google-cloud-pipeline-components 2.13.1__py3-none-any.whl → 2.14.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of google-cloud-pipeline-components might be problematic. Click here for more details.
- google_cloud_pipeline_components/__init__.py +5 -6
- google_cloud_pipeline_components/_implementation/llm/deployment_graph.py +12 -34
- google_cloud_pipeline_components/_implementation/llm/env.py +1 -1
- google_cloud_pipeline_components/_implementation/llm/function_based.py +14 -48
- google_cloud_pipeline_components/_implementation/llm/generated/refined_image_versions.py +1 -1
- google_cloud_pipeline_components/_implementation/llm/infer_preprocessor.py +109 -0
- google_cloud_pipeline_components/_implementation/llm/online_evaluation_pairwise.py +8 -0
- google_cloud_pipeline_components/_implementation/llm/reinforcement_learning_graph.py +27 -36
- google_cloud_pipeline_components/_implementation/llm/reward_model_graph.py +31 -47
- google_cloud_pipeline_components/_implementation/llm/rlhf_preprocessor.py +84 -0
- google_cloud_pipeline_components/_implementation/llm/validate_pipeline.py +11 -0
- google_cloud_pipeline_components/_implementation/model_evaluation/__init__.py +0 -12
- google_cloud_pipeline_components/_implementation/model_evaluation/llm_embedding/evaluation_llm_embedding_pipeline.py +2 -1
- google_cloud_pipeline_components/_placeholders.py +30 -1
- google_cloud_pipeline_components/preview/automl/forecasting/forecasting_ensemble.py +1 -1
- google_cloud_pipeline_components/preview/automl/forecasting/forecasting_stage_1_tuner.py +2 -2
- google_cloud_pipeline_components/preview/automl/forecasting/forecasting_stage_2_tuner.py +2 -2
- google_cloud_pipeline_components/preview/automl/forecasting/learn_to_learn_forecasting_pipeline.yaml +34 -34
- google_cloud_pipeline_components/preview/automl/forecasting/sequence_to_sequence_forecasting_pipeline.yaml +34 -34
- google_cloud_pipeline_components/preview/automl/forecasting/temporal_fusion_transformer_forecasting_pipeline.yaml +34 -34
- google_cloud_pipeline_components/preview/automl/forecasting/time_series_dense_encoder_forecasting_pipeline.yaml +34 -34
- google_cloud_pipeline_components/preview/automl/tabular/auto_feature_engineering.py +1 -1
- google_cloud_pipeline_components/preview/automl/tabular/automl_tabular_feature_selection_pipeline.yaml +39 -39
- google_cloud_pipeline_components/preview/automl/tabular/automl_tabular_v2_pipeline.yaml +41 -41
- google_cloud_pipeline_components/preview/automl/tabular/distillation_stage_feature_transform_engine.py +2 -2
- google_cloud_pipeline_components/preview/automl/tabular/feature_selection.py +2 -2
- google_cloud_pipeline_components/preview/automl/tabular/feature_selection_pipeline.yaml +4 -4
- google_cloud_pipeline_components/preview/automl/tabular/feature_transform_engine.py +3 -3
- google_cloud_pipeline_components/preview/automl/tabular/tabnet_hyperparameter_tuning_job.py +2 -2
- google_cloud_pipeline_components/preview/automl/tabular/tabnet_hyperparameter_tuning_job_pipeline.yaml +17 -17
- google_cloud_pipeline_components/preview/automl/tabular/tabnet_trainer.py +2 -2
- google_cloud_pipeline_components/preview/automl/tabular/tabnet_trainer_pipeline.yaml +15 -15
- google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_hyperparameter_tuning_job.py +2 -2
- google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_hyperparameter_tuning_job_pipeline.yaml +16 -16
- google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_trainer.py +2 -2
- google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_trainer_pipeline.yaml +15 -15
- google_cloud_pipeline_components/preview/automl/tabular/xgboost_hyperparameter_tuning_job_pipeline.yaml +14 -14
- google_cloud_pipeline_components/preview/automl/tabular/xgboost_trainer_pipeline.yaml +13 -13
- google_cloud_pipeline_components/preview/automl/vision/data_converter.py +3 -1
- google_cloud_pipeline_components/preview/custom_job/component.py +2 -2
- google_cloud_pipeline_components/preview/custom_job/utils.py +3 -2
- google_cloud_pipeline_components/preview/llm/infer/component.py +22 -25
- google_cloud_pipeline_components/preview/llm/rlhf/component.py +72 -10
- google_cloud_pipeline_components/preview/model_evaluation/__init__.py +5 -2
- google_cloud_pipeline_components/preview/model_evaluation/model_evaluation_import_component.py +209 -0
- google_cloud_pipeline_components/proto/task_error_pb2.py +33 -0
- google_cloud_pipeline_components/proto/template_metadata_pb2.py +22 -15
- google_cloud_pipeline_components/v1/automl/forecasting/bqml_arima_predict_pipeline.yaml +10 -10
- google_cloud_pipeline_components/v1/automl/forecasting/bqml_arima_train_pipeline.yaml +31 -31
- google_cloud_pipeline_components/v1/automl/forecasting/prophet_predict_pipeline.yaml +13 -13
- google_cloud_pipeline_components/v1/automl/forecasting/prophet_trainer.py +13 -3
- google_cloud_pipeline_components/v1/automl/forecasting/prophet_trainer_pipeline.yaml +18 -15
- google_cloud_pipeline_components/v1/automl/tabular/automl_tabular_pipeline.yaml +37 -37
- google_cloud_pipeline_components/v1/automl/tabular/cv_trainer.py +2 -2
- google_cloud_pipeline_components/v1/automl/tabular/ensemble.py +2 -2
- google_cloud_pipeline_components/v1/automl/tabular/finalizer.py +1 -1
- google_cloud_pipeline_components/v1/automl/tabular/infra_validator.py +1 -1
- google_cloud_pipeline_components/v1/automl/tabular/split_materialized_data.py +1 -1
- google_cloud_pipeline_components/v1/automl/tabular/stage_1_tuner.py +2 -2
- google_cloud_pipeline_components/v1/automl/tabular/stats_and_example_gen.py +2 -2
- google_cloud_pipeline_components/v1/automl/tabular/training_configurator_and_validator.py +1 -1
- google_cloud_pipeline_components/v1/automl/tabular/transform.py +2 -2
- google_cloud_pipeline_components/v1/model_evaluation/__init__.py +3 -1
- google_cloud_pipeline_components/v1/model_evaluation/classification_component.py +2 -2
- google_cloud_pipeline_components/v1/model_evaluation/error_analysis_pipeline.py +8 -10
- google_cloud_pipeline_components/v1/model_evaluation/evaluated_annotation_pipeline.py +2 -2
- google_cloud_pipeline_components/v1/model_evaluation/evaluation_automl_tabular_feature_attribution_pipeline.py +2 -2
- google_cloud_pipeline_components/v1/model_evaluation/evaluation_automl_tabular_pipeline.py +2 -2
- google_cloud_pipeline_components/v1/model_evaluation/evaluation_automl_unstructure_data_pipeline.py +2 -2
- google_cloud_pipeline_components/v1/model_evaluation/evaluation_feature_attribution_pipeline.py +2 -2
- google_cloud_pipeline_components/v1/model_evaluation/evaluation_llm_classification_pipeline.py +4 -2
- google_cloud_pipeline_components/v1/model_evaluation/evaluation_llm_text_generation_pipeline.py +4 -2
- google_cloud_pipeline_components/{preview → v1}/model_evaluation/model_based_llm_evaluation/__init__.py +2 -2
- google_cloud_pipeline_components/{preview → v1}/model_evaluation/model_based_llm_evaluation/autosxs/autosxs_pipeline.py +1 -0
- google_cloud_pipeline_components/version.py +1 -1
- {google_cloud_pipeline_components-2.13.1.dist-info → google_cloud_pipeline_components-2.14.1.dist-info}/METADATA +18 -19
- {google_cloud_pipeline_components-2.13.1.dist-info → google_cloud_pipeline_components-2.14.1.dist-info}/RECORD +81 -79
- {google_cloud_pipeline_components-2.13.1.dist-info → google_cloud_pipeline_components-2.14.1.dist-info}/WHEEL +1 -1
- google_cloud_pipeline_components/proto/preflight_validations_pb2.py +0 -47
- /google_cloud_pipeline_components/{preview → v1}/model_evaluation/model_based_llm_evaluation/autosxs/__init__.py +0 -0
- {google_cloud_pipeline_components-2.13.1.dist-info → google_cloud_pipeline_components-2.14.1.dist-info}/LICENSE +0 -0
- {google_cloud_pipeline_components-2.13.1.dist-info → google_cloud_pipeline_components-2.14.1.dist-info}/top_level.txt +0 -0
google_cloud_pipeline_components/preview/automl/forecasting/learn_to_learn_forecasting_pipeline.yaml
CHANGED
|
@@ -5573,7 +5573,7 @@ deploymentSpec:
|
|
|
5573
5573
|
- '{"display_name": "automl-forecasting-ensemble-{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}",
|
|
5574
5574
|
"encryption_spec": {"kms_key_name": "{{$.inputs.parameters[''encryption_spec_key_name'']}}"},
|
|
5575
5575
|
"job_spec": {"worker_pool_specs": [{"replica_count": 1, "machine_spec":
|
|
5576
|
-
{"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
5576
|
+
{"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240419_0625",
|
|
5577
5577
|
"args": ["forecasting_mp_ensemble", "--transform_output_path={{$.inputs.artifacts[''transform_output''].uri}}",
|
|
5578
5578
|
"--error_file_path={{$.inputs.parameters[''root_dir'']}}/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb",
|
|
5579
5579
|
"--metadata_path={{$.inputs.artifacts[''metadata''].uri}}", "--tuning_result_input_path={{$.inputs.artifacts[''tuning_result_input''].uri}}",
|
|
@@ -5607,7 +5607,7 @@ deploymentSpec:
|
|
|
5607
5607
|
- '{"display_name": "automl-forecasting-ensemble-{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}",
|
|
5608
5608
|
"encryption_spec": {"kms_key_name": "{{$.inputs.parameters[''encryption_spec_key_name'']}}"},
|
|
5609
5609
|
"job_spec": {"worker_pool_specs": [{"replica_count": 1, "machine_spec":
|
|
5610
|
-
{"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
5610
|
+
{"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240419_0625",
|
|
5611
5611
|
"args": ["forecasting_mp_ensemble", "--transform_output_path={{$.inputs.artifacts[''transform_output''].uri}}",
|
|
5612
5612
|
"--error_file_path={{$.inputs.parameters[''root_dir'']}}/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb",
|
|
5613
5613
|
"--metadata_path={{$.inputs.artifacts[''metadata''].uri}}", "--tuning_result_input_path={{$.inputs.artifacts[''tuning_result_input''].uri}}",
|
|
@@ -5642,11 +5642,11 @@ deploymentSpec:
|
|
|
5642
5642
|
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
|
|
5643
5643
|
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
|
|
5644
5644
|
{\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
|
|
5645
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
5645
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240419_0625",
|
|
5646
5646
|
"\", \"args\": [\"forecasting_mp_l2l_stage_1_tuner", "\", \"--region=",
|
|
5647
5647
|
"{{$.inputs.parameters[''location'']}}", "\", \"--transform_output_path=",
|
|
5648
5648
|
"{{$.inputs.artifacts[''transform_output''].uri}}", "\", \"--training_docker_uri=",
|
|
5649
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
5649
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240419_0625",
|
|
5650
5650
|
"\", \"--reduce_search_space_mode=", "{{$.inputs.parameters[''reduce_search_space_mode'']}}",
|
|
5651
5651
|
"\", \"--component_id={{$.pipeline_task_uuid}}", "\", \"--training_base_dir=",
|
|
5652
5652
|
"{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/train",
|
|
@@ -5685,11 +5685,11 @@ deploymentSpec:
|
|
|
5685
5685
|
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
|
|
5686
5686
|
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
|
|
5687
5687
|
{\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
|
|
5688
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
5688
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240419_0625",
|
|
5689
5689
|
"\", \"args\": [\"forecasting_mp_l2l_stage_2_tuner", "\", \"--region=",
|
|
5690
5690
|
"{{$.inputs.parameters[''location'']}}", "\", \"--transform_output_path=",
|
|
5691
5691
|
"{{$.inputs.artifacts[''transform_output''].uri}}", "\", \"--training_docker_uri=",
|
|
5692
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
5692
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240419_0625",
|
|
5693
5693
|
"\", \"--component_id={{$.pipeline_task_uuid}}", "\", \"--training_base_dir=",
|
|
5694
5694
|
"{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/train",
|
|
5695
5695
|
"\", \"--num_parallel_trial=", "{{$.inputs.parameters[''num_parallel_trials'']}}",
|
|
@@ -5728,7 +5728,7 @@ deploymentSpec:
|
|
|
5728
5728
|
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
|
|
5729
5729
|
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
|
|
5730
5730
|
{\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
|
|
5731
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:
|
|
5731
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240419_0625", "\",
|
|
5732
5732
|
\"args\": [\"cancel_l2l_tuner\", \"--error_file_path=", "{{$.inputs.parameters[''root_dir'']}}",
|
|
5733
5733
|
"/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb\", \"--cleanup_lro_job_infos=",
|
|
5734
5734
|
"{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/lro\"]}}]}}"]}'
|
|
@@ -5793,7 +5793,7 @@ deploymentSpec:
|
|
|
5793
5793
|
\ 'stage_2_single_run_max_secs',\n ],\n )(\n stage_1_deadline_hours,\n\
|
|
5794
5794
|
\ stage_1_single_run_max_secs,\n stage_2_deadline_hours,\n \
|
|
5795
5795
|
\ stage_2_single_run_max_secs,\n )\n\n"
|
|
5796
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
5796
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
|
|
5797
5797
|
exec-calculate-training-parameters-2:
|
|
5798
5798
|
container:
|
|
5799
5799
|
args:
|
|
@@ -5849,7 +5849,7 @@ deploymentSpec:
|
|
|
5849
5849
|
\ 'stage_2_single_run_max_secs',\n ],\n )(\n stage_1_deadline_hours,\n\
|
|
5850
5850
|
\ stage_1_single_run_max_secs,\n stage_2_deadline_hours,\n \
|
|
5851
5851
|
\ stage_2_single_run_max_secs,\n )\n\n"
|
|
5852
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
5852
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
|
|
5853
5853
|
exec-feature-attribution:
|
|
5854
5854
|
container:
|
|
5855
5855
|
args:
|
|
@@ -6040,8 +6040,8 @@ deploymentSpec:
|
|
|
6040
6040
|
"/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/dataflow_tmp"]}'
|
|
6041
6041
|
- '{"Concat": ["--dataflow_max_num_workers=", "{{$.inputs.parameters[''dataflow_max_num_workers'']}}"]}'
|
|
6042
6042
|
- '{"Concat": ["--dataflow_machine_type=", "{{$.inputs.parameters[''dataflow_machine_type'']}}"]}'
|
|
6043
|
-
- --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:
|
|
6044
|
-
- --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:
|
|
6043
|
+
- --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240419_0625
|
|
6044
|
+
- --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240419_0625
|
|
6045
6045
|
- '{"Concat": ["--dataflow_disk_size_gb=", "{{$.inputs.parameters[''dataflow_disk_size_gb'']}}"]}'
|
|
6046
6046
|
- '{"Concat": ["--dataflow_subnetwork_fully_qualified=", "{{$.inputs.parameters[''dataflow_subnetwork'']}}"]}'
|
|
6047
6047
|
- '{"Concat": ["--dataflow_use_public_ips=", "{{$.inputs.parameters[''dataflow_use_public_ips'']}}"]}'
|
|
@@ -6058,7 +6058,7 @@ deploymentSpec:
|
|
|
6058
6058
|
- '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
|
|
6059
6059
|
["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
|
|
6060
6060
|
- '{"Concat": ["--encryption_spec_key_name=", "{{$.inputs.parameters[''encryption_spec_key_name'']}}"]}'
|
|
6061
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:
|
|
6061
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240419_0625
|
|
6062
6062
|
resources:
|
|
6063
6063
|
cpuLimit: 8.0
|
|
6064
6064
|
memoryLimit: 30.0
|
|
@@ -6089,7 +6089,7 @@ deploymentSpec:
|
|
|
6089
6089
|
\ = 'point'\n else:\n forecasting_type = 'quantile'\n\n return collections.namedtuple(\n\
|
|
6090
6090
|
\ 'Outputs',\n (\n 'forecasting_type',\n 'quantiles',\n\
|
|
6091
6091
|
\ ),\n )(forecasting_type, quantiles)\n\n"
|
|
6092
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6092
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
|
|
6093
6093
|
exec-finalize-eval-quantile-parameters-2:
|
|
6094
6094
|
container:
|
|
6095
6095
|
args:
|
|
@@ -6117,7 +6117,7 @@ deploymentSpec:
|
|
|
6117
6117
|
\ = 'point'\n else:\n forecasting_type = 'quantile'\n\n return collections.namedtuple(\n\
|
|
6118
6118
|
\ 'Outputs',\n (\n 'forecasting_type',\n 'quantiles',\n\
|
|
6119
6119
|
\ ),\n )(forecasting_type, quantiles)\n\n"
|
|
6120
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6120
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
|
|
6121
6121
|
exec-get-or-create-model-description:
|
|
6122
6122
|
container:
|
|
6123
6123
|
args:
|
|
@@ -6146,7 +6146,7 @@ deploymentSpec:
|
|
|
6146
6146
|
\ return f'{original_description} From: {pipeline_url}'\n\n # The pipeline\
|
|
6147
6147
|
\ url contains KFP placeholders injected at runtime.\n return f'Vertex\
|
|
6148
6148
|
\ forecasting model trained in the pipeline: {pipeline_url}'\n\n"
|
|
6149
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6149
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
|
|
6150
6150
|
exec-get-or-create-model-description-2:
|
|
6151
6151
|
container:
|
|
6152
6152
|
args:
|
|
@@ -6175,7 +6175,7 @@ deploymentSpec:
|
|
|
6175
6175
|
\ return f'{original_description} From: {pipeline_url}'\n\n # The pipeline\
|
|
6176
6176
|
\ url contains KFP placeholders injected at runtime.\n return f'Vertex\
|
|
6177
6177
|
\ forecasting model trained in the pipeline: {pipeline_url}'\n\n"
|
|
6178
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6178
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
|
|
6179
6179
|
exec-get-prediction-image-uri:
|
|
6180
6180
|
container:
|
|
6181
6181
|
args:
|
|
@@ -6198,14 +6198,14 @@ deploymentSpec:
|
|
|
6198
6198
|
Returns the prediction image corresponding to the given model type.\"\"\"\
|
|
6199
6199
|
\n # Keys come from AutoMlTimeSeriesForecastingTrainSpec.\n # The URIs\
|
|
6200
6200
|
\ must be hardcoded without any breaks in the code so string\n # replacement\
|
|
6201
|
-
\ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:
|
|
6202
|
-
\ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:
|
|
6203
|
-
\ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:
|
|
6204
|
-
\ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:
|
|
6201
|
+
\ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20240419_0625',\n\
|
|
6202
|
+
\ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:20240419_0625',\n\
|
|
6203
|
+
\ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:20240419_0625',\n\
|
|
6204
|
+
\ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:20240419_0625',\n\
|
|
6205
6205
|
\ }\n if model_type not in images:\n raise ValueError(\n f'Invalid\
|
|
6206
6206
|
\ forecasting model type: {model_type}. Valid options are: '\n f'{images.keys()}.'\n\
|
|
6207
6207
|
\ )\n return images[model_type]\n\n"
|
|
6208
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6208
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
|
|
6209
6209
|
exec-get-prediction-image-uri-2:
|
|
6210
6210
|
container:
|
|
6211
6211
|
args:
|
|
@@ -6228,14 +6228,14 @@ deploymentSpec:
|
|
|
6228
6228
|
Returns the prediction image corresponding to the given model type.\"\"\"\
|
|
6229
6229
|
\n # Keys come from AutoMlTimeSeriesForecastingTrainSpec.\n # The URIs\
|
|
6230
6230
|
\ must be hardcoded without any breaks in the code so string\n # replacement\
|
|
6231
|
-
\ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:
|
|
6232
|
-
\ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:
|
|
6233
|
-
\ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:
|
|
6234
|
-
\ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:
|
|
6231
|
+
\ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20240419_0625',\n\
|
|
6232
|
+
\ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:20240419_0625',\n\
|
|
6233
|
+
\ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:20240419_0625',\n\
|
|
6234
|
+
\ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:20240419_0625',\n\
|
|
6235
6235
|
\ }\n if model_type not in images:\n raise ValueError(\n f'Invalid\
|
|
6236
6236
|
\ forecasting model type: {model_type}. Valid options are: '\n f'{images.keys()}.'\n\
|
|
6237
6237
|
\ )\n return images[model_type]\n\n"
|
|
6238
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6238
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
|
|
6239
6239
|
exec-get-predictions-column:
|
|
6240
6240
|
container:
|
|
6241
6241
|
args:
|
|
@@ -6258,7 +6258,7 @@ deploymentSpec:
|
|
|
6258
6258
|
\ str) -> str:\n \"\"\"Generates the BP output's target column name.\"\"\
|
|
6259
6259
|
\"\n if forecasting_type == 'quantile':\n return f'predicted_{target_column}.quantile_predictions'\n\
|
|
6260
6260
|
\ return f'predicted_{target_column}.value'\n\n"
|
|
6261
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6261
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
|
|
6262
6262
|
exec-get-predictions-column-2:
|
|
6263
6263
|
container:
|
|
6264
6264
|
args:
|
|
@@ -6281,7 +6281,7 @@ deploymentSpec:
|
|
|
6281
6281
|
\ str) -> str:\n \"\"\"Generates the BP output's target column name.\"\"\
|
|
6282
6282
|
\"\n if forecasting_type == 'quantile':\n return f'predicted_{target_column}.quantile_predictions'\n\
|
|
6283
6283
|
\ return f'predicted_{target_column}.value'\n\n"
|
|
6284
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6284
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
|
|
6285
6285
|
exec-importer:
|
|
6286
6286
|
importer:
|
|
6287
6287
|
artifactUri:
|
|
@@ -6813,7 +6813,7 @@ deploymentSpec:
|
|
|
6813
6813
|
\ 'model_display_name',\n 'transformations',\n ],\n\
|
|
6814
6814
|
\ )(\n data_source_csv_filenames,\n data_source_bigquery_table_path,\n\
|
|
6815
6815
|
\ model_display_name,\n transformations,\n )\n\n"
|
|
6816
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6816
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
|
|
6817
6817
|
exec-split-materialized-data:
|
|
6818
6818
|
container:
|
|
6819
6819
|
args:
|
|
@@ -6859,7 +6859,7 @@ deploymentSpec:
|
|
|
6859
6859
|
\ 'w') as f:\n f.write(file_patterns[0])\n\n with tf.io.gfile.GFile(materialized_eval_split,\
|
|
6860
6860
|
\ 'w') as f:\n f.write(file_patterns[1])\n\n with tf.io.gfile.GFile(materialized_test_split,\
|
|
6861
6861
|
\ 'w') as f:\n f.write(file_patterns[2])\n\n"
|
|
6862
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:
|
|
6862
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240419_0625
|
|
6863
6863
|
exec-string-not-empty:
|
|
6864
6864
|
container:
|
|
6865
6865
|
args:
|
|
@@ -6883,7 +6883,7 @@ deploymentSpec:
|
|
|
6883
6883
|
\n Returns:\n Boolean value. -> 'true' if empty, 'false' if not empty.\
|
|
6884
6884
|
\ We need to use str\n instead of bool due to a limitation in KFP compiler.\n\
|
|
6885
6885
|
\ \"\"\"\n return 'true' if value else 'false'\n\n"
|
|
6886
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6886
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
|
|
6887
6887
|
exec-table-to-uri:
|
|
6888
6888
|
container:
|
|
6889
6889
|
args:
|
|
@@ -6913,7 +6913,7 @@ deploymentSpec:
|
|
|
6913
6913
|
\ if use_bq_prefix:\n bq_uri = 'bq://' + bq_uri\n outputs.append(bq_uri)\n\
|
|
6914
6914
|
\ return collections.namedtuple(\n 'Outputs',\n ['project_id',\
|
|
6915
6915
|
\ 'dataset_id', 'table_id', 'uri'],\n )(*outputs)\n\n"
|
|
6916
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6916
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
|
|
6917
6917
|
exec-table-to-uri-2:
|
|
6918
6918
|
container:
|
|
6919
6919
|
args:
|
|
@@ -6943,7 +6943,7 @@ deploymentSpec:
|
|
|
6943
6943
|
\ if use_bq_prefix:\n bq_uri = 'bq://' + bq_uri\n outputs.append(bq_uri)\n\
|
|
6944
6944
|
\ return collections.namedtuple(\n 'Outputs',\n ['project_id',\
|
|
6945
6945
|
\ 'dataset_id', 'table_id', 'uri'],\n )(*outputs)\n\n"
|
|
6946
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6946
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
|
|
6947
6947
|
exec-training-configurator-and-validator:
|
|
6948
6948
|
container:
|
|
6949
6949
|
args:
|
|
@@ -6988,7 +6988,7 @@ deploymentSpec:
|
|
|
6988
6988
|
["--temporal_total_weight=", "{{$.inputs.parameters[''temporal_total_weight'']}}"]}}}'
|
|
6989
6989
|
- '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
|
|
6990
6990
|
["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
|
|
6991
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:
|
|
6991
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240419_0625
|
|
6992
6992
|
pipelineInfo:
|
|
6993
6993
|
description: The AutoML Forecasting pipeline.
|
|
6994
6994
|
name: learn-to-learn-forecasting
|
|
@@ -5555,7 +5555,7 @@ deploymentSpec:
|
|
|
5555
5555
|
- '{"display_name": "automl-forecasting-ensemble-{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}",
|
|
5556
5556
|
"encryption_spec": {"kms_key_name": "{{$.inputs.parameters[''encryption_spec_key_name'']}}"},
|
|
5557
5557
|
"job_spec": {"worker_pool_specs": [{"replica_count": 1, "machine_spec":
|
|
5558
|
-
{"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
5558
|
+
{"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240419_0625",
|
|
5559
5559
|
"args": ["forecasting_mp_ensemble", "--transform_output_path={{$.inputs.artifacts[''transform_output''].uri}}",
|
|
5560
5560
|
"--error_file_path={{$.inputs.parameters[''root_dir'']}}/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb",
|
|
5561
5561
|
"--metadata_path={{$.inputs.artifacts[''metadata''].uri}}", "--tuning_result_input_path={{$.inputs.artifacts[''tuning_result_input''].uri}}",
|
|
@@ -5589,7 +5589,7 @@ deploymentSpec:
|
|
|
5589
5589
|
- '{"display_name": "automl-forecasting-ensemble-{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}",
|
|
5590
5590
|
"encryption_spec": {"kms_key_name": "{{$.inputs.parameters[''encryption_spec_key_name'']}}"},
|
|
5591
5591
|
"job_spec": {"worker_pool_specs": [{"replica_count": 1, "machine_spec":
|
|
5592
|
-
{"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
5592
|
+
{"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240419_0625",
|
|
5593
5593
|
"args": ["forecasting_mp_ensemble", "--transform_output_path={{$.inputs.artifacts[''transform_output''].uri}}",
|
|
5594
5594
|
"--error_file_path={{$.inputs.parameters[''root_dir'']}}/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb",
|
|
5595
5595
|
"--metadata_path={{$.inputs.artifacts[''metadata''].uri}}", "--tuning_result_input_path={{$.inputs.artifacts[''tuning_result_input''].uri}}",
|
|
@@ -5624,11 +5624,11 @@ deploymentSpec:
|
|
|
5624
5624
|
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
|
|
5625
5625
|
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
|
|
5626
5626
|
{\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
|
|
5627
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
5627
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240419_0625",
|
|
5628
5628
|
"\", \"args\": [\"forecasting_mp_l2l_stage_1_tuner", "\", \"--region=",
|
|
5629
5629
|
"{{$.inputs.parameters[''location'']}}", "\", \"--transform_output_path=",
|
|
5630
5630
|
"{{$.inputs.artifacts[''transform_output''].uri}}", "\", \"--training_docker_uri=",
|
|
5631
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
5631
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240419_0625",
|
|
5632
5632
|
"\", \"--reduce_search_space_mode=", "{{$.inputs.parameters[''reduce_search_space_mode'']}}",
|
|
5633
5633
|
"\", \"--component_id={{$.pipeline_task_uuid}}", "\", \"--training_base_dir=",
|
|
5634
5634
|
"{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/train",
|
|
@@ -5667,11 +5667,11 @@ deploymentSpec:
|
|
|
5667
5667
|
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
|
|
5668
5668
|
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
|
|
5669
5669
|
{\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
|
|
5670
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
5670
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240419_0625",
|
|
5671
5671
|
"\", \"args\": [\"forecasting_mp_l2l_stage_2_tuner", "\", \"--region=",
|
|
5672
5672
|
"{{$.inputs.parameters[''location'']}}", "\", \"--transform_output_path=",
|
|
5673
5673
|
"{{$.inputs.artifacts[''transform_output''].uri}}", "\", \"--training_docker_uri=",
|
|
5674
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
5674
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240419_0625",
|
|
5675
5675
|
"\", \"--component_id={{$.pipeline_task_uuid}}", "\", \"--training_base_dir=",
|
|
5676
5676
|
"{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/train",
|
|
5677
5677
|
"\", \"--num_parallel_trial=", "{{$.inputs.parameters[''num_parallel_trials'']}}",
|
|
@@ -5710,7 +5710,7 @@ deploymentSpec:
|
|
|
5710
5710
|
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
|
|
5711
5711
|
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
|
|
5712
5712
|
{\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
|
|
5713
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:
|
|
5713
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240419_0625", "\",
|
|
5714
5714
|
\"args\": [\"cancel_l2l_tuner\", \"--error_file_path=", "{{$.inputs.parameters[''root_dir'']}}",
|
|
5715
5715
|
"/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb\", \"--cleanup_lro_job_infos=",
|
|
5716
5716
|
"{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/lro\"]}}]}}"]}'
|
|
@@ -5775,7 +5775,7 @@ deploymentSpec:
|
|
|
5775
5775
|
\ 'stage_2_single_run_max_secs',\n ],\n )(\n stage_1_deadline_hours,\n\
|
|
5776
5776
|
\ stage_1_single_run_max_secs,\n stage_2_deadline_hours,\n \
|
|
5777
5777
|
\ stage_2_single_run_max_secs,\n )\n\n"
|
|
5778
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
5778
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
|
|
5779
5779
|
exec-calculate-training-parameters-2:
|
|
5780
5780
|
container:
|
|
5781
5781
|
args:
|
|
@@ -5831,7 +5831,7 @@ deploymentSpec:
|
|
|
5831
5831
|
\ 'stage_2_single_run_max_secs',\n ],\n )(\n stage_1_deadline_hours,\n\
|
|
5832
5832
|
\ stage_1_single_run_max_secs,\n stage_2_deadline_hours,\n \
|
|
5833
5833
|
\ stage_2_single_run_max_secs,\n )\n\n"
|
|
5834
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
5834
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
|
|
5835
5835
|
exec-feature-attribution:
|
|
5836
5836
|
container:
|
|
5837
5837
|
args:
|
|
@@ -6022,8 +6022,8 @@ deploymentSpec:
|
|
|
6022
6022
|
"/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/dataflow_tmp"]}'
|
|
6023
6023
|
- '{"Concat": ["--dataflow_max_num_workers=", "{{$.inputs.parameters[''dataflow_max_num_workers'']}}"]}'
|
|
6024
6024
|
- '{"Concat": ["--dataflow_machine_type=", "{{$.inputs.parameters[''dataflow_machine_type'']}}"]}'
|
|
6025
|
-
- --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:
|
|
6026
|
-
- --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:
|
|
6025
|
+
- --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240419_0625
|
|
6026
|
+
- --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240419_0625
|
|
6027
6027
|
- '{"Concat": ["--dataflow_disk_size_gb=", "{{$.inputs.parameters[''dataflow_disk_size_gb'']}}"]}'
|
|
6028
6028
|
- '{"Concat": ["--dataflow_subnetwork_fully_qualified=", "{{$.inputs.parameters[''dataflow_subnetwork'']}}"]}'
|
|
6029
6029
|
- '{"Concat": ["--dataflow_use_public_ips=", "{{$.inputs.parameters[''dataflow_use_public_ips'']}}"]}'
|
|
@@ -6040,7 +6040,7 @@ deploymentSpec:
|
|
|
6040
6040
|
- '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
|
|
6041
6041
|
["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
|
|
6042
6042
|
- '{"Concat": ["--encryption_spec_key_name=", "{{$.inputs.parameters[''encryption_spec_key_name'']}}"]}'
|
|
6043
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:
|
|
6043
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240419_0625
|
|
6044
6044
|
resources:
|
|
6045
6045
|
cpuLimit: 8.0
|
|
6046
6046
|
memoryLimit: 30.0
|
|
@@ -6071,7 +6071,7 @@ deploymentSpec:
|
|
|
6071
6071
|
\ = 'point'\n else:\n forecasting_type = 'quantile'\n\n return collections.namedtuple(\n\
|
|
6072
6072
|
\ 'Outputs',\n (\n 'forecasting_type',\n 'quantiles',\n\
|
|
6073
6073
|
\ ),\n )(forecasting_type, quantiles)\n\n"
|
|
6074
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6074
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
|
|
6075
6075
|
exec-finalize-eval-quantile-parameters-2:
|
|
6076
6076
|
container:
|
|
6077
6077
|
args:
|
|
@@ -6099,7 +6099,7 @@ deploymentSpec:
|
|
|
6099
6099
|
\ = 'point'\n else:\n forecasting_type = 'quantile'\n\n return collections.namedtuple(\n\
|
|
6100
6100
|
\ 'Outputs',\n (\n 'forecasting_type',\n 'quantiles',\n\
|
|
6101
6101
|
\ ),\n )(forecasting_type, quantiles)\n\n"
|
|
6102
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6102
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
|
|
6103
6103
|
exec-get-or-create-model-description:
|
|
6104
6104
|
container:
|
|
6105
6105
|
args:
|
|
@@ -6128,7 +6128,7 @@ deploymentSpec:
|
|
|
6128
6128
|
\ return f'{original_description} From: {pipeline_url}'\n\n # The pipeline\
|
|
6129
6129
|
\ url contains KFP placeholders injected at runtime.\n return f'Vertex\
|
|
6130
6130
|
\ forecasting model trained in the pipeline: {pipeline_url}'\n\n"
|
|
6131
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6131
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
|
|
6132
6132
|
exec-get-or-create-model-description-2:
|
|
6133
6133
|
container:
|
|
6134
6134
|
args:
|
|
@@ -6157,7 +6157,7 @@ deploymentSpec:
|
|
|
6157
6157
|
\ return f'{original_description} From: {pipeline_url}'\n\n # The pipeline\
|
|
6158
6158
|
\ url contains KFP placeholders injected at runtime.\n return f'Vertex\
|
|
6159
6159
|
\ forecasting model trained in the pipeline: {pipeline_url}'\n\n"
|
|
6160
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6160
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
|
|
6161
6161
|
exec-get-prediction-image-uri:
|
|
6162
6162
|
container:
|
|
6163
6163
|
args:
|
|
@@ -6180,14 +6180,14 @@ deploymentSpec:
|
|
|
6180
6180
|
Returns the prediction image corresponding to the given model type.\"\"\"\
|
|
6181
6181
|
\n # Keys come from AutoMlTimeSeriesForecastingTrainSpec.\n # The URIs\
|
|
6182
6182
|
\ must be hardcoded without any breaks in the code so string\n # replacement\
|
|
6183
|
-
\ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:
|
|
6184
|
-
\ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:
|
|
6185
|
-
\ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:
|
|
6186
|
-
\ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:
|
|
6183
|
+
\ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20240419_0625',\n\
|
|
6184
|
+
\ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:20240419_0625',\n\
|
|
6185
|
+
\ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:20240419_0625',\n\
|
|
6186
|
+
\ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:20240419_0625',\n\
|
|
6187
6187
|
\ }\n if model_type not in images:\n raise ValueError(\n f'Invalid\
|
|
6188
6188
|
\ forecasting model type: {model_type}. Valid options are: '\n f'{images.keys()}.'\n\
|
|
6189
6189
|
\ )\n return images[model_type]\n\n"
|
|
6190
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6190
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
|
|
6191
6191
|
exec-get-prediction-image-uri-2:
|
|
6192
6192
|
container:
|
|
6193
6193
|
args:
|
|
@@ -6210,14 +6210,14 @@ deploymentSpec:
|
|
|
6210
6210
|
Returns the prediction image corresponding to the given model type.\"\"\"\
|
|
6211
6211
|
\n # Keys come from AutoMlTimeSeriesForecastingTrainSpec.\n # The URIs\
|
|
6212
6212
|
\ must be hardcoded without any breaks in the code so string\n # replacement\
|
|
6213
|
-
\ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:
|
|
6214
|
-
\ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:
|
|
6215
|
-
\ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:
|
|
6216
|
-
\ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:
|
|
6213
|
+
\ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20240419_0625',\n\
|
|
6214
|
+
\ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:20240419_0625',\n\
|
|
6215
|
+
\ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:20240419_0625',\n\
|
|
6216
|
+
\ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:20240419_0625',\n\
|
|
6217
6217
|
\ }\n if model_type not in images:\n raise ValueError(\n f'Invalid\
|
|
6218
6218
|
\ forecasting model type: {model_type}. Valid options are: '\n f'{images.keys()}.'\n\
|
|
6219
6219
|
\ )\n return images[model_type]\n\n"
|
|
6220
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6220
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
|
|
6221
6221
|
exec-get-predictions-column:
|
|
6222
6222
|
container:
|
|
6223
6223
|
args:
|
|
@@ -6240,7 +6240,7 @@ deploymentSpec:
|
|
|
6240
6240
|
\ str) -> str:\n \"\"\"Generates the BP output's target column name.\"\"\
|
|
6241
6241
|
\"\n if forecasting_type == 'quantile':\n return f'predicted_{target_column}.quantile_predictions'\n\
|
|
6242
6242
|
\ return f'predicted_{target_column}.value'\n\n"
|
|
6243
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6243
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
|
|
6244
6244
|
exec-get-predictions-column-2:
|
|
6245
6245
|
container:
|
|
6246
6246
|
args:
|
|
@@ -6263,7 +6263,7 @@ deploymentSpec:
|
|
|
6263
6263
|
\ str) -> str:\n \"\"\"Generates the BP output's target column name.\"\"\
|
|
6264
6264
|
\"\n if forecasting_type == 'quantile':\n return f'predicted_{target_column}.quantile_predictions'\n\
|
|
6265
6265
|
\ return f'predicted_{target_column}.value'\n\n"
|
|
6266
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6266
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
|
|
6267
6267
|
exec-importer:
|
|
6268
6268
|
importer:
|
|
6269
6269
|
artifactUri:
|
|
@@ -6795,7 +6795,7 @@ deploymentSpec:
|
|
|
6795
6795
|
\ 'model_display_name',\n 'transformations',\n ],\n\
|
|
6796
6796
|
\ )(\n data_source_csv_filenames,\n data_source_bigquery_table_path,\n\
|
|
6797
6797
|
\ model_display_name,\n transformations,\n )\n\n"
|
|
6798
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6798
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
|
|
6799
6799
|
exec-split-materialized-data:
|
|
6800
6800
|
container:
|
|
6801
6801
|
args:
|
|
@@ -6841,7 +6841,7 @@ deploymentSpec:
|
|
|
6841
6841
|
\ 'w') as f:\n f.write(file_patterns[0])\n\n with tf.io.gfile.GFile(materialized_eval_split,\
|
|
6842
6842
|
\ 'w') as f:\n f.write(file_patterns[1])\n\n with tf.io.gfile.GFile(materialized_test_split,\
|
|
6843
6843
|
\ 'w') as f:\n f.write(file_patterns[2])\n\n"
|
|
6844
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:
|
|
6844
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240419_0625
|
|
6845
6845
|
exec-string-not-empty:
|
|
6846
6846
|
container:
|
|
6847
6847
|
args:
|
|
@@ -6865,7 +6865,7 @@ deploymentSpec:
|
|
|
6865
6865
|
\n Returns:\n Boolean value. -> 'true' if empty, 'false' if not empty.\
|
|
6866
6866
|
\ We need to use str\n instead of bool due to a limitation in KFP compiler.\n\
|
|
6867
6867
|
\ \"\"\"\n return 'true' if value else 'false'\n\n"
|
|
6868
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6868
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
|
|
6869
6869
|
exec-table-to-uri:
|
|
6870
6870
|
container:
|
|
6871
6871
|
args:
|
|
@@ -6895,7 +6895,7 @@ deploymentSpec:
|
|
|
6895
6895
|
\ if use_bq_prefix:\n bq_uri = 'bq://' + bq_uri\n outputs.append(bq_uri)\n\
|
|
6896
6896
|
\ return collections.namedtuple(\n 'Outputs',\n ['project_id',\
|
|
6897
6897
|
\ 'dataset_id', 'table_id', 'uri'],\n )(*outputs)\n\n"
|
|
6898
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6898
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
|
|
6899
6899
|
exec-table-to-uri-2:
|
|
6900
6900
|
container:
|
|
6901
6901
|
args:
|
|
@@ -6925,7 +6925,7 @@ deploymentSpec:
|
|
|
6925
6925
|
\ if use_bq_prefix:\n bq_uri = 'bq://' + bq_uri\n outputs.append(bq_uri)\n\
|
|
6926
6926
|
\ return collections.namedtuple(\n 'Outputs',\n ['project_id',\
|
|
6927
6927
|
\ 'dataset_id', 'table_id', 'uri'],\n )(*outputs)\n\n"
|
|
6928
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6928
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
|
|
6929
6929
|
exec-training-configurator-and-validator:
|
|
6930
6930
|
container:
|
|
6931
6931
|
args:
|
|
@@ -6970,7 +6970,7 @@ deploymentSpec:
|
|
|
6970
6970
|
["--temporal_total_weight=", "{{$.inputs.parameters[''temporal_total_weight'']}}"]}}}'
|
|
6971
6971
|
- '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
|
|
6972
6972
|
["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
|
|
6973
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:
|
|
6973
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240419_0625
|
|
6974
6974
|
pipelineInfo:
|
|
6975
6975
|
description: The Sequence to Sequence (Seq2Seq) Forecasting pipeline.
|
|
6976
6976
|
name: sequence-to-sequence-forecasting
|