"forecasting_mp_l2l_stage_2_tuner", "\", \"--region=",
5676
5676
  "{{$.inputs.parameters[''location'']}}", "\", \"--transform_output_path=",
5677
5677
  "{{$.inputs.artifacts[''transform_output''].uri}}", "\", \"--training_docker_uri=",
5678
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240808_0625",
5678
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20241121_0625",
5679
5679
  "\", \"--component_id={{$.pipeline_task_uuid}}", "\", \"--training_base_dir=",
5680
5680
  "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/train",
5681
5681
  "\", \"--num_parallel_trial=", "{{$.inputs.parameters[''num_parallel_trials'']}}",
@@ -5714,7 +5714,7 @@ deploymentSpec:
5714
5714
  \"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
5715
5715
  "\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
5716
5716
  {\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
5717
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240808_0625", "\",
5717
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20241121_0625", "\",
5718
5718
  \"args\": [\"cancel_l2l_tuner\", \"--error_file_path=", "{{$.inputs.parameters[''root_dir'']}}",
5719
5719
  "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb\", \"--cleanup_lro_job_infos=",
5720
5720
  "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/lro\"]}}]}}"]}'
@@ -5779,7 +5779,7 @@ deploymentSpec:
5779
5779
  \ 'stage_2_single_run_max_secs',\n ],\n )(\n stage_1_deadline_hours,\n\
5780
5780
  \ stage_1_single_run_max_secs,\n stage_2_deadline_hours,\n \
5781
5781
  \ stage_2_single_run_max_secs,\n )\n\n"
5782
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
5782
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20241121_0625
5783
5783
  exec-calculate-training-parameters-2:
5784
5784
  container:
5785
5785
  args:
@@ -5835,7 +5835,7 @@ deploymentSpec:
5835
5835
  \ 'stage_2_single_run_max_secs',\n ],\n )(\n stage_1_deadline_hours,\n\
5836
5836
  \ stage_1_single_run_max_secs,\n stage_2_deadline_hours,\n \
5837
5837
  \ stage_2_single_run_max_secs,\n )\n\n"
5838
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
5838
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20241121_0625
5839
5839
  exec-feature-attribution:
5840
5840
  container:
5841
5841
  args:
@@ -6026,8 +6026,8 @@ deploymentSpec:
6026
6026
  "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/dataflow_tmp"]}'
6027
6027
  - '{"Concat": ["--dataflow_max_num_workers=", "{{$.inputs.parameters[''dataflow_max_num_workers'']}}"]}'
6028
6028
  - '{"Concat": ["--dataflow_machine_type=", "{{$.inputs.parameters[''dataflow_machine_type'']}}"]}'
6029
- - --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240808_0625
6030
- - --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240808_0625
6029
+ - --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20241121_0625
6030
+ - --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20241121_0625
6031
6031
  - '{"Concat": ["--dataflow_disk_size_gb=", "{{$.inputs.parameters[''dataflow_disk_size_gb'']}}"]}'
6032
6032
  - '{"Concat": ["--dataflow_subnetwork_fully_qualified=", "{{$.inputs.parameters[''dataflow_subnetwork'']}}"]}'
6033
6033
  - '{"Concat": ["--dataflow_use_public_ips=", "{{$.inputs.parameters[''dataflow_use_public_ips'']}}"]}'
@@ -6044,7 +6044,7 @@ deploymentSpec:
6044
6044
  - '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
6045
6045
  ["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
6046
6046
  - '{"Concat": ["--encryption_spec_key_name=", "{{$.inputs.parameters[''encryption_spec_key_name'']}}"]}'
6047
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240808_0625
6047
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20241121_0625
6048
6048
  resources:
6049
6049
  cpuLimit: 8.0
6050
6050
  memoryLimit: 30.0
@@ -6075,7 +6075,7 @@ deploymentSpec:
6075
6075
  \ = 'point'\n else:\n forecasting_type = 'quantile'\n\n return collections.namedtuple(\n\
6076
6076
  \ 'Outputs',\n (\n 'forecasting_type',\n 'quantiles',\n\
6077
6077
  \ ),\n )(forecasting_type, quantiles)\n\n"
6078
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
6078
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20241121_0625
6079
6079
  exec-finalize-eval-quantile-parameters-2:
6080
6080
  container:
6081
6081
  args:
@@ -6103,7 +6103,7 @@ deploymentSpec:
6103
6103
  \ = 'point'\n else:\n forecasting_type = 'quantile'\n\n return collections.namedtuple(\n\
6104
6104
  \ 'Outputs',\n (\n 'forecasting_type',\n 'quantiles',\n\
6105
6105
  \ ),\n )(forecasting_type, quantiles)\n\n"
6106
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
6106
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20241121_0625
6107
6107
  exec-get-or-create-model-description:
6108
6108
  container:
6109
6109
  args:
@@ -6132,7 +6132,7 @@ deploymentSpec:
6132
6132
  \ return f'{original_description} From: {pipeline_url}'\n\n # The pipeline\
6133
6133
  \ url contains KFP placeholders injected at runtime.\n return f'Vertex\
6134
6134
  \ forecasting model trained in the pipeline: {pipeline_url}'\n\n"
6135
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
6135
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20241121_0625
6136
6136
  exec-get-or-create-model-description-2:
6137
6137
  container:
6138
6138
  args:
@@ -6161,7 +6161,7 @@ deploymentSpec:
6161
6161
  \ return f'{original_description} From: {pipeline_url}'\n\n # The pipeline\
6162
6162
  \ url contains KFP placeholders injected at runtime.\n return f'Vertex\
6163
6163
  \ forecasting model trained in the pipeline: {pipeline_url}'\n\n"
6164
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
6164
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20241121_0625
6165
6165
  exec-get-prediction-image-uri:
6166
6166
  container:
6167
6167
  args:
@@ -6184,14 +6184,14 @@ deploymentSpec:
6184
6184
  Returns the prediction image corresponding to the given model type.\"\"\"\
6185
6185
  \n # Keys come from AutoMlTimeSeriesForecastingTrainSpec.\n # The URIs\
6186
6186
  \ must be hardcoded without any breaks in the code so string\n # replacement\
6187
- \ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20240808_0625',\n\
6188
- \ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:20240808_0625',\n\
6189
- \ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:20240808_0625',\n\
6190
- \ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:20240808_0625',\n\
6187
+ \ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20241121_0625',\n\
6188
+ \ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:20241121_0625',\n\
6189
+ \ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:20241121_0625',\n\
6190
+ \ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:20241121_0625',\n\
6191
6191
  \ }\n if model_type not in images:\n raise ValueError(\n f'Invalid\
6192
6192
  \ forecasting model type: {model_type}. Valid options are: '\n f'{images.keys()}.'\n\
6193
6193
  \ )\n return images[model_type]\n\n"
6194
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
6194
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20241121_0625
6195
6195
  exec-get-prediction-image-uri-2:
6196
6196
  container:
6197
6197
  args:
@@ -6214,14 +6214,14 @@ deploymentSpec:
6214
6214
  Returns the prediction image corresponding to the given model type.\"\"\"\
6215
6215
  \n # Keys come from AutoMlTimeSeriesForecastingTrainSpec.\n # The URIs\
6216
6216
  \ must be hardcoded without any breaks in the code so string\n # replacement\
6217
- \ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20240808_0625',\n\
6218
- \ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:20240808_0625',\n\
6219
- \ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:20240808_0625',\n\
6220
- \ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:20240808_0625',\n\
6217
+ \ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20241121_0625',\n\
6218
+ \ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:20241121_0625',\n\
6219
+ \ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:20241121_0625',\n\
6220
+ \ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:20241121_0625',\n\
6221
6221
  \ }\n if model_type not in images:\n raise ValueError(\n f'Invalid\
6222
6222
  \ forecasting model type: {model_type}. Valid options are: '\n f'{images.keys()}.'\n\
6223
6223
  \ )\n return images[model_type]\n\n"
6224
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
6224
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20241121_0625
6225
6225
  exec-get-predictions-column:
6226
6226
  container:
6227
6227
  args:
@@ -6244,7 +6244,7 @@ deploymentSpec:
6244
6244
  \ str) -> str:\n \"\"\"Generates the BP output's target column name.\"\"\
6245
6245
  \"\n if forecasting_type == 'quantile':\n return f'predicted_{target_column}.quantile_predictions'\n\
6246
6246
  \ return f'predicted_{target_column}.value'\n\n"
6247
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
6247
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20241121_0625
6248
6248
  exec-get-predictions-column-2:
6249
6249
  container:
6250
6250
  args:
@@ -6267,7 +6267,7 @@ deploymentSpec:
6267
6267
  \ str) -> str:\n \"\"\"Generates the BP output's target column name.\"\"\
6268
6268
  \"\n if forecasting_type == 'quantile':\n return f'predicted_{target_column}.quantile_predictions'\n\
6269
6269
  \ return f'predicted_{target_column}.value'\n\n"
6270
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
6270
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20241121_0625
6271
6271
  exec-importer:
6272
6272
  importer:
6273
6273
  artifactUri:
@@ -6799,7 +6799,7 @@ deploymentSpec:
6799
6799
  \ 'model_display_name',\n 'transformations',\n ],\n\
6800
6800
  \ )(\n data_source_csv_filenames,\n data_source_bigquery_table_path,\n\
6801
6801
  \ model_display_name,\n transformations,\n )\n\n"
6802
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
6802
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20241121_0625
6803
6803
  exec-split-materialized-data:
6804
6804
  container:
6805
6805
  args:
@@ -6845,7 +6845,7 @@ deploymentSpec:
6845
6845
  \ 'w') as f:\n f.write(file_patterns[0])\n\n with tf.io.gfile.GFile(materialized_eval_split,\
6846
6846
  \ 'w') as f:\n f.write(file_patterns[1])\n\n with tf.io.gfile.GFile(materialized_test_split,\
6847
6847
  \ 'w') as f:\n f.write(file_patterns[2])\n\n"
6848
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240808_0625
6848
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20241121_0625
6849
6849
  exec-string-not-empty:
6850
6850
  container:
6851
6851
  args:
@@ -6869,7 +6869,7 @@ deploymentSpec:
6869
6869
  \n Returns:\n Boolean value. -> 'true' if empty, 'false' if not empty.\
6870
6870
  \ We need to use str\n instead of bool due to a limitation in KFP compiler.\n\
6871
6871
  \ \"\"\"\n return 'true' if value else 'false'\n\n"
6872
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
6872
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20241121_0625
6873
6873
  exec-table-to-uri:
6874
6874
  container:
6875
6875
  args:
@@ -6899,7 +6899,7 @@ deploymentSpec:
6899
6899
  \ if use_bq_prefix:\n bq_uri = 'bq://' + bq_uri\n outputs.append(bq_uri)\n\
6900
6900
  \ return collections.namedtuple(\n 'Outputs',\n ['project_id',\
6901
6901
  \ 'dataset_id', 'table_id', 'uri'],\n )(*outputs)\n\n"
6902
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
6902
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20241121_0625
6903
6903
  exec-table-to-uri-2:
6904
6904
  container:
6905
6905
  args:
@@ -6929,7 +6929,7 @@ deploymentSpec:
6929
6929
  \ if use_bq_prefix:\n bq_uri = 'bq://' + bq_uri\n outputs.append(bq_uri)\n\
6930
6930
  \ return collections.namedtuple(\n 'Outputs',\n ['project_id',\
6931
6931
  \ 'dataset_id', 'table_id', 'uri'],\n )(*outputs)\n\n"
6932
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
6932
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20241121_0625
6933
6933
  exec-training-configurator-and-validator:
6934
6934
  container:
6935
6935
  args:
@@ -6974,7 +6974,7 @@ deploymentSpec:
6974
6974
  ["--temporal_total_weight=", "{{$.inputs.parameters[''temporal_total_weight'']}}"]}}}'
6975
6975
  - '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
6976
6976
  ["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
6977
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240808_0625
6977
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20241121_0625
6978
6978
  pipelineInfo:
6979
6979
  description: The Sequence to Sequence (Seq2Seq) Forecasting pipeline.
6980
6980
  name: sequence-to-sequence-forecasting
@@ -5552,7 +5552,7 @@ deploymentSpec:
5552
5552
  - '{"display_name": "automl-forecasting-ensemble-{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}",
5553
5553
  "encryption_spec": {"kms_key_name": "{{$.inputs.parameters[''encryption_spec_key_name'']}}"},
5554
5554
  "job_spec": {"worker_pool_specs": [{"replica_count": 1, "machine_spec":
5555
- {"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240808_0625",
5555
+ {"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20241121_0625",
5556
5556
  "args": ["forecasting_mp_ensemble", "--transform_output_path={{$.inputs.artifacts[''transform_output''].uri}}",
5557
5557
  "--error_file_path={{$.inputs.parameters[''root_dir'']}}/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb",
5558
5558
  "--metadata_path={{$.inputs.artifacts[''metadata''].uri}}", "--tuning_result_input_path={{$.inputs.artifacts[''tuning_result_input''].uri}}",
@@ -5586,7 +5586,7 @@ deploymentSpec:
5586
5586
  - '{"display_name": "automl-forecasting-ensemble-{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}",
5587
5587
  "encryption_spec": {"kms_key_name": "{{$.inputs.parameters[''encryption_spec_key_name'']}}"},
5588
5588
  "job_spec": {"worker_pool_specs": [{"replica_count": 1, "machine_spec":
5589
- {"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240808_0625",
5589
+ {"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20241121_0625",
5590
5590
  "args": ["forecasting_mp_ensemble", "--transform_output_path={{$.inputs.artifacts[''transform_output''].uri}}",
5591
5591
  "--error_file_path={{$.inputs.parameters[''root_dir'']}}/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb",
5592
5592
  "--metadata_path={{$.inputs.artifacts[''metadata''].uri}}", "--tuning_result_input_path={{$.inputs.artifacts[''tuning_result_input''].uri}}",
@@ -5621,11 +5621,11 @@ deploymentSpec:
5621
5621
  \"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
5622
5622
  "\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
5623
5623
  {\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
5624
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240808_0625",
5624
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20241121_0625",
5625
5625
  "\", \"args\": [\"forecasting_mp_l2l_stage_1_tuner", "\", \"--region=",
5626
5626
  "{{$.inputs.parameters[''location'']}}", "\", \"--transform_output_path=",
5627
5627
  "{{$.inputs.artifacts[''transform_output''].uri}}", "\", \"--training_docker_uri=",
5628
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240808_0625",
5628
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20241121_0625",
5629
5629
  "\", \"--reduce_search_space_mode=", "{{$.inputs.parameters[''reduce_search_space_mode'']}}",
5630
5630
  "\", \"--component_id={{$.pipeline_task_uuid}}", "\", \"--training_base_dir=",
5631
5631
  "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/train",
@@ -5664,11 +5664,11 @@ deploymentSpec:
5664
5664
  \"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
5665
5665
  "\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
5666
5666
  {\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
5667
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240808_0625",
5667
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20241121_0625",
5668
5668
  "\", \"args\": [\"forecasting_mp_l2l_stage_2_tuner", "\", \"--region=",
5669
5669
  "{{$.inputs.parameters[''location'']}}", "\", \"--transform_output_path=",
5670
5670
  "{{$.inputs.artifacts[''transform_output''].uri}}", "\", \"--training_docker_uri=",
5671
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240808_0625",
5671
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20241121_0625",
5672
5672
  "\", \"--component_id={{$.pipeline_task_uuid}}", "\", \"--training_base_dir=",
5673
5673
  "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/train",
5674
5674
  "\", \"--num_parallel_trial=", "{{$.inputs.parameters[''num_parallel_trials'']}}",
@@ -5707,7 +5707,7 @@ deploymentSpec:
5707
5707
  \"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
5708
5708
  "\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
5709
5709
  {\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
5710
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240808_0625", "\",
5710
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20241121_0625", "\",
5711
5711
  \"args\": [\"cancel_l2l_tuner\", \"--error_file_path=", "{{$.inputs.parameters[''root_dir'']}}",
5712
5712
  "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb\", \"--cleanup_lro_job_infos=",
5713
5713
  "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/lro\"]}}]}}"]}'
@@ -5772,7 +5772,7 @@ deploymentSpec:
5772
5772
  \ 'stage_2_single_run_max_secs',\n ],\n )(\n stage_1_deadline_hours,\n\
5773
5773
  \ stage_1_single_run_max_secs,\n stage_2_deadline_hours,\n \
5774
5774
  \ stage_2_single_run_max_secs,\n )\n\n"
5775
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
5775
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20241121_0625
5776
5776
  exec-calculate-training-parameters-2:
5777
5777
  container:
5778
5778
  args:
@@ -5828,7 +5828,7 @@ deploymentSpec:
5828
5828
  \ 'stage_2_single_run_max_secs',\n ],\n )(\n stage_1_deadline_hours,\n\
5829
5829
  \ stage_1_single_run_max_secs,\n stage_2_deadline_hours,\n \
5830
5830
  \ stage_2_single_run_max_secs,\n )\n\n"
5831
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
5831
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20241121_0625
5832
5832
  exec-feature-attribution:
5833
5833
  container:
5834
5834
  args:
@@ -6019,8 +6019,8 @@ deploymentSpec:
6019
6019
  "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/dataflow_tmp"]}'
6020
6020
  - '{"Concat": ["--dataflow_max_num_workers=", "{{$.inputs.parameters[''dataflow_max_num_workers'']}}"]}'
6021
6021
  - '{"Concat": ["--dataflow_machine_type=", "{{$.inputs.parameters[''dataflow_machine_type'']}}"]}'
6022
- - --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240808_0625
6023
- - --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240808_0625
6022
+ - --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20241121_0625
6023
+ - --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20241121_0625
6024
6024
  - '{"Concat": ["--dataflow_disk_size_gb=", "{{$.inputs.parameters[''dataflow_disk_size_gb'']}}"]}'
6025
6025
  - '{"Concat": ["--dataflow_subnetwork_fully_qualified=", "{{$.inputs.parameters[''dataflow_subnetwork'']}}"]}'
6026
6026
  - '{"Concat": ["--dataflow_use_public_ips=", "{{$.inputs.parameters[''dataflow_use_public_ips'']}}"]}'
@@ -6037,7 +6037,7 @@ deploymentSpec:
6037
6037
  - '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
6038
6038
  ["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
6039
6039
  - '{"Concat": ["--encryption_spec_key_name=", "{{$.inputs.parameters[''encryption_spec_key_name'']}}"]}'
6040
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240808_0625
6040
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20241121_0625
6041
6041
  resources:
6042
6042
  cpuLimit: 8.0
6043
6043
  memoryLimit: 30.0
@@ -6068,7 +6068,7 @@ deploymentSpec:
6068
6068
  \ = 'point'\n else:\n forecasting_type = 'quantile'\n\n return collections.namedtuple(\n\
6069
6069
  \ 'Outputs',\n (\n 'forecasting_type',\n 'quantiles',\n\
6070
6070
  \ ),\n )(forecasting_type, quantiles)\n\n"
6071
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
6071
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20241121_0625
6072
6072
  exec-finalize-eval-quantile-parameters-2:
6073
6073
  container:
6074
6074
  args:
@@ -6096,7 +6096,7 @@ deploymentSpec:
6096
6096
  \ = 'point'\n else:\n forecasting_type = 'quantile'\n\n return collections.namedtuple(\n\
6097
6097
  \ 'Outputs',\n (\n 'forecasting_type',\n 'quantiles',\n\
6098
6098
  \ ),\n )(forecasting_type, quantiles)\n\n"
6099
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
6099
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20241121_0625
6100
6100
  exec-get-or-create-model-description:
6101
6101
  container:
6102
6102
  args:
@@ -6125,7 +6125,7 @@ deploymentSpec:
6125
6125
  \ return f'{original_description} From: {pipeline_url}'\n\n # The pipeline\
6126
6126
  \ url contains KFP placeholders injected at runtime.\n return f'Vertex\
6127
6127
  \ forecasting model trained in the pipeline: {pipeline_url}'\n\n"
6128
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
6128
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20241121_0625
6129
6129
  exec-get-or-create-model-description-2:
6130
6130
  container:
6131
6131
  args:
@@ -6154,7 +6154,7 @@ deploymentSpec:
6154
6154
  \ return f'{original_description} From: {pipeline_url}'\n\n # The pipeline\
6155
6155
  \ url contains KFP placeholders injected at runtime.\n return f'Vertex\
6156
6156
  \ forecasting model trained in the pipeline: {pipeline_url}'\n\n"
6157
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
6157
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20241121_0625
6158
6158
  exec-get-prediction-image-uri:
6159
6159
  container:
6160
6160
  args:
@@ -6177,14 +6177,14 @@ deploymentSpec:
6177
6177
  Returns the prediction image corresponding to the given model type.\"\"\"\
6178
6178
  \n # Keys come from AutoMlTimeSeriesForecastingTrainSpec.\n # The URIs\
6179
6179
  \ must be hardcoded without any breaks in the code so string\n # replacement\
6180
- \ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20240808_0625',\n\
6181
- \ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:20240808_0625',\n\
6182
- \ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:20240808_0625',\n\
6183
- \ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:20240808_0625',\n\
6180
+ \ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20241121_0625',\n\
6181
+ \ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:20241121_0625',\n\
6182
+ \ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:20241121_0625',\n\
6183
+ \ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:20241121_0625',\n\
6184
6184
  \ }\n if model_type not in images:\n raise ValueError(\n f'Invalid\
6185
6185
  \ forecasting model type: {model_type}. Valid options are: '\n f'{images.keys()}.'\n\
6186
6186
  \ )\n return images[model_type]\n\n"
6187
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
6187
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20241121_0625
6188
6188
  exec-get-prediction-image-uri-2:
6189
6189
  container:
6190
6190
  args:
@@ -6207,14 +6207,14 @@ deploymentSpec:
6207
6207
  Returns the prediction image corresponding to the given model type.\"\"\"\
6208
6208
  \n # Keys come from AutoMlTimeSeriesForecastingTrainSpec.\n # The URIs\
6209
6209
  \ must be hardcoded without any breaks in the code so string\n # replacement\
6210
- \ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20240808_0625',\n\
6211
- \ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:20240808_0625',\n\
6212
- \ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:20240808_0625',\n\
6213
- \ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:20240808_0625',\n\
6210
+ \ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20241121_0625',\n\
6211
+ \ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:20241121_0625',\n\
6212
+ \ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:20241121_0625',\n\
6213
+ \ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:20241121_0625',\n\
6214
6214
  \ }\n if model_type not in images:\n raise ValueError(\n f'Invalid\
6215
6215
  \ forecasting model type: {model_type}. Valid options are: '\n f'{images.keys()}.'\n\
6216
6216
  \ )\n return images[model_type]\n\n"
6217
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
6217
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20241121_0625
6218
6218
  exec-get-predictions-column:
6219
6219
  container:
6220
6220
  args:
@@ -6237,7 +6237,7 @@ deploymentSpec:
6237
6237
  \ str) -> str:\n \"\"\"Generates the BP output's target column name.\"\"\
6238
6238
  \"\n if forecasting_type == 'quantile':\n return f'predicted_{target_column}.quantile_predictions'\n\
6239
6239
  \ return f'predicted_{target_column}.value'\n\n"
6240
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
6240
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20241121_0625
6241
6241
  exec-get-predictions-column-2:
6242
6242
  container:
6243
6243
  args:
@@ -6260,7 +6260,7 @@ deploymentSpec:
6260
6260
  \ str) -> str:\n \"\"\"Generates the BP output's target column name.\"\"\
6261
6261
  \"\n if forecasting_type == 'quantile':\n return f'predicted_{target_column}.quantile_predictions'\n\
6262
6262
  \ return f'predicted_{target_column}.value'\n\n"
6263
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
6263
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20241121_0625
6264
6264
  exec-importer:
6265
6265
  importer:
6266
6266
  artifactUri:
@@ -6792,7 +6792,7 @@ deploymentSpec:
6792
6792
  \ 'model_display_name',\n 'transformations',\n ],\n\
6793
6793
  \ )(\n data_source_csv_filenames,\n data_source_bigquery_table_path,\n\
6794
6794
  \ model_display_name,\n transformations,\n )\n\n"
6795
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
6795
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20241121_0625
6796
6796
  exec-split-materialized-data:
6797
6797
  container:
6798
6798
  args:
@@ -6838,7 +6838,7 @@ deploymentSpec:
6838
6838
  \ 'w') as f:\n f.write(file_patterns[0])\n\n with tf.io.gfile.GFile(materialized_eval_split,\
6839
6839
  \ 'w') as f:\n f.write(file_patterns[1])\n\n with tf.io.gfile.GFile(materialized_test_split,\
6840
6840
  \ 'w') as f:\n f.write(file_patterns[2])\n\n"
6841
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240808_0625
6841
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20241121_0625
6842
6842
  exec-string-not-empty:
6843
6843
  container:
6844
6844
  args:
@@ -6862,7 +6862,7 @@ deploymentSpec:
6862
6862
  \n Returns:\n Boolean value. -> 'true' if empty, 'false' if not empty.\
6863
6863
  \ We need to use str\n instead of bool due to a limitation in KFP compiler.\n\
6864
6864
  \ \"\"\"\n return 'true' if value else 'false'\n\n"
6865
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
6865
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20241121_0625
6866
6866
  exec-table-to-uri:
6867
6867
  container:
6868
6868
  args:
@@ -6892,7 +6892,7 @@ deploymentSpec:
6892
6892
  \ if use_bq_prefix:\n bq_uri = 'bq://' + bq_uri\n outputs.append(bq_uri)\n\
6893
6893
  \ return collections.namedtuple(\n 'Outputs',\n ['project_id',\
6894
6894
  \ 'dataset_id', 'table_id', 'uri'],\n )(*outputs)\n\n"
6895
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
6895
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20241121_0625
6896
6896
  exec-table-to-uri-2:
6897
6897
  container:
6898
6898
  args:
@@ -6922,7 +6922,7 @@ deploymentSpec:
6922
6922
  \ if use_bq_prefix:\n bq_uri = 'bq://' + bq_uri\n outputs.append(bq_uri)\n\
6923
6923
  \ return collections.namedtuple(\n 'Outputs',\n ['project_id',\
6924
6924
  \ 'dataset_id', 'table_id', 'uri'],\n )(*outputs)\n\n"
6925
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
6925
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20241121_0625
6926
6926
  exec-training-configurator-and-validator:
6927
6927
  container:
6928
6928
  args:
@@ -6967,7 +6967,7 @@ deploymentSpec:
6967
6967
  ["--temporal_total_weight=", "{{$.inputs.parameters[''temporal_total_weight'']}}"]}}}'
6968
6968
  - '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
6969
6969
  ["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
6970
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240808_0625
6970
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20241121_0625
6971
6971
  pipelineInfo:
6972
6972
  description: The Temporal Fusion Transformer (TFT) Forecasting pipeline.
6973
6973
  name: temporal-fusion-transformer-forecasting