google-cloud-pipeline-components 2.14.0__py3-none-any.whl → 2.15.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of google-cloud-pipeline-components might be problematic. Click here for more details.
- google_cloud_pipeline_components/_implementation/llm/deployment_graph.py +10 -26
- google_cloud_pipeline_components/_implementation/llm/generated/refined_image_versions.py +1 -1
- google_cloud_pipeline_components/_implementation/llm/infer_preprocessor.py +109 -0
- google_cloud_pipeline_components/_implementation/llm/online_evaluation_pairwise.py +8 -0
- google_cloud_pipeline_components/_implementation/llm/reward_model_graph.py +5 -6
- google_cloud_pipeline_components/_implementation/llm/rlhf_preprocessor.py +24 -0
- google_cloud_pipeline_components/_implementation/model_evaluation/__init__.py +0 -12
- google_cloud_pipeline_components/_implementation/model_evaluation/llm_embedding/evaluation_llm_embedding_pipeline.py +2 -1
- google_cloud_pipeline_components/_implementation/model_evaluation/llm_evaluation_preprocessor/component.py +14 -0
- google_cloud_pipeline_components/_implementation/starry_net/__init__.py +41 -0
- google_cloud_pipeline_components/_implementation/{model_evaluation/import_evaluation → starry_net/dataprep}/__init__.py +1 -2
- google_cloud_pipeline_components/_implementation/starry_net/dataprep/component.py +159 -0
- google_cloud_pipeline_components/_implementation/starry_net/evaluation/__init__.py +13 -0
- google_cloud_pipeline_components/_implementation/starry_net/evaluation/component.py +23 -0
- google_cloud_pipeline_components/_implementation/starry_net/evaluation/evaluation.yaml +197 -0
- google_cloud_pipeline_components/_implementation/starry_net/get_training_artifacts/__init__.py +13 -0
- google_cloud_pipeline_components/_implementation/starry_net/get_training_artifacts/component.py +62 -0
- google_cloud_pipeline_components/_implementation/starry_net/maybe_set_tfrecord_args/__init__.py +13 -0
- google_cloud_pipeline_components/_implementation/starry_net/maybe_set_tfrecord_args/component.py +77 -0
- google_cloud_pipeline_components/_implementation/starry_net/set_dataprep_args/__init__.py +13 -0
- google_cloud_pipeline_components/_implementation/starry_net/set_dataprep_args/component.py +97 -0
- google_cloud_pipeline_components/_implementation/starry_net/set_eval_args/__init__.py +13 -0
- google_cloud_pipeline_components/_implementation/starry_net/set_eval_args/component.py +76 -0
- google_cloud_pipeline_components/_implementation/starry_net/set_test_set/__init__.py +13 -0
- google_cloud_pipeline_components/_implementation/starry_net/set_test_set/component.py +48 -0
- google_cloud_pipeline_components/_implementation/starry_net/set_tfrecord_args/__init__.py +13 -0
- google_cloud_pipeline_components/_implementation/starry_net/set_tfrecord_args/component.py +70 -0
- google_cloud_pipeline_components/_implementation/starry_net/set_train_args/__init__.py +13 -0
- google_cloud_pipeline_components/_implementation/starry_net/set_train_args/component.py +90 -0
- google_cloud_pipeline_components/_implementation/starry_net/train/__init__.py +13 -0
- google_cloud_pipeline_components/_implementation/starry_net/train/component.py +209 -0
- google_cloud_pipeline_components/_implementation/starry_net/upload_decomposition_plots/__init__.py +13 -0
- google_cloud_pipeline_components/_implementation/starry_net/upload_decomposition_plots/component.py +59 -0
- google_cloud_pipeline_components/_implementation/starry_net/upload_model/__init__.py +13 -0
- google_cloud_pipeline_components/_implementation/starry_net/upload_model/component.py +23 -0
- google_cloud_pipeline_components/_implementation/starry_net/upload_model/upload_model.yaml +37 -0
- google_cloud_pipeline_components/_implementation/starry_net/version.py +18 -0
- google_cloud_pipeline_components/container/utils/error_surfacing.py +45 -0
- google_cloud_pipeline_components/container/v1/model/get_model/remote_runner.py +36 -7
- google_cloud_pipeline_components/preview/llm/infer/component.py +22 -25
- google_cloud_pipeline_components/preview/llm/rlhf/component.py +15 -8
- google_cloud_pipeline_components/preview/model_evaluation/__init__.py +4 -1
- google_cloud_pipeline_components/{_implementation/model_evaluation/import_evaluation/component.py → preview/model_evaluation/model_evaluation_import_component.py} +4 -3
- google_cloud_pipeline_components/preview/starry_net/__init__.py +19 -0
- google_cloud_pipeline_components/preview/starry_net/component.py +443 -0
- google_cloud_pipeline_components/proto/task_error_pb2.py +32 -0
- google_cloud_pipeline_components/v1/automl/forecasting/prophet_predict_pipeline.yaml +13 -13
- google_cloud_pipeline_components/v1/automl/forecasting/prophet_trainer.py +10 -0
- google_cloud_pipeline_components/v1/automl/forecasting/prophet_trainer_pipeline.yaml +4 -1
- google_cloud_pipeline_components/v1/model_evaluation/error_analysis_pipeline.py +8 -10
- google_cloud_pipeline_components/v1/model_evaluation/evaluated_annotation_pipeline.py +2 -2
- google_cloud_pipeline_components/v1/model_evaluation/evaluation_automl_tabular_feature_attribution_pipeline.py +2 -2
- google_cloud_pipeline_components/v1/model_evaluation/evaluation_automl_tabular_pipeline.py +2 -2
- google_cloud_pipeline_components/v1/model_evaluation/evaluation_automl_unstructure_data_pipeline.py +2 -2
- google_cloud_pipeline_components/v1/model_evaluation/evaluation_feature_attribution_pipeline.py +2 -2
- google_cloud_pipeline_components/v1/model_evaluation/evaluation_llm_classification_pipeline.py +4 -2
- google_cloud_pipeline_components/v1/model_evaluation/evaluation_llm_text_generation_pipeline.py +8 -2
- google_cloud_pipeline_components/v1/model_evaluation/model_based_llm_evaluation/autosxs/autosxs_pipeline.py +1 -0
- google_cloud_pipeline_components/version.py +1 -1
- {google_cloud_pipeline_components-2.14.0.dist-info → google_cloud_pipeline_components-2.15.0.dist-info}/METADATA +17 -20
- {google_cloud_pipeline_components-2.14.0.dist-info → google_cloud_pipeline_components-2.15.0.dist-info}/RECORD +64 -32
- {google_cloud_pipeline_components-2.14.0.dist-info → google_cloud_pipeline_components-2.15.0.dist-info}/WHEEL +1 -1
- {google_cloud_pipeline_components-2.14.0.dist-info → google_cloud_pipeline_components-2.15.0.dist-info}/LICENSE +0 -0
- {google_cloud_pipeline_components-2.14.0.dist-info → google_cloud_pipeline_components-2.15.0.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,443 @@
|
|
|
1
|
+
# Copyright 2024 The Kubeflow Authors. All Rights Reserved.
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
"""Defines the pipeline for Starry Net."""
|
|
15
|
+
|
|
16
|
+
from typing import List
|
|
17
|
+
|
|
18
|
+
# pylint: disable=g-importing-member
|
|
19
|
+
from google_cloud_pipeline_components import _placeholders
|
|
20
|
+
from google_cloud_pipeline_components._implementation.starry_net import DataprepOp
|
|
21
|
+
from google_cloud_pipeline_components._implementation.starry_net import EvaluationOp
|
|
22
|
+
from google_cloud_pipeline_components._implementation.starry_net import GetTrainingArtifactsOp
|
|
23
|
+
from google_cloud_pipeline_components._implementation.starry_net import MaybeSetTfrecordArgsOp
|
|
24
|
+
from google_cloud_pipeline_components._implementation.starry_net import SetDataprepArgsOp
|
|
25
|
+
from google_cloud_pipeline_components._implementation.starry_net import SetEvalArgsOp
|
|
26
|
+
from google_cloud_pipeline_components._implementation.starry_net import SetTestSetOp
|
|
27
|
+
from google_cloud_pipeline_components._implementation.starry_net import SetTfrecordArgsOp
|
|
28
|
+
from google_cloud_pipeline_components._implementation.starry_net import SetTrainArgsOp
|
|
29
|
+
from google_cloud_pipeline_components._implementation.starry_net import TrainOp
|
|
30
|
+
from google_cloud_pipeline_components._implementation.starry_net import UploadDecompositionPlotsOp
|
|
31
|
+
from google_cloud_pipeline_components._implementation.starry_net import UploadModelOp
|
|
32
|
+
from google_cloud_pipeline_components.preview.model_evaluation import model_evaluation_import_component
|
|
33
|
+
from google_cloud_pipeline_components.types import artifact_types
|
|
34
|
+
from google_cloud_pipeline_components.v1 import batch_predict_job
|
|
35
|
+
from kfp import dsl
|
|
36
|
+
|
|
37
|
+
|
|
38
|
+
@dsl.pipeline
|
|
39
|
+
def starry_net( # pylint: disable=dangerous-default-value
|
|
40
|
+
tensorboard_instance_id: str,
|
|
41
|
+
dataprep_backcast_length: int,
|
|
42
|
+
dataprep_forecast_length: int,
|
|
43
|
+
dataprep_train_end_date: str,
|
|
44
|
+
dataprep_n_val_windows: int,
|
|
45
|
+
dataprep_n_test_windows: int,
|
|
46
|
+
dataprep_test_set_stride: int,
|
|
47
|
+
dataprep_test_set_bigquery_dataset: str,
|
|
48
|
+
dataflow_machine_type: str = 'n1-standard-16',
|
|
49
|
+
dataflow_max_replica_count: int = 50,
|
|
50
|
+
dataflow_starting_replica_count: int = 1,
|
|
51
|
+
dataflow_disk_size_gb: int = 50,
|
|
52
|
+
dataprep_csv_data_path: str = '',
|
|
53
|
+
dataprep_csv_static_covariates_path: str = '',
|
|
54
|
+
dataprep_bigquery_data_path: str = '',
|
|
55
|
+
dataprep_ts_identifier_columns: List[str] = [],
|
|
56
|
+
dataprep_time_column: str = '',
|
|
57
|
+
dataprep_target_column: str = '',
|
|
58
|
+
dataprep_static_covariate_columns: List[str] = [],
|
|
59
|
+
dataprep_previous_run_dir: str = '',
|
|
60
|
+
trainer_machine_type: str = 'n1-standard-4',
|
|
61
|
+
trainer_accelerator_type: str = 'NVIDIA_TESLA_V100',
|
|
62
|
+
trainer_num_epochs: int = 50,
|
|
63
|
+
trainer_cleaning_activation_regularizer_coeff: float = 1e3,
|
|
64
|
+
trainer_change_point_activation_regularizer_coeff: float = 1e3,
|
|
65
|
+
trainer_change_point_output_regularizer_coeff: float = 1e3,
|
|
66
|
+
trainer_trend_alpha_upper_bound: float = 0.5,
|
|
67
|
+
trainer_trend_beta_upper_bound: float = 0.2,
|
|
68
|
+
trainer_trend_phi_lower_bound: float = 0.99,
|
|
69
|
+
trainer_trend_b_fixed_val: int = -1,
|
|
70
|
+
trainer_trend_b0_fixed_val: int = -1,
|
|
71
|
+
trainer_trend_phi_fixed_val: int = -1,
|
|
72
|
+
trainer_quantiles: List[float] = [],
|
|
73
|
+
trainer_model_blocks: List[str] = [
|
|
74
|
+
'cleaning',
|
|
75
|
+
'change_point',
|
|
76
|
+
'trend',
|
|
77
|
+
'day_of_week',
|
|
78
|
+
'week_of_year',
|
|
79
|
+
'residual',
|
|
80
|
+
],
|
|
81
|
+
tensorboard_n_decomposition_plots: int = 25,
|
|
82
|
+
encryption_spec_key_name: str = '',
|
|
83
|
+
location: str = _placeholders.LOCATION_PLACEHOLDER,
|
|
84
|
+
project: str = _placeholders.PROJECT_ID_PLACEHOLDER,
|
|
85
|
+
):
|
|
86
|
+
# fmt: off
|
|
87
|
+
"""Trains a STARRY-Net model.
|
|
88
|
+
|
|
89
|
+
Args:
|
|
90
|
+
tensorboard_instance_id: The tensorboard instance ID. This must be in same
|
|
91
|
+
location as the pipeline job.
|
|
92
|
+
dataprep_backcast_length: The length of the context window to feed into the
|
|
93
|
+
model.
|
|
94
|
+
dataprep_forecast_length: The length of the forecast horizon used in the
|
|
95
|
+
loss function during training and during evaluation, so that the model is
|
|
96
|
+
optimized to produce forecasts from 0 to H.
|
|
97
|
+
dataprep_train_end_date: The last date of data to use in the training and
|
|
98
|
+
validation set. All dates after a train_end_date are part of the test set.
|
|
99
|
+
If last_forecasted_date is equal to the final day forecasted in the test
|
|
100
|
+
set, then last_forecasted_date =
|
|
101
|
+
train_end_date + forecast_length + (n_test_windows * test_set_stride).
|
|
102
|
+
last_forecasted_date must be included in the dataset.
|
|
103
|
+
dataprep_n_val_windows: The number of windows to use for the val set. If 0,
|
|
104
|
+
no validation set is used.
|
|
105
|
+
dataprep_n_test_windows: The number of windows to use for the test set. Must
|
|
106
|
+
be >= 1. See note in dataprep_train_end_date.
|
|
107
|
+
dataprep_test_set_stride: The number of timestamps to roll forward
|
|
108
|
+
when constructing each window of the val and test sets. See note in
|
|
109
|
+
dataprep_train_end_date.
|
|
110
|
+
dataprep_test_set_bigquery_dataset: The bigquery dataset where the test set
|
|
111
|
+
is saved in the format bq://project.dataset. This must be in the same
|
|
112
|
+
region or multi-region as the output or staging bucket of the pipeline and
|
|
113
|
+
the dataprep_bigquery_data_path, if using a Big Query data source.
|
|
114
|
+
dataflow_machine_type: The type of machine to use for dataprep,
|
|
115
|
+
batch prediction, and evaluation jobs..
|
|
116
|
+
dataflow_max_replica_count: The maximum number of replicas to scale the
|
|
117
|
+
dataprep, batch prediction, and evaluation jobs.
|
|
118
|
+
dataflow_starting_replica_count: The number of replicas to start the
|
|
119
|
+
dataprep, batch prediction, and evaluation jobs.
|
|
120
|
+
dataflow_disk_size_gb: The disk size of dataflow workers in GB for the
|
|
121
|
+
dataprep, batch prediction, and evaluation jobs.
|
|
122
|
+
dataprep_csv_data_path: The path to the training data csv in the format
|
|
123
|
+
gs://bucket_name/sub_dir/blob_name.csv. Each row of the csv represents
|
|
124
|
+
a time series, where the column names are the dates, and the index is the
|
|
125
|
+
unique time series names.
|
|
126
|
+
dataprep_csv_static_covariates_path: The path to the static covariates csv.
|
|
127
|
+
Each row of the csv represents the static covariate values for the series,
|
|
128
|
+
where the column names are the static covariate names, and the
|
|
129
|
+
index is the unique time series names. The index values must match the
|
|
130
|
+
index values of dataprep_csv_data_path. The column values must match
|
|
131
|
+
dataprep_static_covariate_columns.
|
|
132
|
+
dataprep_bigquery_data_path: The path to the training data on BigQuery in
|
|
133
|
+
the format bq://project.dataset.table_id. You should only set this or
|
|
134
|
+
csv_data_path. This must be in the same region or multi-region as the
|
|
135
|
+
output or staging bucket of the pipeline and the
|
|
136
|
+
dataprep_test_set_bigquery_dataset.
|
|
137
|
+
dataprep_ts_identifier_columns: The list of ts_identifier columns from the
|
|
138
|
+
BigQuery data source. These columns are used to distinguish the different
|
|
139
|
+
time series, so that if multiple rows have identical ts_identifier
|
|
140
|
+
columns, the series is generated by summing the target columns for each
|
|
141
|
+
timestamp. This is only used if dataprep_bigquery_data_path is set.
|
|
142
|
+
dataprep_time_column: The time column from the BigQuery data source. This is
|
|
143
|
+
only used if dataprep_bigquery_data_path is set.
|
|
144
|
+
dataprep_target_column: The column to be forecasted from the BigQuery data
|
|
145
|
+
source. This is only used if dataprep_bigquery_data_path is set.
|
|
146
|
+
dataprep_static_covariate_columns: The list of strings of static covariate
|
|
147
|
+
names. This needs to be set if training with static covariates regardless
|
|
148
|
+
of whether you're using bigquery_data_path or csv_static_covariates_path.
|
|
149
|
+
dataprep_previous_run_dir: The dataprep dir from a previous run. Use this
|
|
150
|
+
to save time if you've already created TFRecords from your BigQuery
|
|
151
|
+
dataset with the same dataprep parameters as this run.
|
|
152
|
+
trainer_machine_type: The machine type for training. Must be compatible with
|
|
153
|
+
trainer_accelerator_type.
|
|
154
|
+
trainer_accelerator_type: The accelerator type for training.
|
|
155
|
+
trainer_num_epochs: The number of epochs to train for.
|
|
156
|
+
trainer_cleaning_activation_regularizer_coeff: The L1 regularization
|
|
157
|
+
coefficient for the anomaly detection activation in the cleaning block.
|
|
158
|
+
The larger the value, the less aggressive the cleaning, so fewer and only
|
|
159
|
+
the most extreme anomalies are detected. A rule of thumb is that this
|
|
160
|
+
value should be about the same scale of your series.
|
|
161
|
+
trainer_change_point_activation_regularizer_coeff: The L1 regularization
|
|
162
|
+
coefficient for the change point detection activation in the change point
|
|
163
|
+
block. The larger the value, the less aggressive the cleaning, so fewer
|
|
164
|
+
and only the most extreme change points are detected. A rule of thumb is
|
|
165
|
+
that this value should be a ratio of the
|
|
166
|
+
trainer_change_point_output_regularizer_coeff to determine the sparsity
|
|
167
|
+
of the changes. If you want the model to detect many small step changes
|
|
168
|
+
this number should be smaller than the
|
|
169
|
+
trainer_change_point_output_regularizer_coeff. To detect fewer large step
|
|
170
|
+
changes, this number should be about equal to or larger than the
|
|
171
|
+
trainer_change_point_output_regularizer_coeff.
|
|
172
|
+
trainer_change_point_output_regularizer_coeff: The L2 regularization
|
|
173
|
+
penalty applied to the mean lag-one difference of the cleaned output of
|
|
174
|
+
the change point block. Intutively,
|
|
175
|
+
trainer_change_point_activation_regularizer_coeff determines how many
|
|
176
|
+
steps to detect in the series, while this parameter determines how
|
|
177
|
+
aggressively to clean the detected steps. The higher this value, the more
|
|
178
|
+
aggressive the cleaning. A rule of thumb is that this value should be
|
|
179
|
+
about the same scale of your series.
|
|
180
|
+
trainer_trend_alpha_upper_bound: The upper bound for data smooth parameter
|
|
181
|
+
alpha in the trend block.
|
|
182
|
+
trainer_trend_beta_upper_bound: The upper bound for trend smooth parameter
|
|
183
|
+
beta in the trend block.
|
|
184
|
+
trainer_trend_phi_lower_bound: The lower bound for damping param phi in the
|
|
185
|
+
trend block.
|
|
186
|
+
trainer_trend_b_fixed_val: The fixed value for long term trend parameter b
|
|
187
|
+
in the trend block. If set to anything other than -1, the trend block will
|
|
188
|
+
not learn to provide estimates but use the fixed value directly.
|
|
189
|
+
trainer_trend_b0_fixed_val: The fixed value for starting short-term trend
|
|
190
|
+
parameter b0 in the trend block. If set to anything other than -1, the
|
|
191
|
+
trend block will not learn to provide estimates but use the fixed value
|
|
192
|
+
directly.
|
|
193
|
+
trainer_trend_phi_fixed_val: The fixed value for the damping parameter phi
|
|
194
|
+
in the trend block. If set to anything other than -1, the trend block will
|
|
195
|
+
not learn to provide estimates but use the fixed value directly.
|
|
196
|
+
trainer_quantiles: The list of floats representing quantiles. Leave blank if
|
|
197
|
+
only training to produce point forecasts.
|
|
198
|
+
trainer_model_blocks: The list of model blocks to use in the order they will
|
|
199
|
+
appear in the model. Possible values are `cleaning`, `change_point`,
|
|
200
|
+
`trend`, `hour_of_week`, `day_of_week`, `day_of_year`, `week_of_year`,
|
|
201
|
+
`month_of_year`, `residual`.
|
|
202
|
+
tensorboard_n_decomposition_plots: How many decomposition plots from the
|
|
203
|
+
test set to save to tensorboard.
|
|
204
|
+
encryption_spec_key_name: Customer-managed encryption key options for the
|
|
205
|
+
CustomJob. If this is set, then all resources created by the CustomJob
|
|
206
|
+
will be encrypted with the provided encryption key.
|
|
207
|
+
location: The location where the pipeline components are run.
|
|
208
|
+
project: The project where the pipeline is run. Defaults to current project.
|
|
209
|
+
"""
|
|
210
|
+
job_id = dsl.PIPELINE_JOB_NAME_PLACEHOLDER
|
|
211
|
+
create_dataprep_args_task = SetDataprepArgsOp(
|
|
212
|
+
model_blocks=trainer_model_blocks,
|
|
213
|
+
ts_identifier_columns=dataprep_ts_identifier_columns,
|
|
214
|
+
static_covariate_columns=dataprep_static_covariate_columns,
|
|
215
|
+
csv_data_path=dataprep_csv_data_path,
|
|
216
|
+
previous_run_dir=dataprep_previous_run_dir,
|
|
217
|
+
location=location,
|
|
218
|
+
)
|
|
219
|
+
create_trainer_args_task = SetTrainArgsOp(
|
|
220
|
+
quantiles=trainer_quantiles,
|
|
221
|
+
model_blocks=trainer_model_blocks,
|
|
222
|
+
static_covariates=dataprep_static_covariate_columns,
|
|
223
|
+
)
|
|
224
|
+
test_set_task = DataprepOp(
|
|
225
|
+
backcast_length=dataprep_backcast_length,
|
|
226
|
+
forecast_length=dataprep_forecast_length,
|
|
227
|
+
train_end_date=dataprep_train_end_date,
|
|
228
|
+
n_val_windows=dataprep_n_val_windows,
|
|
229
|
+
n_test_windows=dataprep_n_test_windows,
|
|
230
|
+
test_set_stride=dataprep_test_set_stride,
|
|
231
|
+
model_blocks=create_dataprep_args_task.outputs['model_blocks'],
|
|
232
|
+
bigquery_source=dataprep_bigquery_data_path,
|
|
233
|
+
ts_identifier_columns=create_dataprep_args_task.outputs[
|
|
234
|
+
'ts_identifier_columns'],
|
|
235
|
+
time_column=dataprep_time_column,
|
|
236
|
+
static_covariate_columns=create_dataprep_args_task.outputs[
|
|
237
|
+
'static_covariate_columns'],
|
|
238
|
+
target_column=dataprep_target_column,
|
|
239
|
+
machine_type=dataflow_machine_type,
|
|
240
|
+
docker_region=create_dataprep_args_task.outputs['docker_region'],
|
|
241
|
+
location=location,
|
|
242
|
+
project=project,
|
|
243
|
+
job_id=job_id,
|
|
244
|
+
job_name_prefix='test-set',
|
|
245
|
+
num_workers=dataflow_starting_replica_count,
|
|
246
|
+
max_num_workers=dataflow_max_replica_count,
|
|
247
|
+
disk_size_gb=dataflow_disk_size_gb,
|
|
248
|
+
test_set_only=True,
|
|
249
|
+
bigquery_output=dataprep_test_set_bigquery_dataset,
|
|
250
|
+
gcs_source=dataprep_csv_data_path,
|
|
251
|
+
gcs_static_covariate_source=dataprep_csv_static_covariates_path,
|
|
252
|
+
encryption_spec_key_name=encryption_spec_key_name
|
|
253
|
+
)
|
|
254
|
+
test_set_task.set_display_name('create-test-set')
|
|
255
|
+
set_test_set_task = SetTestSetOp(
|
|
256
|
+
dataprep_dir=test_set_task.outputs['dataprep_dir'])
|
|
257
|
+
with dsl.If(create_dataprep_args_task.outputs['create_tf_records'] == True, # pylint: disable=singleton-comparison
|
|
258
|
+
'create-tf-records'):
|
|
259
|
+
create_tf_records_task = DataprepOp(
|
|
260
|
+
backcast_length=dataprep_backcast_length,
|
|
261
|
+
forecast_length=dataprep_forecast_length,
|
|
262
|
+
train_end_date=dataprep_train_end_date,
|
|
263
|
+
n_val_windows=dataprep_n_val_windows,
|
|
264
|
+
n_test_windows=dataprep_n_test_windows,
|
|
265
|
+
test_set_stride=dataprep_test_set_stride,
|
|
266
|
+
model_blocks=create_dataprep_args_task.outputs['model_blocks'],
|
|
267
|
+
bigquery_source=dataprep_bigquery_data_path,
|
|
268
|
+
ts_identifier_columns=create_dataprep_args_task.outputs[
|
|
269
|
+
'ts_identifier_columns'],
|
|
270
|
+
time_column=dataprep_time_column,
|
|
271
|
+
static_covariate_columns=create_dataprep_args_task.outputs[
|
|
272
|
+
'static_covariate_columns'],
|
|
273
|
+
target_column=dataprep_target_column,
|
|
274
|
+
machine_type=dataflow_machine_type,
|
|
275
|
+
docker_region=create_dataprep_args_task.outputs['docker_region'],
|
|
276
|
+
location=location,
|
|
277
|
+
project=project,
|
|
278
|
+
job_id=job_id,
|
|
279
|
+
job_name_prefix='tf-records',
|
|
280
|
+
num_workers=dataflow_starting_replica_count,
|
|
281
|
+
max_num_workers=dataflow_max_replica_count,
|
|
282
|
+
disk_size_gb=dataflow_disk_size_gb,
|
|
283
|
+
test_set_only=False,
|
|
284
|
+
bigquery_output=dataprep_test_set_bigquery_dataset,
|
|
285
|
+
gcs_source=dataprep_csv_data_path,
|
|
286
|
+
gcs_static_covariate_source=dataprep_csv_static_covariates_path,
|
|
287
|
+
encryption_spec_key_name=encryption_spec_key_name
|
|
288
|
+
)
|
|
289
|
+
create_tf_records_task.set_display_name('create-tf-records')
|
|
290
|
+
set_tfrecord_args_this_run_task = (
|
|
291
|
+
SetTfrecordArgsOp(
|
|
292
|
+
dataprep_dir=create_tf_records_task.outputs['dataprep_dir'],
|
|
293
|
+
static_covariates=dataprep_static_covariate_columns))
|
|
294
|
+
with dsl.Else('skip-tf-record-generation'):
|
|
295
|
+
set_tfrecord_args_previous_run_task = (
|
|
296
|
+
MaybeSetTfrecordArgsOp(
|
|
297
|
+
dataprep_previous_run_dir=dataprep_previous_run_dir,
|
|
298
|
+
static_covariates=dataprep_static_covariate_columns))
|
|
299
|
+
set_tfrecord_args_previous_run_task.set_display_name(
|
|
300
|
+
'set_tfrecord_args_previous_run')
|
|
301
|
+
static_covariates_vocab_path = dsl.OneOf(
|
|
302
|
+
set_tfrecord_args_previous_run_task.outputs[
|
|
303
|
+
'static_covariates_vocab_path'],
|
|
304
|
+
set_tfrecord_args_this_run_task.outputs['static_covariates_vocab_path']
|
|
305
|
+
)
|
|
306
|
+
train_tf_record_patterns = dsl.OneOf(
|
|
307
|
+
set_tfrecord_args_previous_run_task.outputs['train_tf_record_patterns'],
|
|
308
|
+
set_tfrecord_args_this_run_task.outputs['train_tf_record_patterns']
|
|
309
|
+
)
|
|
310
|
+
val_tf_record_patterns = dsl.OneOf(
|
|
311
|
+
set_tfrecord_args_previous_run_task.outputs['val_tf_record_patterns'],
|
|
312
|
+
set_tfrecord_args_this_run_task.outputs['val_tf_record_patterns']
|
|
313
|
+
)
|
|
314
|
+
test_tf_record_patterns = dsl.OneOf(
|
|
315
|
+
set_tfrecord_args_previous_run_task.outputs['test_tf_record_patterns'],
|
|
316
|
+
set_tfrecord_args_this_run_task.outputs['test_tf_record_patterns']
|
|
317
|
+
)
|
|
318
|
+
trainer_task = TrainOp(
|
|
319
|
+
num_epochs=trainer_num_epochs,
|
|
320
|
+
backcast_length=dataprep_backcast_length,
|
|
321
|
+
forecast_length=dataprep_forecast_length,
|
|
322
|
+
train_end_date=dataprep_train_end_date,
|
|
323
|
+
csv_data_path=dataprep_csv_data_path,
|
|
324
|
+
csv_static_covariates_path=dataprep_csv_static_covariates_path,
|
|
325
|
+
static_covariates_vocab_path=static_covariates_vocab_path,
|
|
326
|
+
train_tf_record_patterns=train_tf_record_patterns,
|
|
327
|
+
val_tf_record_patterns=val_tf_record_patterns,
|
|
328
|
+
test_tf_record_patterns=test_tf_record_patterns,
|
|
329
|
+
n_decomposition_plots=tensorboard_n_decomposition_plots,
|
|
330
|
+
n_val_windows=dataprep_n_val_windows,
|
|
331
|
+
n_test_windows=dataprep_n_test_windows,
|
|
332
|
+
test_set_stride=dataprep_test_set_stride,
|
|
333
|
+
cleaning_activation_regularizer_coeff=trainer_cleaning_activation_regularizer_coeff,
|
|
334
|
+
change_point_activation_regularizer_coeff=trainer_change_point_activation_regularizer_coeff,
|
|
335
|
+
change_point_output_regularizer_coeff=trainer_change_point_output_regularizer_coeff,
|
|
336
|
+
alpha_upper_bound=trainer_trend_alpha_upper_bound,
|
|
337
|
+
beta_upper_bound=trainer_trend_beta_upper_bound,
|
|
338
|
+
phi_lower_bound=trainer_trend_phi_lower_bound,
|
|
339
|
+
b_fixed_val=trainer_trend_b_fixed_val,
|
|
340
|
+
b0_fixed_val=trainer_trend_b0_fixed_val,
|
|
341
|
+
phi_fixed_val=trainer_trend_phi_fixed_val,
|
|
342
|
+
quantiles=create_trainer_args_task.outputs['quantiles'],
|
|
343
|
+
use_static_covariates=create_trainer_args_task.outputs[
|
|
344
|
+
'use_static_covariates'],
|
|
345
|
+
static_covariate_names=create_trainer_args_task.outputs[
|
|
346
|
+
'static_covariate_names'],
|
|
347
|
+
model_blocks=create_trainer_args_task.outputs['model_blocks'],
|
|
348
|
+
freeze_point_forecasts=create_trainer_args_task.outputs[
|
|
349
|
+
'freeze_point_forecasts'],
|
|
350
|
+
machine_type=trainer_machine_type,
|
|
351
|
+
accelerator_type=trainer_accelerator_type,
|
|
352
|
+
docker_region=create_dataprep_args_task.outputs['docker_region'],
|
|
353
|
+
location=location,
|
|
354
|
+
job_id=job_id,
|
|
355
|
+
project=project,
|
|
356
|
+
encryption_spec_key_name=encryption_spec_key_name
|
|
357
|
+
)
|
|
358
|
+
_ = UploadDecompositionPlotsOp(
|
|
359
|
+
project=project,
|
|
360
|
+
location=location,
|
|
361
|
+
tensorboard_id=tensorboard_instance_id,
|
|
362
|
+
display_name=job_id,
|
|
363
|
+
trainer_dir=trainer_task.outputs['trainer_dir'])
|
|
364
|
+
training_artifacts_task = GetTrainingArtifactsOp(
|
|
365
|
+
docker_region=create_dataprep_args_task.outputs['docker_region'],
|
|
366
|
+
trainer_dir=trainer_task.outputs['trainer_dir'])
|
|
367
|
+
model = dsl.importer(
|
|
368
|
+
artifact_uri=training_artifacts_task.outputs['artifact_uri'],
|
|
369
|
+
artifact_class=artifact_types.UnmanagedContainerModel,
|
|
370
|
+
metadata={
|
|
371
|
+
'predictSchemata': {
|
|
372
|
+
'instanceSchemaUri': training_artifacts_task.outputs[
|
|
373
|
+
'instance_schema_uri'],
|
|
374
|
+
'predictionSchemaUri': training_artifacts_task.outputs[
|
|
375
|
+
'prediction_schema_uri'],
|
|
376
|
+
},
|
|
377
|
+
'containerSpec': {
|
|
378
|
+
'imageUri': training_artifacts_task.outputs['image_uri'],
|
|
379
|
+
'healthRoute': '/health',
|
|
380
|
+
'predictRoute': '/predict',
|
|
381
|
+
}
|
|
382
|
+
},
|
|
383
|
+
)
|
|
384
|
+
model.set_display_name('set-model')
|
|
385
|
+
upload_model_task = UploadModelOp(
|
|
386
|
+
project=project,
|
|
387
|
+
location=location,
|
|
388
|
+
display_name=job_id,
|
|
389
|
+
unmanaged_container_model=model.output,
|
|
390
|
+
encryption_spec_key_name=encryption_spec_key_name,
|
|
391
|
+
)
|
|
392
|
+
upload_model_task.set_display_name('upload-model')
|
|
393
|
+
batch_predict_task = batch_predict_job.ModelBatchPredictOp(
|
|
394
|
+
project=project,
|
|
395
|
+
location=location,
|
|
396
|
+
unmanaged_container_model=model.output,
|
|
397
|
+
job_display_name=f'batch-predict-{job_id}',
|
|
398
|
+
instances_format='bigquery',
|
|
399
|
+
predictions_format='bigquery',
|
|
400
|
+
bigquery_source_input_uri=set_test_set_task.outputs['uri'],
|
|
401
|
+
bigquery_destination_output_uri=dataprep_test_set_bigquery_dataset,
|
|
402
|
+
machine_type=dataflow_machine_type,
|
|
403
|
+
starting_replica_count=dataflow_starting_replica_count,
|
|
404
|
+
max_replica_count=dataflow_max_replica_count,
|
|
405
|
+
encryption_spec_key_name=encryption_spec_key_name,
|
|
406
|
+
generate_explanation=False,
|
|
407
|
+
)
|
|
408
|
+
batch_predict_task.set_display_name('run-batch-prediction')
|
|
409
|
+
set_eval_args_task = SetEvalArgsOp(
|
|
410
|
+
big_query_source=batch_predict_task.outputs['bigquery_output_table'],
|
|
411
|
+
quantiles=trainer_quantiles)
|
|
412
|
+
eval_task = EvaluationOp(
|
|
413
|
+
project=project,
|
|
414
|
+
location=location,
|
|
415
|
+
root_dir=test_set_task.outputs['dataprep_dir'],
|
|
416
|
+
target_field_name='HORIZON__x',
|
|
417
|
+
predictions_format='bigquery',
|
|
418
|
+
ground_truth_format='bigquery',
|
|
419
|
+
predictions_bigquery_source=batch_predict_task.outputs[
|
|
420
|
+
'bigquery_output_table'],
|
|
421
|
+
ground_truth_bigquery_source=set_eval_args_task.outputs[
|
|
422
|
+
'big_query_source'],
|
|
423
|
+
ground_truth_gcs_source=[],
|
|
424
|
+
forecasting_type=set_eval_args_task.outputs['forecasting_type'],
|
|
425
|
+
forecasting_quantiles=set_eval_args_task.outputs['quantiles'],
|
|
426
|
+
prediction_score_column=set_eval_args_task.outputs[
|
|
427
|
+
'prediction_score_column'],
|
|
428
|
+
dataflow_service_account=_placeholders.SERVICE_ACCOUNT_PLACEHOLDER,
|
|
429
|
+
dataflow_machine_type=dataflow_machine_type,
|
|
430
|
+
dataflow_max_workers_num=dataflow_max_replica_count,
|
|
431
|
+
dataflow_workers_num=dataflow_starting_replica_count,
|
|
432
|
+
dataflow_disk_size=dataflow_disk_size_gb,
|
|
433
|
+
dataflow_use_public_ips=True,
|
|
434
|
+
encryption_spec_key_name=encryption_spec_key_name,
|
|
435
|
+
)
|
|
436
|
+
model_evaluation_import_component.model_evaluation_import(
|
|
437
|
+
forecasting_metrics=eval_task.outputs['evaluation_metrics'],
|
|
438
|
+
model=upload_model_task.outputs['model'],
|
|
439
|
+
dataset_type='bigquery',
|
|
440
|
+
dataset_path=set_test_set_task.outputs['uri'],
|
|
441
|
+
display_name=job_id,
|
|
442
|
+
problem_type='forecasting',
|
|
443
|
+
)
|
|
@@ -0,0 +1,32 @@
|
|
|
1
|
+
# -*- coding: utf-8 -*-
|
|
2
|
+
# Generated by the protocol buffer compiler. DO NOT EDIT!
|
|
3
|
+
# NO CHECKED-IN PROTOBUF GENCODE
|
|
4
|
+
# Protobuf Python Version: 0.20240502.0
|
|
5
|
+
"""Generated protocol buffer code."""
|
|
6
|
+
from google.protobuf import descriptor as _descriptor
|
|
7
|
+
from google.protobuf import descriptor_pool as _descriptor_pool
|
|
8
|
+
from google.protobuf import symbol_database as _symbol_database
|
|
9
|
+
from google.protobuf.internal import builder as _builder
|
|
10
|
+
# @@protoc_insertion_point(imports)
|
|
11
|
+
|
|
12
|
+
_sym_db = _symbol_database.Default()
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile(
|
|
16
|
+
b'\n\x13task_error.proto\x12\ntask_error""\n\tTaskError\x12\x15\n\rerror_message\x18\x01'
|
|
17
|
+
b' \x01(\tB\x02P\x01\x62\x06proto3'
|
|
18
|
+
)
|
|
19
|
+
|
|
20
|
+
_globals = globals()
|
|
21
|
+
_builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals)
|
|
22
|
+
_builder.BuildTopDescriptorsAndMessages(
|
|
23
|
+
DESCRIPTOR,
|
|
24
|
+
'google_cloud_pipeline_components.google_cloud_pipeline_components.proto.task_error_pb2',
|
|
25
|
+
_globals,
|
|
26
|
+
)
|
|
27
|
+
if not _descriptor._USE_C_DESCRIPTORS:
|
|
28
|
+
_globals['DESCRIPTOR']._loaded_options = None
|
|
29
|
+
_globals['DESCRIPTOR']._serialized_options = b'P\001'
|
|
30
|
+
_globals['_TASKERROR']._serialized_start = 119
|
|
31
|
+
_globals['_TASKERROR']._serialized_end = 153
|
|
32
|
+
# @@protoc_insertion_point(module_scope)
|
|
@@ -1461,7 +1461,7 @@ deploymentSpec:
|
|
|
1461
1461
|
\ = client.create_dataset(dataset=dataset, exists_ok=exists_ok)\n return\
|
|
1462
1462
|
\ collections.namedtuple('Outputs', ['project_id', 'dataset_id'])(\n \
|
|
1463
1463
|
\ ref.project, ref.dataset_id)\n\n"
|
|
1464
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
1464
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
|
|
1465
1465
|
exec-bigquery-delete-dataset-with-prefix:
|
|
1466
1466
|
container:
|
|
1467
1467
|
args:
|
|
@@ -1495,7 +1495,7 @@ deploymentSpec:
|
|
|
1495
1495
|
\ if dataset.dataset_id.startswith(dataset_prefix):\n client.delete_dataset(\n\
|
|
1496
1496
|
\ dataset=dataset.dataset_id,\n delete_contents=delete_contents)\n\
|
|
1497
1497
|
\n"
|
|
1498
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
1498
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
|
|
1499
1499
|
exec-bigquery-query-job:
|
|
1500
1500
|
container:
|
|
1501
1501
|
args:
|
|
@@ -1583,7 +1583,7 @@ deploymentSpec:
|
|
|
1583
1583
|
\ 'datasetId': dataset_id,\n 'tableId': table_id,\n }\n\
|
|
1584
1584
|
\ if write_disposition:\n config['write_disposition'] = write_disposition\n\
|
|
1585
1585
|
\ return config\n\n"
|
|
1586
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
1586
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
|
|
1587
1587
|
exec-build-job-configuration-query-2:
|
|
1588
1588
|
container:
|
|
1589
1589
|
args:
|
|
@@ -1617,7 +1617,7 @@ deploymentSpec:
|
|
|
1617
1617
|
\ 'datasetId': dataset_id,\n 'tableId': table_id,\n }\n\
|
|
1618
1618
|
\ if write_disposition:\n config['write_disposition'] = write_disposition\n\
|
|
1619
1619
|
\ return config\n\n"
|
|
1620
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
1620
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
|
|
1621
1621
|
exec-get-first-valid:
|
|
1622
1622
|
container:
|
|
1623
1623
|
args:
|
|
@@ -1641,7 +1641,7 @@ deploymentSpec:
|
|
|
1641
1641
|
\ import json\n # pylint: enable=g-import-not-at-top,import-outside-toplevel,redefined-outer-name,reimported\n\
|
|
1642
1642
|
\n for value in json.loads(values):\n if value:\n return value\n\
|
|
1643
1643
|
\ raise ValueError('No valid values.')\n\n"
|
|
1644
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
1644
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
|
|
1645
1645
|
exec-get-table-location:
|
|
1646
1646
|
container:
|
|
1647
1647
|
args:
|
|
@@ -1677,7 +1677,7 @@ deploymentSpec:
|
|
|
1677
1677
|
\ if table.startswith('bq://'):\n table = table[len('bq://'):]\n elif\
|
|
1678
1678
|
\ table.startswith('bigquery://'):\n table = table[len('bigquery://'):]\n\
|
|
1679
1679
|
\ return client.get_table(table).location\n\n"
|
|
1680
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
1680
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
|
|
1681
1681
|
exec-get-table-location-2:
|
|
1682
1682
|
container:
|
|
1683
1683
|
args:
|
|
@@ -1713,7 +1713,7 @@ deploymentSpec:
|
|
|
1713
1713
|
\ if table.startswith('bq://'):\n table = table[len('bq://'):]\n elif\
|
|
1714
1714
|
\ table.startswith('bigquery://'):\n table = table[len('bigquery://'):]\n\
|
|
1715
1715
|
\ return client.get_table(table).location\n\n"
|
|
1716
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
1716
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
|
|
1717
1717
|
exec-load-table-from-uri:
|
|
1718
1718
|
container:
|
|
1719
1719
|
args:
|
|
@@ -1754,7 +1754,7 @@ deploymentSpec:
|
|
|
1754
1754
|
\ source_format=source_format)\n client.load_table_from_uri(\n source_uris=csv_list,\n\
|
|
1755
1755
|
\ destination=destination,\n project=project,\n location=location,\n\
|
|
1756
1756
|
\ job_config=job_config).result()\n return destination\n\n"
|
|
1757
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
1757
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
|
|
1758
1758
|
exec-make-vertex-model-artifact:
|
|
1759
1759
|
container:
|
|
1760
1760
|
args:
|
|
@@ -1778,7 +1778,7 @@ deploymentSpec:
|
|
|
1778
1778
|
Creates a google.VertexModel artifact.\"\"\"\n vertex_model.metadata =\
|
|
1779
1779
|
\ {'resourceName': model_resource_name}\n vertex_model.uri = (f'https://{location}-aiplatform.googleapis.com'\n\
|
|
1780
1780
|
\ f'/v1/{model_resource_name}')\n\n"
|
|
1781
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
1781
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
|
|
1782
1782
|
exec-maybe-replace-with-default:
|
|
1783
1783
|
container:
|
|
1784
1784
|
args:
|
|
@@ -1800,7 +1800,7 @@ deploymentSpec:
|
|
|
1800
1800
|
\ *\n\ndef maybe_replace_with_default(value: str, default: str = '') ->\
|
|
1801
1801
|
\ str:\n \"\"\"Replaces string with another value if it is a dash.\"\"\"\
|
|
1802
1802
|
\n return default if not value else value\n\n"
|
|
1803
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
1803
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
|
|
1804
1804
|
exec-model-batch-predict:
|
|
1805
1805
|
container:
|
|
1806
1806
|
args:
|
|
@@ -1879,7 +1879,7 @@ deploymentSpec:
|
|
|
1879
1879
|
\ if use_bq_prefix:\n bq_uri = 'bq://' + bq_uri\n outputs.append(bq_uri)\n\
|
|
1880
1880
|
\ return collections.namedtuple(\n 'Outputs',\n ['project_id',\
|
|
1881
1881
|
\ 'dataset_id', 'table_id', 'uri'],\n )(*outputs)\n\n"
|
|
1882
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
1882
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
|
|
1883
1883
|
exec-table-to-uri-2:
|
|
1884
1884
|
container:
|
|
1885
1885
|
args:
|
|
@@ -1909,7 +1909,7 @@ deploymentSpec:
|
|
|
1909
1909
|
\ if use_bq_prefix:\n bq_uri = 'bq://' + bq_uri\n outputs.append(bq_uri)\n\
|
|
1910
1910
|
\ return collections.namedtuple(\n 'Outputs',\n ['project_id',\
|
|
1911
1911
|
\ 'dataset_id', 'table_id', 'uri'],\n )(*outputs)\n\n"
|
|
1912
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
1912
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
|
|
1913
1913
|
exec-validate-inputs:
|
|
1914
1914
|
container:
|
|
1915
1915
|
args:
|
|
@@ -2005,7 +2005,7 @@ deploymentSpec:
|
|
|
2005
2005
|
\ raise ValueError(\n 'Granularity unit should be one of the\
|
|
2006
2006
|
\ following: '\n f'{valid_data_granularity_units}, got: {data_granularity_unit}.')\n\
|
|
2007
2007
|
\n"
|
|
2008
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
2008
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
|
|
2009
2009
|
pipelineInfo:
|
|
2010
2010
|
description: Creates a batch prediction using a Prophet model.
|
|
2011
2011
|
name: prophet-predict
|
|
@@ -180,6 +180,16 @@ def prophet_trainer(
|
|
|
180
180
|
'--dataflow_use_public_ips=',
|
|
181
181
|
dataflow_use_public_ips,
|
|
182
182
|
'", "',
|
|
183
|
+
'--dataflow_staging_dir=',
|
|
184
|
+
root_dir,
|
|
185
|
+
(
|
|
186
|
+
f'/{dsl.PIPELINE_JOB_ID_PLACEHOLDER}/{dsl.PIPELINE_TASK_ID_PLACEHOLDER}/dataflow_staging", "'
|
|
187
|
+
),
|
|
188
|
+
'--dataflow_tmp_dir=',
|
|
189
|
+
root_dir,
|
|
190
|
+
(
|
|
191
|
+
f'/{dsl.PIPELINE_JOB_ID_PLACEHOLDER}/{dsl.PIPELINE_TASK_ID_PLACEHOLDER}/dataflow_tmp", "'
|
|
192
|
+
),
|
|
183
193
|
'--gcp_resources_path=',
|
|
184
194
|
gcp_resources,
|
|
185
195
|
'", "',
|
|
@@ -2418,7 +2418,10 @@ deploymentSpec:
|
|
|
2418
2418
|
"\", \"", "--dataflow_service_account=", "{{$.inputs.parameters[''dataflow_service_account'']}}",
|
|
2419
2419
|
"\", \"", "--dataflow_subnetwork=", "{{$.inputs.parameters[''dataflow_subnetwork'']}}",
|
|
2420
2420
|
"\", \"", "--dataflow_use_public_ips=", "{{$.inputs.parameters[''dataflow_use_public_ips'']}}",
|
|
2421
|
-
"\", \"", "--
|
|
2421
|
+
"\", \"", "--dataflow_staging_dir=", "{{$.inputs.parameters[''root_dir'']}}",
|
|
2422
|
+
"/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/dataflow_staging\", \"",
|
|
2423
|
+
"--dataflow_tmp_dir=", "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/dataflow_tmp\",
|
|
2424
|
+
\"", "--gcp_resources_path=", "{{$.outputs.parameters[''gcp_resources''].output_file}}",
|
|
2422
2425
|
"\", \"", "--executor_input={{$.json_escape[1]}}\"]}}]}}"]}'
|
|
2423
2426
|
command:
|
|
2424
2427
|
- python3
|
|
@@ -1,4 +1,4 @@
|
|
|
1
|
-
# Copyright
|
|
1
|
+
# Copyright 2024 The Kubeflow Authors. All Rights Reserved.
|
|
2
2
|
#
|
|
3
3
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
4
|
# you may not use this file except in compliance with the License.
|
|
@@ -21,7 +21,7 @@ from google_cloud_pipeline_components._implementation.model_evaluation import Ev
|
|
|
21
21
|
from google_cloud_pipeline_components._implementation.model_evaluation import EvaluationDatasetPreprocessorOp as DatasetPreprocessorOp
|
|
22
22
|
from google_cloud_pipeline_components._implementation.model_evaluation import FeatureExtractorOp
|
|
23
23
|
from google_cloud_pipeline_components._implementation.model_evaluation import ModelImportEvaluatedAnnotationOp
|
|
24
|
-
from google_cloud_pipeline_components.
|
|
24
|
+
from google_cloud_pipeline_components.preview.model_evaluation.model_evaluation_import_component import model_evaluation_import as ModelImportEvaluationOp
|
|
25
25
|
from google_cloud_pipeline_components.v1.batch_predict_job import ModelBatchPredictOp
|
|
26
26
|
from google_cloud_pipeline_components.v1.dataset import GetVertexDatasetOp
|
|
27
27
|
from google_cloud_pipeline_components.v1.model_evaluation.classification_component import model_evaluation_classification as ModelEvaluationClassificationOp
|
|
@@ -224,14 +224,12 @@ def vision_model_error_analysis_pipeline( # pylint: disable=dangerous-default-v
|
|
|
224
224
|
)
|
|
225
225
|
|
|
226
226
|
with dsl.Condition(
|
|
227
|
-
(
|
|
228
|
-
|
|
229
|
-
|
|
230
|
-
|
|
231
|
-
|
|
232
|
-
|
|
233
|
-
)
|
|
234
|
-
),
|
|
227
|
+
((
|
|
228
|
+
test_dataset_resource_name == ''
|
|
229
|
+
and training_dataset_resource_name == ''
|
|
230
|
+
and test_dataset_annotation_set_name == ''
|
|
231
|
+
and training_dataset_annotation_set_name == ''
|
|
232
|
+
)),
|
|
235
233
|
name='CustomDataset',
|
|
236
234
|
):
|
|
237
235
|
dataset_preprocessor_task = DatasetPreprocessorOp(
|