google-cloud-pipeline-components 2.14.1__py3-none-any.whl → 2.15.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of google-cloud-pipeline-components might be problematic. Click here for more details.

Files changed (44) hide show
  1. google_cloud_pipeline_components/_implementation/llm/generated/refined_image_versions.py +1 -1
  2. google_cloud_pipeline_components/_implementation/model_evaluation/llm_evaluation_preprocessor/component.py +14 -0
  3. google_cloud_pipeline_components/_implementation/starry_net/__init__.py +41 -0
  4. google_cloud_pipeline_components/_implementation/{model_evaluation/import_evaluation → starry_net/dataprep}/__init__.py +1 -2
  5. google_cloud_pipeline_components/_implementation/starry_net/dataprep/component.py +159 -0
  6. google_cloud_pipeline_components/_implementation/starry_net/evaluation/__init__.py +13 -0
  7. google_cloud_pipeline_components/_implementation/starry_net/evaluation/component.py +23 -0
  8. google_cloud_pipeline_components/_implementation/starry_net/evaluation/evaluation.yaml +197 -0
  9. google_cloud_pipeline_components/_implementation/starry_net/get_training_artifacts/__init__.py +13 -0
  10. google_cloud_pipeline_components/_implementation/starry_net/get_training_artifacts/component.py +62 -0
  11. google_cloud_pipeline_components/_implementation/starry_net/maybe_set_tfrecord_args/__init__.py +13 -0
  12. google_cloud_pipeline_components/_implementation/starry_net/maybe_set_tfrecord_args/component.py +77 -0
  13. google_cloud_pipeline_components/_implementation/starry_net/set_dataprep_args/__init__.py +13 -0
  14. google_cloud_pipeline_components/_implementation/starry_net/set_dataprep_args/component.py +97 -0
  15. google_cloud_pipeline_components/_implementation/starry_net/set_eval_args/__init__.py +13 -0
  16. google_cloud_pipeline_components/_implementation/starry_net/set_eval_args/component.py +76 -0
  17. google_cloud_pipeline_components/_implementation/starry_net/set_test_set/__init__.py +13 -0
  18. google_cloud_pipeline_components/_implementation/starry_net/set_test_set/component.py +48 -0
  19. google_cloud_pipeline_components/_implementation/starry_net/set_tfrecord_args/__init__.py +13 -0
  20. google_cloud_pipeline_components/_implementation/starry_net/set_tfrecord_args/component.py +70 -0
  21. google_cloud_pipeline_components/_implementation/starry_net/set_train_args/__init__.py +13 -0
  22. google_cloud_pipeline_components/_implementation/starry_net/set_train_args/component.py +90 -0
  23. google_cloud_pipeline_components/_implementation/starry_net/train/__init__.py +13 -0
  24. google_cloud_pipeline_components/_implementation/starry_net/train/component.py +209 -0
  25. google_cloud_pipeline_components/_implementation/starry_net/upload_decomposition_plots/__init__.py +13 -0
  26. google_cloud_pipeline_components/_implementation/starry_net/upload_decomposition_plots/component.py +59 -0
  27. google_cloud_pipeline_components/_implementation/starry_net/upload_model/__init__.py +13 -0
  28. google_cloud_pipeline_components/_implementation/starry_net/upload_model/component.py +23 -0
  29. google_cloud_pipeline_components/_implementation/starry_net/upload_model/upload_model.yaml +37 -0
  30. google_cloud_pipeline_components/_implementation/starry_net/version.py +18 -0
  31. google_cloud_pipeline_components/container/utils/error_surfacing.py +45 -0
  32. google_cloud_pipeline_components/container/v1/model/get_model/remote_runner.py +36 -7
  33. google_cloud_pipeline_components/preview/llm/rlhf/component.py +3 -6
  34. google_cloud_pipeline_components/preview/starry_net/__init__.py +19 -0
  35. google_cloud_pipeline_components/preview/starry_net/component.py +443 -0
  36. google_cloud_pipeline_components/proto/task_error_pb2.py +0 -1
  37. google_cloud_pipeline_components/v1/model_evaluation/evaluation_llm_text_generation_pipeline.py +4 -0
  38. google_cloud_pipeline_components/version.py +1 -1
  39. {google_cloud_pipeline_components-2.14.1.dist-info → google_cloud_pipeline_components-2.15.0.dist-info}/METADATA +17 -20
  40. {google_cloud_pipeline_components-2.14.1.dist-info → google_cloud_pipeline_components-2.15.0.dist-info}/RECORD +43 -14
  41. {google_cloud_pipeline_components-2.14.1.dist-info → google_cloud_pipeline_components-2.15.0.dist-info}/WHEEL +1 -1
  42. google_cloud_pipeline_components/_implementation/model_evaluation/import_evaluation/component.py +0 -208
  43. {google_cloud_pipeline_components-2.14.1.dist-info → google_cloud_pipeline_components-2.15.0.dist-info}/LICENSE +0 -0
  44. {google_cloud_pipeline_components-2.14.1.dist-info → google_cloud_pipeline_components-2.15.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,443 @@
1
+ # Copyright 2024 The Kubeflow Authors. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ """Defines the pipeline for Starry Net."""
15
+
16
+ from typing import List
17
+
18
+ # pylint: disable=g-importing-member
19
+ from google_cloud_pipeline_components import _placeholders
20
+ from google_cloud_pipeline_components._implementation.starry_net import DataprepOp
21
+ from google_cloud_pipeline_components._implementation.starry_net import EvaluationOp
22
+ from google_cloud_pipeline_components._implementation.starry_net import GetTrainingArtifactsOp
23
+ from google_cloud_pipeline_components._implementation.starry_net import MaybeSetTfrecordArgsOp
24
+ from google_cloud_pipeline_components._implementation.starry_net import SetDataprepArgsOp
25
+ from google_cloud_pipeline_components._implementation.starry_net import SetEvalArgsOp
26
+ from google_cloud_pipeline_components._implementation.starry_net import SetTestSetOp
27
+ from google_cloud_pipeline_components._implementation.starry_net import SetTfrecordArgsOp
28
+ from google_cloud_pipeline_components._implementation.starry_net import SetTrainArgsOp
29
+ from google_cloud_pipeline_components._implementation.starry_net import TrainOp
30
+ from google_cloud_pipeline_components._implementation.starry_net import UploadDecompositionPlotsOp
31
+ from google_cloud_pipeline_components._implementation.starry_net import UploadModelOp
32
+ from google_cloud_pipeline_components.preview.model_evaluation import model_evaluation_import_component
33
+ from google_cloud_pipeline_components.types import artifact_types
34
+ from google_cloud_pipeline_components.v1 import batch_predict_job
35
+ from kfp import dsl
36
+
37
+
38
+ @dsl.pipeline
39
+ def starry_net( # pylint: disable=dangerous-default-value
40
+ tensorboard_instance_id: str,
41
+ dataprep_backcast_length: int,
42
+ dataprep_forecast_length: int,
43
+ dataprep_train_end_date: str,
44
+ dataprep_n_val_windows: int,
45
+ dataprep_n_test_windows: int,
46
+ dataprep_test_set_stride: int,
47
+ dataprep_test_set_bigquery_dataset: str,
48
+ dataflow_machine_type: str = 'n1-standard-16',
49
+ dataflow_max_replica_count: int = 50,
50
+ dataflow_starting_replica_count: int = 1,
51
+ dataflow_disk_size_gb: int = 50,
52
+ dataprep_csv_data_path: str = '',
53
+ dataprep_csv_static_covariates_path: str = '',
54
+ dataprep_bigquery_data_path: str = '',
55
+ dataprep_ts_identifier_columns: List[str] = [],
56
+ dataprep_time_column: str = '',
57
+ dataprep_target_column: str = '',
58
+ dataprep_static_covariate_columns: List[str] = [],
59
+ dataprep_previous_run_dir: str = '',
60
+ trainer_machine_type: str = 'n1-standard-4',
61
+ trainer_accelerator_type: str = 'NVIDIA_TESLA_V100',
62
+ trainer_num_epochs: int = 50,
63
+ trainer_cleaning_activation_regularizer_coeff: float = 1e3,
64
+ trainer_change_point_activation_regularizer_coeff: float = 1e3,
65
+ trainer_change_point_output_regularizer_coeff: float = 1e3,
66
+ trainer_trend_alpha_upper_bound: float = 0.5,
67
+ trainer_trend_beta_upper_bound: float = 0.2,
68
+ trainer_trend_phi_lower_bound: float = 0.99,
69
+ trainer_trend_b_fixed_val: int = -1,
70
+ trainer_trend_b0_fixed_val: int = -1,
71
+ trainer_trend_phi_fixed_val: int = -1,
72
+ trainer_quantiles: List[float] = [],
73
+ trainer_model_blocks: List[str] = [
74
+ 'cleaning',
75
+ 'change_point',
76
+ 'trend',
77
+ 'day_of_week',
78
+ 'week_of_year',
79
+ 'residual',
80
+ ],
81
+ tensorboard_n_decomposition_plots: int = 25,
82
+ encryption_spec_key_name: str = '',
83
+ location: str = _placeholders.LOCATION_PLACEHOLDER,
84
+ project: str = _placeholders.PROJECT_ID_PLACEHOLDER,
85
+ ):
86
+ # fmt: off
87
+ """Trains a STARRY-Net model.
88
+
89
+ Args:
90
+ tensorboard_instance_id: The tensorboard instance ID. This must be in same
91
+ location as the pipeline job.
92
+ dataprep_backcast_length: The length of the context window to feed into the
93
+ model.
94
+ dataprep_forecast_length: The length of the forecast horizon used in the
95
+ loss function during training and during evaluation, so that the model is
96
+ optimized to produce forecasts from 0 to H.
97
+ dataprep_train_end_date: The last date of data to use in the training and
98
+ validation set. All dates after a train_end_date are part of the test set.
99
+ If last_forecasted_date is equal to the final day forecasted in the test
100
+ set, then last_forecasted_date =
101
+ train_end_date + forecast_length + (n_test_windows * test_set_stride).
102
+ last_forecasted_date must be included in the dataset.
103
+ dataprep_n_val_windows: The number of windows to use for the val set. If 0,
104
+ no validation set is used.
105
+ dataprep_n_test_windows: The number of windows to use for the test set. Must
106
+ be >= 1. See note in dataprep_train_end_date.
107
+ dataprep_test_set_stride: The number of timestamps to roll forward
108
+ when constructing each window of the val and test sets. See note in
109
+ dataprep_train_end_date.
110
+ dataprep_test_set_bigquery_dataset: The bigquery dataset where the test set
111
+ is saved in the format bq://project.dataset. This must be in the same
112
+ region or multi-region as the output or staging bucket of the pipeline and
113
+ the dataprep_bigquery_data_path, if using a Big Query data source.
114
+ dataflow_machine_type: The type of machine to use for dataprep,
115
+ batch prediction, and evaluation jobs..
116
+ dataflow_max_replica_count: The maximum number of replicas to scale the
117
+ dataprep, batch prediction, and evaluation jobs.
118
+ dataflow_starting_replica_count: The number of replicas to start the
119
+ dataprep, batch prediction, and evaluation jobs.
120
+ dataflow_disk_size_gb: The disk size of dataflow workers in GB for the
121
+ dataprep, batch prediction, and evaluation jobs.
122
+ dataprep_csv_data_path: The path to the training data csv in the format
123
+ gs://bucket_name/sub_dir/blob_name.csv. Each row of the csv represents
124
+ a time series, where the column names are the dates, and the index is the
125
+ unique time series names.
126
+ dataprep_csv_static_covariates_path: The path to the static covariates csv.
127
+ Each row of the csv represents the static covariate values for the series,
128
+ where the column names are the static covariate names, and the
129
+ index is the unique time series names. The index values must match the
130
+ index values of dataprep_csv_data_path. The column values must match
131
+ dataprep_static_covariate_columns.
132
+ dataprep_bigquery_data_path: The path to the training data on BigQuery in
133
+ the format bq://project.dataset.table_id. You should only set this or
134
+ csv_data_path. This must be in the same region or multi-region as the
135
+ output or staging bucket of the pipeline and the
136
+ dataprep_test_set_bigquery_dataset.
137
+ dataprep_ts_identifier_columns: The list of ts_identifier columns from the
138
+ BigQuery data source. These columns are used to distinguish the different
139
+ time series, so that if multiple rows have identical ts_identifier
140
+ columns, the series is generated by summing the target columns for each
141
+ timestamp. This is only used if dataprep_bigquery_data_path is set.
142
+ dataprep_time_column: The time column from the BigQuery data source. This is
143
+ only used if dataprep_bigquery_data_path is set.
144
+ dataprep_target_column: The column to be forecasted from the BigQuery data
145
+ source. This is only used if dataprep_bigquery_data_path is set.
146
+ dataprep_static_covariate_columns: The list of strings of static covariate
147
+ names. This needs to be set if training with static covariates regardless
148
+ of whether you're using bigquery_data_path or csv_static_covariates_path.
149
+ dataprep_previous_run_dir: The dataprep dir from a previous run. Use this
150
+ to save time if you've already created TFRecords from your BigQuery
151
+ dataset with the same dataprep parameters as this run.
152
+ trainer_machine_type: The machine type for training. Must be compatible with
153
+ trainer_accelerator_type.
154
+ trainer_accelerator_type: The accelerator type for training.
155
+ trainer_num_epochs: The number of epochs to train for.
156
+ trainer_cleaning_activation_regularizer_coeff: The L1 regularization
157
+ coefficient for the anomaly detection activation in the cleaning block.
158
+ The larger the value, the less aggressive the cleaning, so fewer and only
159
+ the most extreme anomalies are detected. A rule of thumb is that this
160
+ value should be about the same scale of your series.
161
+ trainer_change_point_activation_regularizer_coeff: The L1 regularization
162
+ coefficient for the change point detection activation in the change point
163
+ block. The larger the value, the less aggressive the cleaning, so fewer
164
+ and only the most extreme change points are detected. A rule of thumb is
165
+ that this value should be a ratio of the
166
+ trainer_change_point_output_regularizer_coeff to determine the sparsity
167
+ of the changes. If you want the model to detect many small step changes
168
+ this number should be smaller than the
169
+ trainer_change_point_output_regularizer_coeff. To detect fewer large step
170
+ changes, this number should be about equal to or larger than the
171
+ trainer_change_point_output_regularizer_coeff.
172
+ trainer_change_point_output_regularizer_coeff: The L2 regularization
173
+ penalty applied to the mean lag-one difference of the cleaned output of
174
+ the change point block. Intutively,
175
+ trainer_change_point_activation_regularizer_coeff determines how many
176
+ steps to detect in the series, while this parameter determines how
177
+ aggressively to clean the detected steps. The higher this value, the more
178
+ aggressive the cleaning. A rule of thumb is that this value should be
179
+ about the same scale of your series.
180
+ trainer_trend_alpha_upper_bound: The upper bound for data smooth parameter
181
+ alpha in the trend block.
182
+ trainer_trend_beta_upper_bound: The upper bound for trend smooth parameter
183
+ beta in the trend block.
184
+ trainer_trend_phi_lower_bound: The lower bound for damping param phi in the
185
+ trend block.
186
+ trainer_trend_b_fixed_val: The fixed value for long term trend parameter b
187
+ in the trend block. If set to anything other than -1, the trend block will
188
+ not learn to provide estimates but use the fixed value directly.
189
+ trainer_trend_b0_fixed_val: The fixed value for starting short-term trend
190
+ parameter b0 in the trend block. If set to anything other than -1, the
191
+ trend block will not learn to provide estimates but use the fixed value
192
+ directly.
193
+ trainer_trend_phi_fixed_val: The fixed value for the damping parameter phi
194
+ in the trend block. If set to anything other than -1, the trend block will
195
+ not learn to provide estimates but use the fixed value directly.
196
+ trainer_quantiles: The list of floats representing quantiles. Leave blank if
197
+ only training to produce point forecasts.
198
+ trainer_model_blocks: The list of model blocks to use in the order they will
199
+ appear in the model. Possible values are `cleaning`, `change_point`,
200
+ `trend`, `hour_of_week`, `day_of_week`, `day_of_year`, `week_of_year`,
201
+ `month_of_year`, `residual`.
202
+ tensorboard_n_decomposition_plots: How many decomposition plots from the
203
+ test set to save to tensorboard.
204
+ encryption_spec_key_name: Customer-managed encryption key options for the
205
+ CustomJob. If this is set, then all resources created by the CustomJob
206
+ will be encrypted with the provided encryption key.
207
+ location: The location where the pipeline components are run.
208
+ project: The project where the pipeline is run. Defaults to current project.
209
+ """
210
+ job_id = dsl.PIPELINE_JOB_NAME_PLACEHOLDER
211
+ create_dataprep_args_task = SetDataprepArgsOp(
212
+ model_blocks=trainer_model_blocks,
213
+ ts_identifier_columns=dataprep_ts_identifier_columns,
214
+ static_covariate_columns=dataprep_static_covariate_columns,
215
+ csv_data_path=dataprep_csv_data_path,
216
+ previous_run_dir=dataprep_previous_run_dir,
217
+ location=location,
218
+ )
219
+ create_trainer_args_task = SetTrainArgsOp(
220
+ quantiles=trainer_quantiles,
221
+ model_blocks=trainer_model_blocks,
222
+ static_covariates=dataprep_static_covariate_columns,
223
+ )
224
+ test_set_task = DataprepOp(
225
+ backcast_length=dataprep_backcast_length,
226
+ forecast_length=dataprep_forecast_length,
227
+ train_end_date=dataprep_train_end_date,
228
+ n_val_windows=dataprep_n_val_windows,
229
+ n_test_windows=dataprep_n_test_windows,
230
+ test_set_stride=dataprep_test_set_stride,
231
+ model_blocks=create_dataprep_args_task.outputs['model_blocks'],
232
+ bigquery_source=dataprep_bigquery_data_path,
233
+ ts_identifier_columns=create_dataprep_args_task.outputs[
234
+ 'ts_identifier_columns'],
235
+ time_column=dataprep_time_column,
236
+ static_covariate_columns=create_dataprep_args_task.outputs[
237
+ 'static_covariate_columns'],
238
+ target_column=dataprep_target_column,
239
+ machine_type=dataflow_machine_type,
240
+ docker_region=create_dataprep_args_task.outputs['docker_region'],
241
+ location=location,
242
+ project=project,
243
+ job_id=job_id,
244
+ job_name_prefix='test-set',
245
+ num_workers=dataflow_starting_replica_count,
246
+ max_num_workers=dataflow_max_replica_count,
247
+ disk_size_gb=dataflow_disk_size_gb,
248
+ test_set_only=True,
249
+ bigquery_output=dataprep_test_set_bigquery_dataset,
250
+ gcs_source=dataprep_csv_data_path,
251
+ gcs_static_covariate_source=dataprep_csv_static_covariates_path,
252
+ encryption_spec_key_name=encryption_spec_key_name
253
+ )
254
+ test_set_task.set_display_name('create-test-set')
255
+ set_test_set_task = SetTestSetOp(
256
+ dataprep_dir=test_set_task.outputs['dataprep_dir'])
257
+ with dsl.If(create_dataprep_args_task.outputs['create_tf_records'] == True, # pylint: disable=singleton-comparison
258
+ 'create-tf-records'):
259
+ create_tf_records_task = DataprepOp(
260
+ backcast_length=dataprep_backcast_length,
261
+ forecast_length=dataprep_forecast_length,
262
+ train_end_date=dataprep_train_end_date,
263
+ n_val_windows=dataprep_n_val_windows,
264
+ n_test_windows=dataprep_n_test_windows,
265
+ test_set_stride=dataprep_test_set_stride,
266
+ model_blocks=create_dataprep_args_task.outputs['model_blocks'],
267
+ bigquery_source=dataprep_bigquery_data_path,
268
+ ts_identifier_columns=create_dataprep_args_task.outputs[
269
+ 'ts_identifier_columns'],
270
+ time_column=dataprep_time_column,
271
+ static_covariate_columns=create_dataprep_args_task.outputs[
272
+ 'static_covariate_columns'],
273
+ target_column=dataprep_target_column,
274
+ machine_type=dataflow_machine_type,
275
+ docker_region=create_dataprep_args_task.outputs['docker_region'],
276
+ location=location,
277
+ project=project,
278
+ job_id=job_id,
279
+ job_name_prefix='tf-records',
280
+ num_workers=dataflow_starting_replica_count,
281
+ max_num_workers=dataflow_max_replica_count,
282
+ disk_size_gb=dataflow_disk_size_gb,
283
+ test_set_only=False,
284
+ bigquery_output=dataprep_test_set_bigquery_dataset,
285
+ gcs_source=dataprep_csv_data_path,
286
+ gcs_static_covariate_source=dataprep_csv_static_covariates_path,
287
+ encryption_spec_key_name=encryption_spec_key_name
288
+ )
289
+ create_tf_records_task.set_display_name('create-tf-records')
290
+ set_tfrecord_args_this_run_task = (
291
+ SetTfrecordArgsOp(
292
+ dataprep_dir=create_tf_records_task.outputs['dataprep_dir'],
293
+ static_covariates=dataprep_static_covariate_columns))
294
+ with dsl.Else('skip-tf-record-generation'):
295
+ set_tfrecord_args_previous_run_task = (
296
+ MaybeSetTfrecordArgsOp(
297
+ dataprep_previous_run_dir=dataprep_previous_run_dir,
298
+ static_covariates=dataprep_static_covariate_columns))
299
+ set_tfrecord_args_previous_run_task.set_display_name(
300
+ 'set_tfrecord_args_previous_run')
301
+ static_covariates_vocab_path = dsl.OneOf(
302
+ set_tfrecord_args_previous_run_task.outputs[
303
+ 'static_covariates_vocab_path'],
304
+ set_tfrecord_args_this_run_task.outputs['static_covariates_vocab_path']
305
+ )
306
+ train_tf_record_patterns = dsl.OneOf(
307
+ set_tfrecord_args_previous_run_task.outputs['train_tf_record_patterns'],
308
+ set_tfrecord_args_this_run_task.outputs['train_tf_record_patterns']
309
+ )
310
+ val_tf_record_patterns = dsl.OneOf(
311
+ set_tfrecord_args_previous_run_task.outputs['val_tf_record_patterns'],
312
+ set_tfrecord_args_this_run_task.outputs['val_tf_record_patterns']
313
+ )
314
+ test_tf_record_patterns = dsl.OneOf(
315
+ set_tfrecord_args_previous_run_task.outputs['test_tf_record_patterns'],
316
+ set_tfrecord_args_this_run_task.outputs['test_tf_record_patterns']
317
+ )
318
+ trainer_task = TrainOp(
319
+ num_epochs=trainer_num_epochs,
320
+ backcast_length=dataprep_backcast_length,
321
+ forecast_length=dataprep_forecast_length,
322
+ train_end_date=dataprep_train_end_date,
323
+ csv_data_path=dataprep_csv_data_path,
324
+ csv_static_covariates_path=dataprep_csv_static_covariates_path,
325
+ static_covariates_vocab_path=static_covariates_vocab_path,
326
+ train_tf_record_patterns=train_tf_record_patterns,
327
+ val_tf_record_patterns=val_tf_record_patterns,
328
+ test_tf_record_patterns=test_tf_record_patterns,
329
+ n_decomposition_plots=tensorboard_n_decomposition_plots,
330
+ n_val_windows=dataprep_n_val_windows,
331
+ n_test_windows=dataprep_n_test_windows,
332
+ test_set_stride=dataprep_test_set_stride,
333
+ cleaning_activation_regularizer_coeff=trainer_cleaning_activation_regularizer_coeff,
334
+ change_point_activation_regularizer_coeff=trainer_change_point_activation_regularizer_coeff,
335
+ change_point_output_regularizer_coeff=trainer_change_point_output_regularizer_coeff,
336
+ alpha_upper_bound=trainer_trend_alpha_upper_bound,
337
+ beta_upper_bound=trainer_trend_beta_upper_bound,
338
+ phi_lower_bound=trainer_trend_phi_lower_bound,
339
+ b_fixed_val=trainer_trend_b_fixed_val,
340
+ b0_fixed_val=trainer_trend_b0_fixed_val,
341
+ phi_fixed_val=trainer_trend_phi_fixed_val,
342
+ quantiles=create_trainer_args_task.outputs['quantiles'],
343
+ use_static_covariates=create_trainer_args_task.outputs[
344
+ 'use_static_covariates'],
345
+ static_covariate_names=create_trainer_args_task.outputs[
346
+ 'static_covariate_names'],
347
+ model_blocks=create_trainer_args_task.outputs['model_blocks'],
348
+ freeze_point_forecasts=create_trainer_args_task.outputs[
349
+ 'freeze_point_forecasts'],
350
+ machine_type=trainer_machine_type,
351
+ accelerator_type=trainer_accelerator_type,
352
+ docker_region=create_dataprep_args_task.outputs['docker_region'],
353
+ location=location,
354
+ job_id=job_id,
355
+ project=project,
356
+ encryption_spec_key_name=encryption_spec_key_name
357
+ )
358
+ _ = UploadDecompositionPlotsOp(
359
+ project=project,
360
+ location=location,
361
+ tensorboard_id=tensorboard_instance_id,
362
+ display_name=job_id,
363
+ trainer_dir=trainer_task.outputs['trainer_dir'])
364
+ training_artifacts_task = GetTrainingArtifactsOp(
365
+ docker_region=create_dataprep_args_task.outputs['docker_region'],
366
+ trainer_dir=trainer_task.outputs['trainer_dir'])
367
+ model = dsl.importer(
368
+ artifact_uri=training_artifacts_task.outputs['artifact_uri'],
369
+ artifact_class=artifact_types.UnmanagedContainerModel,
370
+ metadata={
371
+ 'predictSchemata': {
372
+ 'instanceSchemaUri': training_artifacts_task.outputs[
373
+ 'instance_schema_uri'],
374
+ 'predictionSchemaUri': training_artifacts_task.outputs[
375
+ 'prediction_schema_uri'],
376
+ },
377
+ 'containerSpec': {
378
+ 'imageUri': training_artifacts_task.outputs['image_uri'],
379
+ 'healthRoute': '/health',
380
+ 'predictRoute': '/predict',
381
+ }
382
+ },
383
+ )
384
+ model.set_display_name('set-model')
385
+ upload_model_task = UploadModelOp(
386
+ project=project,
387
+ location=location,
388
+ display_name=job_id,
389
+ unmanaged_container_model=model.output,
390
+ encryption_spec_key_name=encryption_spec_key_name,
391
+ )
392
+ upload_model_task.set_display_name('upload-model')
393
+ batch_predict_task = batch_predict_job.ModelBatchPredictOp(
394
+ project=project,
395
+ location=location,
396
+ unmanaged_container_model=model.output,
397
+ job_display_name=f'batch-predict-{job_id}',
398
+ instances_format='bigquery',
399
+ predictions_format='bigquery',
400
+ bigquery_source_input_uri=set_test_set_task.outputs['uri'],
401
+ bigquery_destination_output_uri=dataprep_test_set_bigquery_dataset,
402
+ machine_type=dataflow_machine_type,
403
+ starting_replica_count=dataflow_starting_replica_count,
404
+ max_replica_count=dataflow_max_replica_count,
405
+ encryption_spec_key_name=encryption_spec_key_name,
406
+ generate_explanation=False,
407
+ )
408
+ batch_predict_task.set_display_name('run-batch-prediction')
409
+ set_eval_args_task = SetEvalArgsOp(
410
+ big_query_source=batch_predict_task.outputs['bigquery_output_table'],
411
+ quantiles=trainer_quantiles)
412
+ eval_task = EvaluationOp(
413
+ project=project,
414
+ location=location,
415
+ root_dir=test_set_task.outputs['dataprep_dir'],
416
+ target_field_name='HORIZON__x',
417
+ predictions_format='bigquery',
418
+ ground_truth_format='bigquery',
419
+ predictions_bigquery_source=batch_predict_task.outputs[
420
+ 'bigquery_output_table'],
421
+ ground_truth_bigquery_source=set_eval_args_task.outputs[
422
+ 'big_query_source'],
423
+ ground_truth_gcs_source=[],
424
+ forecasting_type=set_eval_args_task.outputs['forecasting_type'],
425
+ forecasting_quantiles=set_eval_args_task.outputs['quantiles'],
426
+ prediction_score_column=set_eval_args_task.outputs[
427
+ 'prediction_score_column'],
428
+ dataflow_service_account=_placeholders.SERVICE_ACCOUNT_PLACEHOLDER,
429
+ dataflow_machine_type=dataflow_machine_type,
430
+ dataflow_max_workers_num=dataflow_max_replica_count,
431
+ dataflow_workers_num=dataflow_starting_replica_count,
432
+ dataflow_disk_size=dataflow_disk_size_gb,
433
+ dataflow_use_public_ips=True,
434
+ encryption_spec_key_name=encryption_spec_key_name,
435
+ )
436
+ model_evaluation_import_component.model_evaluation_import(
437
+ forecasting_metrics=eval_task.outputs['evaluation_metrics'],
438
+ model=upload_model_task.outputs['model'],
439
+ dataset_type='bigquery',
440
+ dataset_path=set_test_set_task.outputs['uri'],
441
+ display_name=job_id,
442
+ problem_type='forecasting',
443
+ )
@@ -5,7 +5,6 @@
5
5
  """Generated protocol buffer code."""
6
6
  from google.protobuf import descriptor as _descriptor
7
7
  from google.protobuf import descriptor_pool as _descriptor_pool
8
- from google.protobuf import runtime_version as _runtime_version
9
8
  from google.protobuf import symbol_database as _symbol_database
10
9
  from google.protobuf.internal import builder as _builder
11
10
  # @@protoc_insertion_point(imports)
@@ -38,6 +38,7 @@ def evaluation_llm_text_generation_pipeline( # pylint: disable=dangerous-defaul
38
38
  batch_predict_gcs_destination_output_uri: str,
39
39
  model_name: str = 'publishers/google/models/text-bison@002',
40
40
  evaluation_task: str = 'text-generation',
41
+ role_field_name: str = 'role',
41
42
  input_field_name: str = 'input_text',
42
43
  target_field_name: str = 'output_text',
43
44
  batch_predict_instances_format: str = 'jsonl',
@@ -76,6 +77,7 @@ def evaluation_llm_text_generation_pipeline( # pylint: disable=dangerous-defaul
76
77
  batch_predict_gcs_destination_output_uri: Required. The Google Cloud Storage location of the directory where the eval pipeline output is to be written to.
77
78
  model_name: The Model name used to run evaluation. Must be a publisher Model or a managed Model sharing the same ancestor location. Starting this job has no impact on any existing deployments of the Model and their resources.
78
79
  evaluation_task: The task that the large language model will be evaluated on. The evaluation component computes a set of metrics relevant to that specific task. Currently supported tasks are: `summarization`, `question-answering`, `text-generation`.
80
+ role_field_name: The field name of the role for input eval dataset instances that contains the input prompts to the LLM.
79
81
  input_field_name: The field name of the input eval dataset instances that contains the input prompts to the LLM.
80
82
  target_field_name: The field name of the eval dataset instance that contains an example reference text response. Alternatively referred to as the ground truth (or ground_truth_column) field. If not set, defaulted to `output_text`.
81
83
  batch_predict_instances_format: The format in which instances are given, must be one of the Model's supportedInputStorageFormats. Only "jsonl" is currently supported. For more details about this input config, see https://cloud.google.com/vertex-ai/docs/reference/rest/v1/projects.locations.batchPredictionJobs#InputConfig.
@@ -124,6 +126,8 @@ def evaluation_llm_text_generation_pipeline( # pylint: disable=dangerous-defaul
124
126
  location=location,
125
127
  gcs_source_uris=batch_predict_gcs_source_uris,
126
128
  input_field_name=input_field_name,
129
+ role_field_name=role_field_name,
130
+ model_name=model_name,
127
131
  machine_type=machine_type,
128
132
  service_account=service_account,
129
133
  network=network,
@@ -13,4 +13,4 @@
13
13
  # limitations under the License.
14
14
  """Google Cloud Pipeline Components version."""
15
15
 
16
- __version__ = "2.14.1"
16
+ __version__ = "2.15.0"
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: google-cloud-pipeline-components
3
- Version: 2.14.1
3
+ Version: 2.15.0
4
4
  Summary: This SDK enables a set of First Party (Google owned) pipeline components that allow users to take their experience from Vertex AI SDK and other Google Cloud services and create a corresponding pipeline using KFP or Managed Pipelines.
5
5
  Home-page: https://github.com/kubeflow/pipelines/tree/master/components/google-cloud
6
6
  Author: The Google Cloud Pipeline Components authors
@@ -10,7 +10,6 @@ Project-URL: User Documentation, https://cloud.google.com/vertex-ai/docs/pipelin
10
10
  Project-URL: Reference Documentation, https://google-cloud-pipeline-components.readthedocs.io/
11
11
  Project-URL: Source, https://github.com/kubeflow/pipelines/tree/master/components/google-cloud
12
12
  Project-URL: Release Notes, https://github.com/kubeflow/pipelines/tree/master/components/google-cloud/RELEASE.md
13
- Platform: UNKNOWN
14
13
  Classifier: Development Status :: 4 - Beta
15
14
  Classifier: Operating System :: Unix
16
15
  Classifier: Operating System :: MacOS
@@ -31,24 +30,24 @@ Classifier: Topic :: Software Development :: Libraries :: Python Modules
31
30
  Requires-Python: >=3.8.0,<3.12.0
32
31
  Description-Content-Type: text/markdown
33
32
  License-File: LICENSE
34
- Requires-Dist: google-api-core (!=2.0.*,!=2.1.*,!=2.2.*,!=2.3.0,<3.0.0dev,>=1.31.5)
35
- Requires-Dist: kfp (<=2.7.0,>=2.6.0)
36
- Requires-Dist: google-cloud-aiplatform (<2,>=1.14.0)
37
- Requires-Dist: Jinja2 (<4,>=3.1.2)
33
+ Requires-Dist: Jinja2 <4,>=3.1.2
34
+ Requires-Dist: google-api-core !=2.0.*,!=2.1.*,!=2.2.*,!=2.3.0,<3.0.0dev,>=1.31.5
35
+ Requires-Dist: google-cloud-aiplatform <2,>=1.14.0
36
+ Requires-Dist: kfp <=2.7.0,>=2.6.0
38
37
  Provides-Extra: docs
39
- Requires-Dist: protobuf (<5,>=4.21.1) ; extra == 'docs'
40
- Requires-Dist: grpcio-status (<=1.47.0) ; extra == 'docs'
41
- Requires-Dist: commonmark (==0.9.1) ; extra == 'docs'
42
- Requires-Dist: autodocsumm (==0.2.9) ; extra == 'docs'
43
- Requires-Dist: sphinx (<6.0.0,>=5.0.2) ; extra == 'docs'
44
- Requires-Dist: sphinx-immaterial (==0.9.0) ; extra == 'docs'
45
- Requires-Dist: sphinx-rtd-theme (==2.0.0) ; extra == 'docs'
46
- Requires-Dist: m2r2 (==0.3.3.post2) ; extra == 'docs'
47
- Requires-Dist: sphinx-notfound-page (==0.8.3) ; extra == 'docs'
38
+ Requires-Dist: autodocsumm ==0.2.9 ; extra == 'docs'
39
+ Requires-Dist: commonmark ==0.9.1 ; extra == 'docs'
40
+ Requires-Dist: grpcio-status <=1.47.0 ; extra == 'docs'
41
+ Requires-Dist: m2r2 ==0.3.3.post2 ; extra == 'docs'
42
+ Requires-Dist: protobuf <5,>=4.21.1 ; extra == 'docs'
43
+ Requires-Dist: sphinx-immaterial ==0.9.0 ; extra == 'docs'
44
+ Requires-Dist: sphinx-notfound-page ==0.8.3 ; extra == 'docs'
45
+ Requires-Dist: sphinx-rtd-theme ==2.0.0 ; extra == 'docs'
46
+ Requires-Dist: sphinx <6.0.0,>=5.0.2 ; extra == 'docs'
48
47
  Provides-Extra: tests
49
- Requires-Dist: mock (>=4.0.0) ; extra == 'tests'
50
- Requires-Dist: flake8 (>=3.0.0) ; extra == 'tests'
51
- Requires-Dist: pytest (>=6.0.0) ; extra == 'tests'
48
+ Requires-Dist: flake8 >=3.0.0 ; extra == 'tests'
49
+ Requires-Dist: mock >=4.0.0 ; extra == 'tests'
50
+ Requires-Dist: pytest >=6.0.0 ; extra == 'tests'
52
51
 
53
52
  # Google Cloud Pipeline Components
54
53
 
@@ -93,5 +92,3 @@ Use the following command to install Google Cloud Pipeline Components from [PyPI
93
92
  ```shell
94
93
  pip install -U google-cloud-pipeline-components
95
94
  ```
96
-
97
-