google-cloud-pipeline-components 2.15.0__py3-none-any.whl → 2.16.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of google-cloud-pipeline-components might be problematic. Click here for more details.
- google_cloud_pipeline_components/_implementation/model_evaluation/llm_evaluation_preprocessor/component.py +11 -1
- google_cloud_pipeline_components/_implementation/starry_net/dataprep/component.py +14 -0
- google_cloud_pipeline_components/_implementation/starry_net/get_training_artifacts/component.py +1 -1
- google_cloud_pipeline_components/_implementation/starry_net/train/component.py +11 -0
- google_cloud_pipeline_components/_implementation/starry_net/upload_decomposition_plots/component.py +6 -1
- google_cloud_pipeline_components/_implementation/starry_net/version.py +3 -3
- google_cloud_pipeline_components/container/preview/custom_job/remote_runner.py +31 -0
- google_cloud_pipeline_components/preview/automl/forecasting/forecasting_ensemble.py +1 -1
- google_cloud_pipeline_components/preview/automl/forecasting/forecasting_stage_1_tuner.py +2 -2
- google_cloud_pipeline_components/preview/automl/forecasting/forecasting_stage_2_tuner.py +2 -2
- google_cloud_pipeline_components/preview/automl/forecasting/learn_to_learn_forecasting_pipeline.yaml +42 -38
- google_cloud_pipeline_components/preview/automl/forecasting/sequence_to_sequence_forecasting_pipeline.yaml +42 -38
- google_cloud_pipeline_components/preview/automl/forecasting/temporal_fusion_transformer_forecasting_pipeline.yaml +42 -38
- google_cloud_pipeline_components/preview/automl/forecasting/time_series_dense_encoder_forecasting_pipeline.yaml +42 -38
- google_cloud_pipeline_components/preview/automl/forecasting/utils.py +49 -7
- google_cloud_pipeline_components/preview/automl/tabular/auto_feature_engineering.py +1 -1
- google_cloud_pipeline_components/preview/automl/tabular/automl_tabular_feature_selection_pipeline.yaml +45 -45
- google_cloud_pipeline_components/preview/automl/tabular/automl_tabular_v2_pipeline.yaml +47 -47
- google_cloud_pipeline_components/preview/automl/tabular/distillation_stage_feature_transform_engine.py +2 -2
- google_cloud_pipeline_components/preview/automl/tabular/feature_selection.py +2 -2
- google_cloud_pipeline_components/preview/automl/tabular/feature_selection_pipeline.yaml +4 -4
- google_cloud_pipeline_components/preview/automl/tabular/feature_transform_engine.py +3 -3
- google_cloud_pipeline_components/preview/automl/tabular/tabnet_hyperparameter_tuning_job.py +2 -2
- google_cloud_pipeline_components/preview/automl/tabular/tabnet_hyperparameter_tuning_job_pipeline.yaml +15 -15
- google_cloud_pipeline_components/preview/automl/tabular/tabnet_trainer.py +2 -2
- google_cloud_pipeline_components/preview/automl/tabular/tabnet_trainer_pipeline.yaml +13 -13
- google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_hyperparameter_tuning_job.py +2 -2
- google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_hyperparameter_tuning_job_pipeline.yaml +14 -14
- google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_trainer.py +2 -2
- google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_trainer_pipeline.yaml +13 -13
- google_cloud_pipeline_components/preview/automl/tabular/xgboost_hyperparameter_tuning_job_pipeline.yaml +14 -14
- google_cloud_pipeline_components/preview/automl/tabular/xgboost_trainer_pipeline.yaml +13 -13
- google_cloud_pipeline_components/preview/custom_job/utils.py +64 -15
- google_cloud_pipeline_components/preview/starry_net/component.py +60 -34
- google_cloud_pipeline_components/proto/template_metadata_pb2.py +21 -17
- google_cloud_pipeline_components/v1/automl/forecasting/bqml_arima_predict_pipeline.yaml +10 -10
- google_cloud_pipeline_components/v1/automl/forecasting/bqml_arima_train_pipeline.yaml +31 -31
- google_cloud_pipeline_components/v1/automl/forecasting/prophet_predict_pipeline.yaml +13 -13
- google_cloud_pipeline_components/v1/automl/forecasting/prophet_trainer.py +3 -3
- google_cloud_pipeline_components/v1/automl/forecasting/prophet_trainer_pipeline.yaml +14 -14
- google_cloud_pipeline_components/v1/automl/tabular/automl_tabular_pipeline.yaml +43 -43
- google_cloud_pipeline_components/v1/automl/tabular/cv_trainer.py +2 -2
- google_cloud_pipeline_components/v1/automl/tabular/ensemble.py +2 -2
- google_cloud_pipeline_components/v1/automl/tabular/finalizer.py +1 -1
- google_cloud_pipeline_components/v1/automl/tabular/infra_validator.py +1 -1
- google_cloud_pipeline_components/v1/automl/tabular/split_materialized_data.py +1 -1
- google_cloud_pipeline_components/v1/automl/tabular/stage_1_tuner.py +2 -2
- google_cloud_pipeline_components/v1/automl/tabular/stats_and_example_gen.py +2 -2
- google_cloud_pipeline_components/v1/automl/tabular/training_configurator_and_validator.py +1 -1
- google_cloud_pipeline_components/v1/automl/tabular/transform.py +2 -2
- google_cloud_pipeline_components/v1/custom_job/component.py +3 -0
- google_cloud_pipeline_components/v1/custom_job/utils.py +4 -0
- google_cloud_pipeline_components/v1/model_evaluation/evaluation_llm_text_generation_pipeline.py +1 -1
- google_cloud_pipeline_components/version.py +1 -1
- {google_cloud_pipeline_components-2.15.0.dist-info → google_cloud_pipeline_components-2.16.1.dist-info}/METADATA +10 -10
- {google_cloud_pipeline_components-2.15.0.dist-info → google_cloud_pipeline_components-2.16.1.dist-info}/RECORD +59 -59
- {google_cloud_pipeline_components-2.15.0.dist-info → google_cloud_pipeline_components-2.16.1.dist-info}/WHEEL +1 -1
- {google_cloud_pipeline_components-2.15.0.dist-info → google_cloud_pipeline_components-2.16.1.dist-info}/LICENSE +0 -0
- {google_cloud_pipeline_components-2.15.0.dist-info → google_cloud_pipeline_components-2.16.1.dist-info}/top_level.txt +0 -0
|
@@ -1074,6 +1074,8 @@ components:
|
|
|
1074
1074
|
componentInputParameter: pipelinechannel--dataflow_subnetwork
|
|
1075
1075
|
dataflow_use_public_ips:
|
|
1076
1076
|
componentInputParameter: pipelinechannel--dataflow_use_public_ips
|
|
1077
|
+
dataflow_workers_num:
|
|
1078
|
+
componentInputParameter: pipelinechannel--evaluation_dataflow_starting_num_workers
|
|
1077
1079
|
encryption_spec_key_name:
|
|
1078
1080
|
componentInputParameter: pipelinechannel--encryption_spec_key_name
|
|
1079
1081
|
forecasting_quantiles:
|
|
@@ -1795,6 +1797,8 @@ components:
|
|
|
1795
1797
|
componentInputParameter: pipelinechannel--dataflow_subnetwork
|
|
1796
1798
|
dataflow_use_public_ips:
|
|
1797
1799
|
componentInputParameter: pipelinechannel--dataflow_use_public_ips
|
|
1800
|
+
dataflow_workers_num:
|
|
1801
|
+
componentInputParameter: pipelinechannel--evaluation_dataflow_starting_num_workers
|
|
1798
1802
|
encryption_spec_key_name:
|
|
1799
1803
|
componentInputParameter: pipelinechannel--encryption_spec_key_name
|
|
1800
1804
|
forecasting_quantiles:
|
|
@@ -5573,7 +5577,7 @@ deploymentSpec:
|
|
|
5573
5577
|
- '{"display_name": "automl-forecasting-ensemble-{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}",
|
|
5574
5578
|
"encryption_spec": {"kms_key_name": "{{$.inputs.parameters[''encryption_spec_key_name'']}}"},
|
|
5575
5579
|
"job_spec": {"worker_pool_specs": [{"replica_count": 1, "machine_spec":
|
|
5576
|
-
{"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
5580
|
+
{"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240808_0625",
|
|
5577
5581
|
"args": ["forecasting_mp_ensemble", "--transform_output_path={{$.inputs.artifacts[''transform_output''].uri}}",
|
|
5578
5582
|
"--error_file_path={{$.inputs.parameters[''root_dir'']}}/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb",
|
|
5579
5583
|
"--metadata_path={{$.inputs.artifacts[''metadata''].uri}}", "--tuning_result_input_path={{$.inputs.artifacts[''tuning_result_input''].uri}}",
|
|
@@ -5607,7 +5611,7 @@ deploymentSpec:
|
|
|
5607
5611
|
- '{"display_name": "automl-forecasting-ensemble-{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}",
|
|
5608
5612
|
"encryption_spec": {"kms_key_name": "{{$.inputs.parameters[''encryption_spec_key_name'']}}"},
|
|
5609
5613
|
"job_spec": {"worker_pool_specs": [{"replica_count": 1, "machine_spec":
|
|
5610
|
-
{"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
5614
|
+
{"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240808_0625",
|
|
5611
5615
|
"args": ["forecasting_mp_ensemble", "--transform_output_path={{$.inputs.artifacts[''transform_output''].uri}}",
|
|
5612
5616
|
"--error_file_path={{$.inputs.parameters[''root_dir'']}}/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb",
|
|
5613
5617
|
"--metadata_path={{$.inputs.artifacts[''metadata''].uri}}", "--tuning_result_input_path={{$.inputs.artifacts[''tuning_result_input''].uri}}",
|
|
@@ -5642,11 +5646,11 @@ deploymentSpec:
|
|
|
5642
5646
|
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
|
|
5643
5647
|
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
|
|
5644
5648
|
{\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
|
|
5645
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
5649
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240808_0625",
|
|
5646
5650
|
"\", \"args\": [\"forecasting_mp_l2l_stage_1_tuner", "\", \"--region=",
|
|
5647
5651
|
"{{$.inputs.parameters[''location'']}}", "\", \"--transform_output_path=",
|
|
5648
5652
|
"{{$.inputs.artifacts[''transform_output''].uri}}", "\", \"--training_docker_uri=",
|
|
5649
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
5653
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240808_0625",
|
|
5650
5654
|
"\", \"--reduce_search_space_mode=", "{{$.inputs.parameters[''reduce_search_space_mode'']}}",
|
|
5651
5655
|
"\", \"--component_id={{$.pipeline_task_uuid}}", "\", \"--training_base_dir=",
|
|
5652
5656
|
"{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/train",
|
|
@@ -5685,11 +5689,11 @@ deploymentSpec:
|
|
|
5685
5689
|
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
|
|
5686
5690
|
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
|
|
5687
5691
|
{\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
|
|
5688
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
5692
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240808_0625",
|
|
5689
5693
|
"\", \"args\": [\"forecasting_mp_l2l_stage_2_tuner", "\", \"--region=",
|
|
5690
5694
|
"{{$.inputs.parameters[''location'']}}", "\", \"--transform_output_path=",
|
|
5691
5695
|
"{{$.inputs.artifacts[''transform_output''].uri}}", "\", \"--training_docker_uri=",
|
|
5692
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
5696
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240808_0625",
|
|
5693
5697
|
"\", \"--component_id={{$.pipeline_task_uuid}}", "\", \"--training_base_dir=",
|
|
5694
5698
|
"{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/train",
|
|
5695
5699
|
"\", \"--num_parallel_trial=", "{{$.inputs.parameters[''num_parallel_trials'']}}",
|
|
@@ -5728,7 +5732,7 @@ deploymentSpec:
|
|
|
5728
5732
|
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
|
|
5729
5733
|
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
|
|
5730
5734
|
{\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
|
|
5731
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:
|
|
5735
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240808_0625", "\",
|
|
5732
5736
|
\"args\": [\"cancel_l2l_tuner\", \"--error_file_path=", "{{$.inputs.parameters[''root_dir'']}}",
|
|
5733
5737
|
"/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb\", \"--cleanup_lro_job_infos=",
|
|
5734
5738
|
"{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/lro\"]}}]}}"]}'
|
|
@@ -5793,7 +5797,7 @@ deploymentSpec:
|
|
|
5793
5797
|
\ 'stage_2_single_run_max_secs',\n ],\n )(\n stage_1_deadline_hours,\n\
|
|
5794
5798
|
\ stage_1_single_run_max_secs,\n stage_2_deadline_hours,\n \
|
|
5795
5799
|
\ stage_2_single_run_max_secs,\n )\n\n"
|
|
5796
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
5800
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
|
|
5797
5801
|
exec-calculate-training-parameters-2:
|
|
5798
5802
|
container:
|
|
5799
5803
|
args:
|
|
@@ -5849,7 +5853,7 @@ deploymentSpec:
|
|
|
5849
5853
|
\ 'stage_2_single_run_max_secs',\n ],\n )(\n stage_1_deadline_hours,\n\
|
|
5850
5854
|
\ stage_1_single_run_max_secs,\n stage_2_deadline_hours,\n \
|
|
5851
5855
|
\ stage_2_single_run_max_secs,\n )\n\n"
|
|
5852
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
5856
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
|
|
5853
5857
|
exec-feature-attribution:
|
|
5854
5858
|
container:
|
|
5855
5859
|
args:
|
|
@@ -6040,8 +6044,8 @@ deploymentSpec:
|
|
|
6040
6044
|
"/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/dataflow_tmp"]}'
|
|
6041
6045
|
- '{"Concat": ["--dataflow_max_num_workers=", "{{$.inputs.parameters[''dataflow_max_num_workers'']}}"]}'
|
|
6042
6046
|
- '{"Concat": ["--dataflow_machine_type=", "{{$.inputs.parameters[''dataflow_machine_type'']}}"]}'
|
|
6043
|
-
- --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:
|
|
6044
|
-
- --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:
|
|
6047
|
+
- --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240808_0625
|
|
6048
|
+
- --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240808_0625
|
|
6045
6049
|
- '{"Concat": ["--dataflow_disk_size_gb=", "{{$.inputs.parameters[''dataflow_disk_size_gb'']}}"]}'
|
|
6046
6050
|
- '{"Concat": ["--dataflow_subnetwork_fully_qualified=", "{{$.inputs.parameters[''dataflow_subnetwork'']}}"]}'
|
|
6047
6051
|
- '{"Concat": ["--dataflow_use_public_ips=", "{{$.inputs.parameters[''dataflow_use_public_ips'']}}"]}'
|
|
@@ -6058,7 +6062,7 @@ deploymentSpec:
|
|
|
6058
6062
|
- '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
|
|
6059
6063
|
["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
|
|
6060
6064
|
- '{"Concat": ["--encryption_spec_key_name=", "{{$.inputs.parameters[''encryption_spec_key_name'']}}"]}'
|
|
6061
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:
|
|
6065
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240808_0625
|
|
6062
6066
|
resources:
|
|
6063
6067
|
cpuLimit: 8.0
|
|
6064
6068
|
memoryLimit: 30.0
|
|
@@ -6089,7 +6093,7 @@ deploymentSpec:
|
|
|
6089
6093
|
\ = 'point'\n else:\n forecasting_type = 'quantile'\n\n return collections.namedtuple(\n\
|
|
6090
6094
|
\ 'Outputs',\n (\n 'forecasting_type',\n 'quantiles',\n\
|
|
6091
6095
|
\ ),\n )(forecasting_type, quantiles)\n\n"
|
|
6092
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6096
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
|
|
6093
6097
|
exec-finalize-eval-quantile-parameters-2:
|
|
6094
6098
|
container:
|
|
6095
6099
|
args:
|
|
@@ -6117,7 +6121,7 @@ deploymentSpec:
|
|
|
6117
6121
|
\ = 'point'\n else:\n forecasting_type = 'quantile'\n\n return collections.namedtuple(\n\
|
|
6118
6122
|
\ 'Outputs',\n (\n 'forecasting_type',\n 'quantiles',\n\
|
|
6119
6123
|
\ ),\n )(forecasting_type, quantiles)\n\n"
|
|
6120
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6124
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
|
|
6121
6125
|
exec-get-or-create-model-description:
|
|
6122
6126
|
container:
|
|
6123
6127
|
args:
|
|
@@ -6146,7 +6150,7 @@ deploymentSpec:
|
|
|
6146
6150
|
\ return f'{original_description} From: {pipeline_url}'\n\n # The pipeline\
|
|
6147
6151
|
\ url contains KFP placeholders injected at runtime.\n return f'Vertex\
|
|
6148
6152
|
\ forecasting model trained in the pipeline: {pipeline_url}'\n\n"
|
|
6149
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6153
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
|
|
6150
6154
|
exec-get-or-create-model-description-2:
|
|
6151
6155
|
container:
|
|
6152
6156
|
args:
|
|
@@ -6175,7 +6179,7 @@ deploymentSpec:
|
|
|
6175
6179
|
\ return f'{original_description} From: {pipeline_url}'\n\n # The pipeline\
|
|
6176
6180
|
\ url contains KFP placeholders injected at runtime.\n return f'Vertex\
|
|
6177
6181
|
\ forecasting model trained in the pipeline: {pipeline_url}'\n\n"
|
|
6178
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6182
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
|
|
6179
6183
|
exec-get-prediction-image-uri:
|
|
6180
6184
|
container:
|
|
6181
6185
|
args:
|
|
@@ -6198,14 +6202,14 @@ deploymentSpec:
|
|
|
6198
6202
|
Returns the prediction image corresponding to the given model type.\"\"\"\
|
|
6199
6203
|
\n # Keys come from AutoMlTimeSeriesForecastingTrainSpec.\n # The URIs\
|
|
6200
6204
|
\ must be hardcoded without any breaks in the code so string\n # replacement\
|
|
6201
|
-
\ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:
|
|
6202
|
-
\ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:
|
|
6203
|
-
\ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:
|
|
6204
|
-
\ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:
|
|
6205
|
+
\ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20240808_0625',\n\
|
|
6206
|
+
\ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:20240808_0625',\n\
|
|
6207
|
+
\ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:20240808_0625',\n\
|
|
6208
|
+
\ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:20240808_0625',\n\
|
|
6205
6209
|
\ }\n if model_type not in images:\n raise ValueError(\n f'Invalid\
|
|
6206
6210
|
\ forecasting model type: {model_type}. Valid options are: '\n f'{images.keys()}.'\n\
|
|
6207
6211
|
\ )\n return images[model_type]\n\n"
|
|
6208
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6212
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
|
|
6209
6213
|
exec-get-prediction-image-uri-2:
|
|
6210
6214
|
container:
|
|
6211
6215
|
args:
|
|
@@ -6228,14 +6232,14 @@ deploymentSpec:
|
|
|
6228
6232
|
Returns the prediction image corresponding to the given model type.\"\"\"\
|
|
6229
6233
|
\n # Keys come from AutoMlTimeSeriesForecastingTrainSpec.\n # The URIs\
|
|
6230
6234
|
\ must be hardcoded without any breaks in the code so string\n # replacement\
|
|
6231
|
-
\ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:
|
|
6232
|
-
\ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:
|
|
6233
|
-
\ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:
|
|
6234
|
-
\ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:
|
|
6235
|
+
\ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20240808_0625',\n\
|
|
6236
|
+
\ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:20240808_0625',\n\
|
|
6237
|
+
\ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:20240808_0625',\n\
|
|
6238
|
+
\ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:20240808_0625',\n\
|
|
6235
6239
|
\ }\n if model_type not in images:\n raise ValueError(\n f'Invalid\
|
|
6236
6240
|
\ forecasting model type: {model_type}. Valid options are: '\n f'{images.keys()}.'\n\
|
|
6237
6241
|
\ )\n return images[model_type]\n\n"
|
|
6238
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6242
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
|
|
6239
6243
|
exec-get-predictions-column:
|
|
6240
6244
|
container:
|
|
6241
6245
|
args:
|
|
@@ -6258,7 +6262,7 @@ deploymentSpec:
|
|
|
6258
6262
|
\ str) -> str:\n \"\"\"Generates the BP output's target column name.\"\"\
|
|
6259
6263
|
\"\n if forecasting_type == 'quantile':\n return f'predicted_{target_column}.quantile_predictions'\n\
|
|
6260
6264
|
\ return f'predicted_{target_column}.value'\n\n"
|
|
6261
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6265
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
|
|
6262
6266
|
exec-get-predictions-column-2:
|
|
6263
6267
|
container:
|
|
6264
6268
|
args:
|
|
@@ -6281,7 +6285,7 @@ deploymentSpec:
|
|
|
6281
6285
|
\ str) -> str:\n \"\"\"Generates the BP output's target column name.\"\"\
|
|
6282
6286
|
\"\n if forecasting_type == 'quantile':\n return f'predicted_{target_column}.quantile_predictions'\n\
|
|
6283
6287
|
\ return f'predicted_{target_column}.value'\n\n"
|
|
6284
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6288
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
|
|
6285
6289
|
exec-importer:
|
|
6286
6290
|
importer:
|
|
6287
6291
|
artifactUri:
|
|
@@ -6330,7 +6334,7 @@ deploymentSpec:
|
|
|
6330
6334
|
- -u
|
|
6331
6335
|
- -m
|
|
6332
6336
|
- launcher
|
|
6333
|
-
image: gcr.io/ml-pipeline/automl-tables-private:1.0.
|
|
6337
|
+
image: gcr.io/ml-pipeline/automl-tables-private:1.0.18
|
|
6334
6338
|
exec-model-batch-explanation-2:
|
|
6335
6339
|
container:
|
|
6336
6340
|
args:
|
|
@@ -6372,7 +6376,7 @@ deploymentSpec:
|
|
|
6372
6376
|
- -u
|
|
6373
6377
|
- -m
|
|
6374
6378
|
- launcher
|
|
6375
|
-
image: gcr.io/ml-pipeline/automl-tables-private:1.0.
|
|
6379
|
+
image: gcr.io/ml-pipeline/automl-tables-private:1.0.18
|
|
6376
6380
|
exec-model-batch-predict:
|
|
6377
6381
|
container:
|
|
6378
6382
|
args:
|
|
@@ -6727,7 +6731,7 @@ deploymentSpec:
|
|
|
6727
6731
|
- -u
|
|
6728
6732
|
- -m
|
|
6729
6733
|
- launcher
|
|
6730
|
-
image: gcr.io/ml-pipeline/automl-tables-private:1.0.
|
|
6734
|
+
image: gcr.io/ml-pipeline/automl-tables-private:1.0.18
|
|
6731
6735
|
exec-model-upload-2:
|
|
6732
6736
|
container:
|
|
6733
6737
|
args:
|
|
@@ -6756,7 +6760,7 @@ deploymentSpec:
|
|
|
6756
6760
|
- -u
|
|
6757
6761
|
- -m
|
|
6758
6762
|
- launcher
|
|
6759
|
-
image: gcr.io/ml-pipeline/automl-tables-private:1.0.
|
|
6763
|
+
image: gcr.io/ml-pipeline/automl-tables-private:1.0.18
|
|
6760
6764
|
exec-set-optional-inputs:
|
|
6761
6765
|
container:
|
|
6762
6766
|
args:
|
|
@@ -6813,7 +6817,7 @@ deploymentSpec:
|
|
|
6813
6817
|
\ 'model_display_name',\n 'transformations',\n ],\n\
|
|
6814
6818
|
\ )(\n data_source_csv_filenames,\n data_source_bigquery_table_path,\n\
|
|
6815
6819
|
\ model_display_name,\n transformations,\n )\n\n"
|
|
6816
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6820
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
|
|
6817
6821
|
exec-split-materialized-data:
|
|
6818
6822
|
container:
|
|
6819
6823
|
args:
|
|
@@ -6859,7 +6863,7 @@ deploymentSpec:
|
|
|
6859
6863
|
\ 'w') as f:\n f.write(file_patterns[0])\n\n with tf.io.gfile.GFile(materialized_eval_split,\
|
|
6860
6864
|
\ 'w') as f:\n f.write(file_patterns[1])\n\n with tf.io.gfile.GFile(materialized_test_split,\
|
|
6861
6865
|
\ 'w') as f:\n f.write(file_patterns[2])\n\n"
|
|
6862
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:
|
|
6866
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240808_0625
|
|
6863
6867
|
exec-string-not-empty:
|
|
6864
6868
|
container:
|
|
6865
6869
|
args:
|
|
@@ -6883,7 +6887,7 @@ deploymentSpec:
|
|
|
6883
6887
|
\n Returns:\n Boolean value. -> 'true' if empty, 'false' if not empty.\
|
|
6884
6888
|
\ We need to use str\n instead of bool due to a limitation in KFP compiler.\n\
|
|
6885
6889
|
\ \"\"\"\n return 'true' if value else 'false'\n\n"
|
|
6886
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6890
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
|
|
6887
6891
|
exec-table-to-uri:
|
|
6888
6892
|
container:
|
|
6889
6893
|
args:
|
|
@@ -6913,7 +6917,7 @@ deploymentSpec:
|
|
|
6913
6917
|
\ if use_bq_prefix:\n bq_uri = 'bq://' + bq_uri\n outputs.append(bq_uri)\n\
|
|
6914
6918
|
\ return collections.namedtuple(\n 'Outputs',\n ['project_id',\
|
|
6915
6919
|
\ 'dataset_id', 'table_id', 'uri'],\n )(*outputs)\n\n"
|
|
6916
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6920
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
|
|
6917
6921
|
exec-table-to-uri-2:
|
|
6918
6922
|
container:
|
|
6919
6923
|
args:
|
|
@@ -6943,7 +6947,7 @@ deploymentSpec:
|
|
|
6943
6947
|
\ if use_bq_prefix:\n bq_uri = 'bq://' + bq_uri\n outputs.append(bq_uri)\n\
|
|
6944
6948
|
\ return collections.namedtuple(\n 'Outputs',\n ['project_id',\
|
|
6945
6949
|
\ 'dataset_id', 'table_id', 'uri'],\n )(*outputs)\n\n"
|
|
6946
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6950
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
|
|
6947
6951
|
exec-training-configurator-and-validator:
|
|
6948
6952
|
container:
|
|
6949
6953
|
args:
|
|
@@ -6988,7 +6992,7 @@ deploymentSpec:
|
|
|
6988
6992
|
["--temporal_total_weight=", "{{$.inputs.parameters[''temporal_total_weight'']}}"]}}}'
|
|
6989
6993
|
- '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
|
|
6990
6994
|
["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
|
|
6991
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:
|
|
6995
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240808_0625
|
|
6992
6996
|
pipelineInfo:
|
|
6993
6997
|
description: The Timeseries Dense Encoder (TiDE) Forecasting pipeline.
|
|
6994
6998
|
name: time-series-dense-encoder-forecasting
|
|
@@ -13,6 +13,20 @@ _RETAIL_MODEL_DISABLED_OPTIONS = frozenset([
|
|
|
13
13
|
])
|
|
14
14
|
|
|
15
15
|
|
|
16
|
+
def _validate_start_max_parameters(
|
|
17
|
+
starting_worker_count: int,
|
|
18
|
+
max_worker_count: int,
|
|
19
|
+
starting_count_name: str,
|
|
20
|
+
max_count_name: str,
|
|
21
|
+
):
|
|
22
|
+
if starting_worker_count > max_worker_count:
|
|
23
|
+
raise ValueError(
|
|
24
|
+
'Starting count must be less than or equal to max count.'
|
|
25
|
+
f' {starting_count_name}: {starting_worker_count}, {max_count_name}:'
|
|
26
|
+
f' {max_worker_count}'
|
|
27
|
+
)
|
|
28
|
+
|
|
29
|
+
|
|
16
30
|
def _get_base_forecasting_parameters(
|
|
17
31
|
*,
|
|
18
32
|
project: str,
|
|
@@ -59,6 +73,7 @@ def _get_base_forecasting_parameters(
|
|
|
59
73
|
evaluation_batch_predict_max_replica_count: int = 25,
|
|
60
74
|
evaluation_dataflow_machine_type: str = 'n1-standard-16',
|
|
61
75
|
evaluation_dataflow_max_num_workers: int = 25,
|
|
76
|
+
evaluation_dataflow_starting_num_workers: int = 22,
|
|
62
77
|
evaluation_dataflow_disk_size_gb: int = 50,
|
|
63
78
|
study_spec_parameters_override: Optional[List[Dict[str, Any]]] = None,
|
|
64
79
|
stage_1_tuner_worker_pool_specs_override: Optional[Dict[str, Any]] = None,
|
|
@@ -91,6 +106,20 @@ def _get_base_forecasting_parameters(
|
|
|
91
106
|
)
|
|
92
107
|
time_series_identifier_columns = [time_series_identifier_column]
|
|
93
108
|
|
|
109
|
+
_validate_start_max_parameters(
|
|
110
|
+
starting_worker_count=evaluation_batch_predict_starting_replica_count,
|
|
111
|
+
max_worker_count=evaluation_batch_predict_max_replica_count,
|
|
112
|
+
starting_count_name='evaluation_batch_predict_starting_replica_count',
|
|
113
|
+
max_count_name='evaluation_batch_predict_max_replica_count',
|
|
114
|
+
)
|
|
115
|
+
|
|
116
|
+
_validate_start_max_parameters(
|
|
117
|
+
starting_worker_count=evaluation_dataflow_starting_num_workers,
|
|
118
|
+
max_worker_count=evaluation_dataflow_max_num_workers,
|
|
119
|
+
starting_count_name='evaluation_dataflow_starting_num_workers',
|
|
120
|
+
max_count_name='evaluation_dataflow_max_num_workers',
|
|
121
|
+
)
|
|
122
|
+
|
|
94
123
|
parameter_values = {}
|
|
95
124
|
parameters = {
|
|
96
125
|
'project': project,
|
|
@@ -152,6 +181,9 @@ def _get_base_forecasting_parameters(
|
|
|
152
181
|
'evaluation_dataflow_max_num_workers': (
|
|
153
182
|
evaluation_dataflow_max_num_workers
|
|
154
183
|
),
|
|
184
|
+
'evaluation_dataflow_starting_num_workers': (
|
|
185
|
+
evaluation_dataflow_starting_num_workers
|
|
186
|
+
),
|
|
155
187
|
'evaluation_dataflow_disk_size_gb': evaluation_dataflow_disk_size_gb,
|
|
156
188
|
'study_spec_parameters_override': study_spec_parameters_override,
|
|
157
189
|
'stage_1_tuner_worker_pool_specs_override': (
|
|
@@ -174,13 +206,11 @@ def _get_base_forecasting_parameters(
|
|
|
174
206
|
|
|
175
207
|
# Filter out empty values and those excluded from the particular pipeline.
|
|
176
208
|
# (example: TFT and Seq2Seq don't support `quantiles`.)
|
|
177
|
-
parameter_values.update(
|
|
178
|
-
|
|
179
|
-
|
|
180
|
-
|
|
181
|
-
|
|
182
|
-
}
|
|
183
|
-
)
|
|
209
|
+
parameter_values.update({
|
|
210
|
+
param: value
|
|
211
|
+
for param, value in parameters.items()
|
|
212
|
+
if value is not None and param not in fields_to_exclude
|
|
213
|
+
})
|
|
184
214
|
return parameter_values
|
|
185
215
|
|
|
186
216
|
|
|
@@ -229,6 +259,7 @@ def get_learn_to_learn_forecasting_pipeline_and_parameters(
|
|
|
229
259
|
evaluation_batch_predict_max_replica_count: int = 25,
|
|
230
260
|
evaluation_dataflow_machine_type: str = 'n1-standard-16',
|
|
231
261
|
evaluation_dataflow_max_num_workers: int = 25,
|
|
262
|
+
evaluation_dataflow_starting_num_workers: int = 22,
|
|
232
263
|
evaluation_dataflow_disk_size_gb: int = 50,
|
|
233
264
|
study_spec_parameters_override: Optional[List[Dict[str, Any]]] = None,
|
|
234
265
|
stage_1_tuner_worker_pool_specs_override: Optional[Dict[str, Any]] = None,
|
|
@@ -291,6 +322,7 @@ def get_learn_to_learn_forecasting_pipeline_and_parameters(
|
|
|
291
322
|
evaluation_batch_predict_max_replica_count: The maximum count of replicas the batch prediction job can scale to.
|
|
292
323
|
evaluation_dataflow_machine_type: Machine type for the dataflow job in evaluation, such as 'n1-standard-16'.
|
|
293
324
|
evaluation_dataflow_max_num_workers: Maximum number of dataflow workers.
|
|
325
|
+
evaluation_dataflow_starting_num_workers: Starting number of dataflow workers.
|
|
294
326
|
evaluation_dataflow_disk_size_gb: The disk space in GB for dataflow.
|
|
295
327
|
study_spec_parameters_override: The list for overriding study spec.
|
|
296
328
|
stage_1_tuner_worker_pool_specs_override: The dictionary for overriding stage 1 tuner worker pool spec.
|
|
@@ -354,6 +386,7 @@ def get_learn_to_learn_forecasting_pipeline_and_parameters(
|
|
|
354
386
|
evaluation_batch_predict_max_replica_count=evaluation_batch_predict_max_replica_count,
|
|
355
387
|
evaluation_dataflow_machine_type=evaluation_dataflow_machine_type,
|
|
356
388
|
evaluation_dataflow_max_num_workers=evaluation_dataflow_max_num_workers,
|
|
389
|
+
evaluation_dataflow_starting_num_workers=evaluation_dataflow_starting_num_workers,
|
|
357
390
|
evaluation_dataflow_disk_size_gb=evaluation_dataflow_disk_size_gb,
|
|
358
391
|
study_spec_parameters_override=study_spec_parameters_override,
|
|
359
392
|
stage_1_tuner_worker_pool_specs_override=stage_1_tuner_worker_pool_specs_override,
|
|
@@ -423,6 +456,7 @@ def get_time_series_dense_encoder_forecasting_pipeline_and_parameters(
|
|
|
423
456
|
evaluation_batch_predict_max_replica_count: int = 25,
|
|
424
457
|
evaluation_dataflow_machine_type: str = 'n1-standard-16',
|
|
425
458
|
evaluation_dataflow_max_num_workers: int = 25,
|
|
459
|
+
evaluation_dataflow_starting_num_workers: int = 22,
|
|
426
460
|
evaluation_dataflow_disk_size_gb: int = 50,
|
|
427
461
|
study_spec_parameters_override: Optional[List[Dict[str, Any]]] = None,
|
|
428
462
|
stage_1_tuner_worker_pool_specs_override: Optional[Dict[str, Any]] = None,
|
|
@@ -485,6 +519,7 @@ def get_time_series_dense_encoder_forecasting_pipeline_and_parameters(
|
|
|
485
519
|
evaluation_batch_predict_max_replica_count: The maximum count of replicas the batch prediction job can scale to.
|
|
486
520
|
evaluation_dataflow_machine_type: Machine type for the dataflow job in evaluation, such as 'n1-standard-16'.
|
|
487
521
|
evaluation_dataflow_max_num_workers: Maximum number of dataflow workers.
|
|
522
|
+
evaluation_dataflow_starting_num_workers: Starting number of dataflow workers.
|
|
488
523
|
evaluation_dataflow_disk_size_gb: The disk space in GB for dataflow.
|
|
489
524
|
study_spec_parameters_override: The list for overriding study spec.
|
|
490
525
|
stage_1_tuner_worker_pool_specs_override: The dictionary for overriding stage 1 tuner worker pool spec.
|
|
@@ -548,6 +583,7 @@ def get_time_series_dense_encoder_forecasting_pipeline_and_parameters(
|
|
|
548
583
|
evaluation_batch_predict_max_replica_count=evaluation_batch_predict_max_replica_count,
|
|
549
584
|
evaluation_dataflow_machine_type=evaluation_dataflow_machine_type,
|
|
550
585
|
evaluation_dataflow_max_num_workers=evaluation_dataflow_max_num_workers,
|
|
586
|
+
evaluation_dataflow_starting_num_workers=evaluation_dataflow_starting_num_workers,
|
|
551
587
|
evaluation_dataflow_disk_size_gb=evaluation_dataflow_disk_size_gb,
|
|
552
588
|
study_spec_parameters_override=study_spec_parameters_override,
|
|
553
589
|
stage_1_tuner_worker_pool_specs_override=stage_1_tuner_worker_pool_specs_override,
|
|
@@ -616,6 +652,7 @@ def get_temporal_fusion_transformer_forecasting_pipeline_and_parameters(
|
|
|
616
652
|
evaluation_batch_predict_max_replica_count: int = 25,
|
|
617
653
|
evaluation_dataflow_machine_type: str = 'n1-standard-16',
|
|
618
654
|
evaluation_dataflow_max_num_workers: int = 25,
|
|
655
|
+
evaluation_dataflow_starting_num_workers: int = 22,
|
|
619
656
|
evaluation_dataflow_disk_size_gb: int = 50,
|
|
620
657
|
study_spec_parameters_override: Optional[List[Dict[str, Any]]] = None,
|
|
621
658
|
stage_1_tuner_worker_pool_specs_override: Optional[Dict[str, Any]] = None,
|
|
@@ -671,6 +708,7 @@ def get_temporal_fusion_transformer_forecasting_pipeline_and_parameters(
|
|
|
671
708
|
evaluation_batch_predict_max_replica_count: The maximum count of replicas the batch prediction job can scale to.
|
|
672
709
|
evaluation_dataflow_machine_type: Machine type for the dataflow job in evaluation, such as 'n1-standard-16'.
|
|
673
710
|
evaluation_dataflow_max_num_workers: Maximum number of dataflow workers.
|
|
711
|
+
evaluation_dataflow_starting_num_workers: Starting number of dataflow workers.
|
|
674
712
|
evaluation_dataflow_disk_size_gb: The disk space in GB for dataflow.
|
|
675
713
|
study_spec_parameters_override: The list for overriding study spec.
|
|
676
714
|
stage_1_tuner_worker_pool_specs_override: The dictionary for overriding stage 1 tuner worker pool spec.
|
|
@@ -731,6 +769,7 @@ def get_temporal_fusion_transformer_forecasting_pipeline_and_parameters(
|
|
|
731
769
|
evaluation_batch_predict_max_replica_count=evaluation_batch_predict_max_replica_count,
|
|
732
770
|
evaluation_dataflow_machine_type=evaluation_dataflow_machine_type,
|
|
733
771
|
evaluation_dataflow_max_num_workers=evaluation_dataflow_max_num_workers,
|
|
772
|
+
evaluation_dataflow_starting_num_workers=evaluation_dataflow_starting_num_workers,
|
|
734
773
|
evaluation_dataflow_disk_size_gb=evaluation_dataflow_disk_size_gb,
|
|
735
774
|
study_spec_parameters_override=study_spec_parameters_override,
|
|
736
775
|
stage_1_tuner_worker_pool_specs_override=stage_1_tuner_worker_pool_specs_override,
|
|
@@ -795,6 +834,7 @@ def get_sequence_to_sequence_forecasting_pipeline_and_parameters(
|
|
|
795
834
|
evaluation_batch_predict_max_replica_count: int = 25,
|
|
796
835
|
evaluation_dataflow_machine_type: str = 'n1-standard-16',
|
|
797
836
|
evaluation_dataflow_max_num_workers: int = 25,
|
|
837
|
+
evaluation_dataflow_starting_num_workers: int = 22,
|
|
798
838
|
evaluation_dataflow_disk_size_gb: int = 50,
|
|
799
839
|
study_spec_parameters_override: Optional[List[Dict[str, Any]]] = None,
|
|
800
840
|
stage_1_tuner_worker_pool_specs_override: Optional[Dict[str, Any]] = None,
|
|
@@ -851,6 +891,7 @@ def get_sequence_to_sequence_forecasting_pipeline_and_parameters(
|
|
|
851
891
|
evaluation_batch_predict_max_replica_count: The maximum count of replicas the batch prediction job can scale to.
|
|
852
892
|
evaluation_dataflow_machine_type: Machine type for the dataflow job in evaluation, such as 'n1-standard-16'.
|
|
853
893
|
evaluation_dataflow_max_num_workers: Maximum number of dataflow workers.
|
|
894
|
+
evaluation_dataflow_starting_num_workers: Starting number of dataflow workers.
|
|
854
895
|
evaluation_dataflow_disk_size_gb: The disk space in GB for dataflow.
|
|
855
896
|
study_spec_parameters_override: The list for overriding study spec.
|
|
856
897
|
stage_1_tuner_worker_pool_specs_override: The dictionary for overriding stage 1 tuner worker pool spec.
|
|
@@ -908,6 +949,7 @@ def get_sequence_to_sequence_forecasting_pipeline_and_parameters(
|
|
|
908
949
|
evaluation_batch_predict_max_replica_count=evaluation_batch_predict_max_replica_count,
|
|
909
950
|
evaluation_dataflow_machine_type=evaluation_dataflow_machine_type,
|
|
910
951
|
evaluation_dataflow_max_num_workers=evaluation_dataflow_max_num_workers,
|
|
952
|
+
evaluation_dataflow_starting_num_workers=evaluation_dataflow_starting_num_workers,
|
|
911
953
|
evaluation_dataflow_disk_size_gb=evaluation_dataflow_disk_size_gb,
|
|
912
954
|
study_spec_parameters_override=study_spec_parameters_override,
|
|
913
955
|
stage_1_tuner_worker_pool_specs_override=stage_1_tuner_worker_pool_specs_override,
|
|
@@ -65,7 +65,7 @@ def automated_feature_engineering(
|
|
|
65
65
|
' 1, "machine_spec": {"machine_type": "n1-standard-16"},'
|
|
66
66
|
' "container_spec": {"image_uri":"'
|
|
67
67
|
),
|
|
68
|
-
'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:
|
|
68
|
+
'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240808_0625',
|
|
69
69
|
'", "args": ["feature_engineering", "--project=', project,
|
|
70
70
|
'", "--location=', location, '", "--data_source_bigquery_table_path=',
|
|
71
71
|
data_source_bigquery_table_path,
|