google-cloud-pipeline-components 2.13.1__py3-none-any.whl → 2.14.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of google-cloud-pipeline-components might be problematic. Click here for more details.

Files changed (66) hide show
  1. google_cloud_pipeline_components/__init__.py +5 -6
  2. google_cloud_pipeline_components/_implementation/llm/deployment_graph.py +4 -10
  3. google_cloud_pipeline_components/_implementation/llm/env.py +1 -1
  4. google_cloud_pipeline_components/_implementation/llm/function_based.py +14 -48
  5. google_cloud_pipeline_components/_implementation/llm/generated/refined_image_versions.py +1 -1
  6. google_cloud_pipeline_components/_implementation/llm/reinforcement_learning_graph.py +27 -36
  7. google_cloud_pipeline_components/_implementation/llm/reward_model_graph.py +26 -41
  8. google_cloud_pipeline_components/_implementation/llm/rlhf_preprocessor.py +60 -0
  9. google_cloud_pipeline_components/_implementation/llm/validate_pipeline.py +11 -0
  10. google_cloud_pipeline_components/_placeholders.py +30 -1
  11. google_cloud_pipeline_components/preview/automl/forecasting/forecasting_ensemble.py +1 -1
  12. google_cloud_pipeline_components/preview/automl/forecasting/forecasting_stage_1_tuner.py +2 -2
  13. google_cloud_pipeline_components/preview/automl/forecasting/forecasting_stage_2_tuner.py +2 -2
  14. google_cloud_pipeline_components/preview/automl/forecasting/learn_to_learn_forecasting_pipeline.yaml +34 -34
  15. google_cloud_pipeline_components/preview/automl/forecasting/sequence_to_sequence_forecasting_pipeline.yaml +34 -34
  16. google_cloud_pipeline_components/preview/automl/forecasting/temporal_fusion_transformer_forecasting_pipeline.yaml +34 -34
  17. google_cloud_pipeline_components/preview/automl/forecasting/time_series_dense_encoder_forecasting_pipeline.yaml +34 -34
  18. google_cloud_pipeline_components/preview/automl/tabular/auto_feature_engineering.py +1 -1
  19. google_cloud_pipeline_components/preview/automl/tabular/automl_tabular_feature_selection_pipeline.yaml +39 -39
  20. google_cloud_pipeline_components/preview/automl/tabular/automl_tabular_v2_pipeline.yaml +41 -41
  21. google_cloud_pipeline_components/preview/automl/tabular/distillation_stage_feature_transform_engine.py +2 -2
  22. google_cloud_pipeline_components/preview/automl/tabular/feature_selection.py +2 -2
  23. google_cloud_pipeline_components/preview/automl/tabular/feature_selection_pipeline.yaml +4 -4
  24. google_cloud_pipeline_components/preview/automl/tabular/feature_transform_engine.py +3 -3
  25. google_cloud_pipeline_components/preview/automl/tabular/tabnet_hyperparameter_tuning_job.py +2 -2
  26. google_cloud_pipeline_components/preview/automl/tabular/tabnet_hyperparameter_tuning_job_pipeline.yaml +17 -17
  27. google_cloud_pipeline_components/preview/automl/tabular/tabnet_trainer.py +2 -2
  28. google_cloud_pipeline_components/preview/automl/tabular/tabnet_trainer_pipeline.yaml +15 -15
  29. google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_hyperparameter_tuning_job.py +2 -2
  30. google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_hyperparameter_tuning_job_pipeline.yaml +16 -16
  31. google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_trainer.py +2 -2
  32. google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_trainer_pipeline.yaml +15 -15
  33. google_cloud_pipeline_components/preview/automl/tabular/xgboost_hyperparameter_tuning_job_pipeline.yaml +14 -14
  34. google_cloud_pipeline_components/preview/automl/tabular/xgboost_trainer_pipeline.yaml +13 -13
  35. google_cloud_pipeline_components/preview/automl/vision/data_converter.py +3 -1
  36. google_cloud_pipeline_components/preview/custom_job/component.py +2 -2
  37. google_cloud_pipeline_components/preview/custom_job/utils.py +3 -2
  38. google_cloud_pipeline_components/preview/llm/rlhf/component.py +60 -8
  39. google_cloud_pipeline_components/preview/model_evaluation/__init__.py +1 -1
  40. google_cloud_pipeline_components/proto/template_metadata_pb2.py +22 -15
  41. google_cloud_pipeline_components/v1/automl/forecasting/bqml_arima_predict_pipeline.yaml +10 -10
  42. google_cloud_pipeline_components/v1/automl/forecasting/bqml_arima_train_pipeline.yaml +31 -31
  43. google_cloud_pipeline_components/v1/automl/forecasting/prophet_trainer.py +3 -3
  44. google_cloud_pipeline_components/v1/automl/forecasting/prophet_trainer_pipeline.yaml +14 -14
  45. google_cloud_pipeline_components/v1/automl/tabular/automl_tabular_pipeline.yaml +37 -37
  46. google_cloud_pipeline_components/v1/automl/tabular/cv_trainer.py +2 -2
  47. google_cloud_pipeline_components/v1/automl/tabular/ensemble.py +2 -2
  48. google_cloud_pipeline_components/v1/automl/tabular/finalizer.py +1 -1
  49. google_cloud_pipeline_components/v1/automl/tabular/infra_validator.py +1 -1
  50. google_cloud_pipeline_components/v1/automl/tabular/split_materialized_data.py +1 -1
  51. google_cloud_pipeline_components/v1/automl/tabular/stage_1_tuner.py +2 -2
  52. google_cloud_pipeline_components/v1/automl/tabular/stats_and_example_gen.py +2 -2
  53. google_cloud_pipeline_components/v1/automl/tabular/training_configurator_and_validator.py +1 -1
  54. google_cloud_pipeline_components/v1/automl/tabular/transform.py +2 -2
  55. google_cloud_pipeline_components/v1/model_evaluation/__init__.py +3 -1
  56. google_cloud_pipeline_components/v1/model_evaluation/classification_component.py +2 -2
  57. google_cloud_pipeline_components/{preview → v1}/model_evaluation/model_based_llm_evaluation/__init__.py +2 -2
  58. google_cloud_pipeline_components/version.py +1 -1
  59. {google_cloud_pipeline_components-2.13.1.dist-info → google_cloud_pipeline_components-2.14.0.dist-info}/METADATA +18 -19
  60. {google_cloud_pipeline_components-2.13.1.dist-info → google_cloud_pipeline_components-2.14.0.dist-info}/RECORD +65 -66
  61. {google_cloud_pipeline_components-2.13.1.dist-info → google_cloud_pipeline_components-2.14.0.dist-info}/WHEEL +1 -1
  62. google_cloud_pipeline_components/proto/preflight_validations_pb2.py +0 -47
  63. /google_cloud_pipeline_components/{preview → v1}/model_evaluation/model_based_llm_evaluation/autosxs/__init__.py +0 -0
  64. /google_cloud_pipeline_components/{preview → v1}/model_evaluation/model_based_llm_evaluation/autosxs/autosxs_pipeline.py +0 -0
  65. {google_cloud_pipeline_components-2.13.1.dist-info → google_cloud_pipeline_components-2.14.0.dist-info}/LICENSE +0 -0
  66. {google_cloud_pipeline_components-2.13.1.dist-info → google_cloud_pipeline_components-2.14.0.dist-info}/top_level.txt +0 -0
@@ -5548,7 +5548,7 @@ deploymentSpec:
5548
5548
  - '{"display_name": "automl-forecasting-ensemble-{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}",
5549
5549
  "encryption_spec": {"kms_key_name": "{{$.inputs.parameters[''encryption_spec_key_name'']}}"},
5550
5550
  "job_spec": {"worker_pool_specs": [{"replica_count": 1, "machine_spec":
5551
- {"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240214_1325",
5551
+ {"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240419_0625",
5552
5552
  "args": ["forecasting_mp_ensemble", "--transform_output_path={{$.inputs.artifacts[''transform_output''].uri}}",
5553
5553
  "--error_file_path={{$.inputs.parameters[''root_dir'']}}/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb",
5554
5554
  "--metadata_path={{$.inputs.artifacts[''metadata''].uri}}", "--tuning_result_input_path={{$.inputs.artifacts[''tuning_result_input''].uri}}",
@@ -5582,7 +5582,7 @@ deploymentSpec:
5582
5582
  - '{"display_name": "automl-forecasting-ensemble-{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}",
5583
5583
  "encryption_spec": {"kms_key_name": "{{$.inputs.parameters[''encryption_spec_key_name'']}}"},
5584
5584
  "job_spec": {"worker_pool_specs": [{"replica_count": 1, "machine_spec":
5585
- {"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240214_1325",
5585
+ {"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240419_0625",
5586
5586
  "args": ["forecasting_mp_ensemble", "--transform_output_path={{$.inputs.artifacts[''transform_output''].uri}}",
5587
5587
  "--error_file_path={{$.inputs.parameters[''root_dir'']}}/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb",
5588
5588
  "--metadata_path={{$.inputs.artifacts[''metadata''].uri}}", "--tuning_result_input_path={{$.inputs.artifacts[''tuning_result_input''].uri}}",
@@ -5617,11 +5617,11 @@ deploymentSpec:
5617
5617
  \"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
5618
5618
  "\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
5619
5619
  {\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
5620
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240214_1325",
5620
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240419_0625",
5621
5621
  "\", \"args\": [\"forecasting_mp_l2l_stage_1_tuner", "\", \"--region=",
5622
5622
  "{{$.inputs.parameters[''location'']}}", "\", \"--transform_output_path=",
5623
5623
  "{{$.inputs.artifacts[''transform_output''].uri}}", "\", \"--training_docker_uri=",
5624
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240214_1325",
5624
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240419_0625",
5625
5625
  "\", \"--reduce_search_space_mode=", "{{$.inputs.parameters[''reduce_search_space_mode'']}}",
5626
5626
  "\", \"--component_id={{$.pipeline_task_uuid}}", "\", \"--training_base_dir=",
5627
5627
  "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/train",
@@ -5660,11 +5660,11 @@ deploymentSpec:
5660
5660
  \"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
5661
5661
  "\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
5662
5662
  {\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
5663
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240214_1325",
5663
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240419_0625",
5664
5664
  "\", \"args\": [\"forecasting_mp_l2l_stage_2_tuner", "\", \"--region=",
5665
5665
  "{{$.inputs.parameters[''location'']}}", "\", \"--transform_output_path=",
5666
5666
  "{{$.inputs.artifacts[''transform_output''].uri}}", "\", \"--training_docker_uri=",
5667
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240214_1325",
5667
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240419_0625",
5668
5668
  "\", \"--component_id={{$.pipeline_task_uuid}}", "\", \"--training_base_dir=",
5669
5669
  "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/train",
5670
5670
  "\", \"--num_parallel_trial=", "{{$.inputs.parameters[''num_parallel_trials'']}}",
@@ -5703,7 +5703,7 @@ deploymentSpec:
5703
5703
  \"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
5704
5704
  "\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
5705
5705
  {\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
5706
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240214_1325", "\",
5706
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240419_0625", "\",
5707
5707
  \"args\": [\"cancel_l2l_tuner\", \"--error_file_path=", "{{$.inputs.parameters[''root_dir'']}}",
5708
5708
  "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb\", \"--cleanup_lro_job_infos=",
5709
5709
  "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/lro\"]}}]}}"]}'
@@ -5768,7 +5768,7 @@ deploymentSpec:
5768
5768
  \ 'stage_2_single_run_max_secs',\n ],\n )(\n stage_1_deadline_hours,\n\
5769
5769
  \ stage_1_single_run_max_secs,\n stage_2_deadline_hours,\n \
5770
5770
  \ stage_2_single_run_max_secs,\n )\n\n"
5771
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240214_1325
5771
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
5772
5772
  exec-calculate-training-parameters-2:
5773
5773
  container:
5774
5774
  args:
@@ -5824,7 +5824,7 @@ deploymentSpec:
5824
5824
  \ 'stage_2_single_run_max_secs',\n ],\n )(\n stage_1_deadline_hours,\n\
5825
5825
  \ stage_1_single_run_max_secs,\n stage_2_deadline_hours,\n \
5826
5826
  \ stage_2_single_run_max_secs,\n )\n\n"
5827
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240214_1325
5827
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
5828
5828
  exec-feature-attribution:
5829
5829
  container:
5830
5830
  args:
@@ -6015,8 +6015,8 @@ deploymentSpec:
6015
6015
  "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/dataflow_tmp"]}'
6016
6016
  - '{"Concat": ["--dataflow_max_num_workers=", "{{$.inputs.parameters[''dataflow_max_num_workers'']}}"]}'
6017
6017
  - '{"Concat": ["--dataflow_machine_type=", "{{$.inputs.parameters[''dataflow_machine_type'']}}"]}'
6018
- - --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240214_1325
6019
- - --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240214_1325
6018
+ - --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240419_0625
6019
+ - --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240419_0625
6020
6020
  - '{"Concat": ["--dataflow_disk_size_gb=", "{{$.inputs.parameters[''dataflow_disk_size_gb'']}}"]}'
6021
6021
  - '{"Concat": ["--dataflow_subnetwork_fully_qualified=", "{{$.inputs.parameters[''dataflow_subnetwork'']}}"]}'
6022
6022
  - '{"Concat": ["--dataflow_use_public_ips=", "{{$.inputs.parameters[''dataflow_use_public_ips'']}}"]}'
@@ -6033,7 +6033,7 @@ deploymentSpec:
6033
6033
  - '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
6034
6034
  ["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
6035
6035
  - '{"Concat": ["--encryption_spec_key_name=", "{{$.inputs.parameters[''encryption_spec_key_name'']}}"]}'
6036
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240214_1325
6036
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240419_0625
6037
6037
  resources:
6038
6038
  cpuLimit: 8.0
6039
6039
  memoryLimit: 30.0
@@ -6064,7 +6064,7 @@ deploymentSpec:
6064
6064
  \ = 'point'\n else:\n forecasting_type = 'quantile'\n\n return collections.namedtuple(\n\
6065
6065
  \ 'Outputs',\n (\n 'forecasting_type',\n 'quantiles',\n\
6066
6066
  \ ),\n )(forecasting_type, quantiles)\n\n"
6067
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240214_1325
6067
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6068
6068
  exec-finalize-eval-quantile-parameters-2:
6069
6069
  container:
6070
6070
  args:
@@ -6092,7 +6092,7 @@ deploymentSpec:
6092
6092
  \ = 'point'\n else:\n forecasting_type = 'quantile'\n\n return collections.namedtuple(\n\
6093
6093
  \ 'Outputs',\n (\n 'forecasting_type',\n 'quantiles',\n\
6094
6094
  \ ),\n )(forecasting_type, quantiles)\n\n"
6095
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240214_1325
6095
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6096
6096
  exec-get-or-create-model-description:
6097
6097
  container:
6098
6098
  args:
@@ -6121,7 +6121,7 @@ deploymentSpec:
6121
6121
  \ return f'{original_description} From: {pipeline_url}'\n\n # The pipeline\
6122
6122
  \ url contains KFP placeholders injected at runtime.\n return f'Vertex\
6123
6123
  \ forecasting model trained in the pipeline: {pipeline_url}'\n\n"
6124
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240214_1325
6124
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6125
6125
  exec-get-or-create-model-description-2:
6126
6126
  container:
6127
6127
  args:
@@ -6150,7 +6150,7 @@ deploymentSpec:
6150
6150
  \ return f'{original_description} From: {pipeline_url}'\n\n # The pipeline\
6151
6151
  \ url contains KFP placeholders injected at runtime.\n return f'Vertex\
6152
6152
  \ forecasting model trained in the pipeline: {pipeline_url}'\n\n"
6153
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240214_1325
6153
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6154
6154
  exec-get-prediction-image-uri:
6155
6155
  container:
6156
6156
  args:
@@ -6173,14 +6173,14 @@ deploymentSpec:
6173
6173
  Returns the prediction image corresponding to the given model type.\"\"\"\
6174
6174
  \n # Keys come from AutoMlTimeSeriesForecastingTrainSpec.\n # The URIs\
6175
6175
  \ must be hardcoded without any breaks in the code so string\n # replacement\
6176
- \ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20240214_1325',\n\
6177
- \ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:20240214_1325',\n\
6178
- \ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:20240214_1325',\n\
6179
- \ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:20240214_1325',\n\
6176
+ \ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20240419_0625',\n\
6177
+ \ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:20240419_0625',\n\
6178
+ \ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:20240419_0625',\n\
6179
+ \ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:20240419_0625',\n\
6180
6180
  \ }\n if model_type not in images:\n raise ValueError(\n f'Invalid\
6181
6181
  \ forecasting model type: {model_type}. Valid options are: '\n f'{images.keys()}.'\n\
6182
6182
  \ )\n return images[model_type]\n\n"
6183
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240214_1325
6183
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6184
6184
  exec-get-prediction-image-uri-2:
6185
6185
  container:
6186
6186
  args:
@@ -6203,14 +6203,14 @@ deploymentSpec:
6203
6203
  Returns the prediction image corresponding to the given model type.\"\"\"\
6204
6204
  \n # Keys come from AutoMlTimeSeriesForecastingTrainSpec.\n # The URIs\
6205
6205
  \ must be hardcoded without any breaks in the code so string\n # replacement\
6206
- \ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20240214_1325',\n\
6207
- \ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:20240214_1325',\n\
6208
- \ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:20240214_1325',\n\
6209
- \ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:20240214_1325',\n\
6206
+ \ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20240419_0625',\n\
6207
+ \ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:20240419_0625',\n\
6208
+ \ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:20240419_0625',\n\
6209
+ \ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:20240419_0625',\n\
6210
6210
  \ }\n if model_type not in images:\n raise ValueError(\n f'Invalid\
6211
6211
  \ forecasting model type: {model_type}. Valid options are: '\n f'{images.keys()}.'\n\
6212
6212
  \ )\n return images[model_type]\n\n"
6213
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240214_1325
6213
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6214
6214
  exec-get-predictions-column:
6215
6215
  container:
6216
6216
  args:
@@ -6233,7 +6233,7 @@ deploymentSpec:
6233
6233
  \ str) -> str:\n \"\"\"Generates the BP output's target column name.\"\"\
6234
6234
  \"\n if forecasting_type == 'quantile':\n return f'predicted_{target_column}.quantile_predictions'\n\
6235
6235
  \ return f'predicted_{target_column}.value'\n\n"
6236
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240214_1325
6236
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6237
6237
  exec-get-predictions-column-2:
6238
6238
  container:
6239
6239
  args:
@@ -6256,7 +6256,7 @@ deploymentSpec:
6256
6256
  \ str) -> str:\n \"\"\"Generates the BP output's target column name.\"\"\
6257
6257
  \"\n if forecasting_type == 'quantile':\n return f'predicted_{target_column}.quantile_predictions'\n\
6258
6258
  \ return f'predicted_{target_column}.value'\n\n"
6259
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240214_1325
6259
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6260
6260
  exec-importer:
6261
6261
  importer:
6262
6262
  artifactUri:
@@ -6788,7 +6788,7 @@ deploymentSpec:
6788
6788
  \ 'model_display_name',\n 'transformations',\n ],\n\
6789
6789
  \ )(\n data_source_csv_filenames,\n data_source_bigquery_table_path,\n\
6790
6790
  \ model_display_name,\n transformations,\n )\n\n"
6791
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240214_1325
6791
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6792
6792
  exec-split-materialized-data:
6793
6793
  container:
6794
6794
  args:
@@ -6834,7 +6834,7 @@ deploymentSpec:
6834
6834
  \ 'w') as f:\n f.write(file_patterns[0])\n\n with tf.io.gfile.GFile(materialized_eval_split,\
6835
6835
  \ 'w') as f:\n f.write(file_patterns[1])\n\n with tf.io.gfile.GFile(materialized_test_split,\
6836
6836
  \ 'w') as f:\n f.write(file_patterns[2])\n\n"
6837
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240214_1325
6837
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240419_0625
6838
6838
  exec-string-not-empty:
6839
6839
  container:
6840
6840
  args:
@@ -6858,7 +6858,7 @@ deploymentSpec:
6858
6858
  \n Returns:\n Boolean value. -> 'true' if empty, 'false' if not empty.\
6859
6859
  \ We need to use str\n instead of bool due to a limitation in KFP compiler.\n\
6860
6860
  \ \"\"\"\n return 'true' if value else 'false'\n\n"
6861
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240214_1325
6861
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6862
6862
  exec-table-to-uri:
6863
6863
  container:
6864
6864
  args:
@@ -6888,7 +6888,7 @@ deploymentSpec:
6888
6888
  \ if use_bq_prefix:\n bq_uri = 'bq://' + bq_uri\n outputs.append(bq_uri)\n\
6889
6889
  \ return collections.namedtuple(\n 'Outputs',\n ['project_id',\
6890
6890
  \ 'dataset_id', 'table_id', 'uri'],\n )(*outputs)\n\n"
6891
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240214_1325
6891
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6892
6892
  exec-table-to-uri-2:
6893
6893
  container:
6894
6894
  args:
@@ -6918,7 +6918,7 @@ deploymentSpec:
6918
6918
  \ if use_bq_prefix:\n bq_uri = 'bq://' + bq_uri\n outputs.append(bq_uri)\n\
6919
6919
  \ return collections.namedtuple(\n 'Outputs',\n ['project_id',\
6920
6920
  \ 'dataset_id', 'table_id', 'uri'],\n )(*outputs)\n\n"
6921
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240214_1325
6921
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6922
6922
  exec-training-configurator-and-validator:
6923
6923
  container:
6924
6924
  args:
@@ -6963,7 +6963,7 @@ deploymentSpec:
6963
6963
  ["--temporal_total_weight=", "{{$.inputs.parameters[''temporal_total_weight'']}}"]}}}'
6964
6964
  - '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
6965
6965
  ["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
6966
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240214_1325
6966
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240419_0625
6967
6967
  pipelineInfo:
6968
6968
  description: The Temporal Fusion Transformer (TFT) Forecasting pipeline.
6969
6969
  name: temporal-fusion-transformer-forecasting
@@ -5573,7 +5573,7 @@ deploymentSpec:
5573
5573
  - '{"display_name": "automl-forecasting-ensemble-{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}",
5574
5574
  "encryption_spec": {"kms_key_name": "{{$.inputs.parameters[''encryption_spec_key_name'']}}"},
5575
5575
  "job_spec": {"worker_pool_specs": [{"replica_count": 1, "machine_spec":
5576
- {"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240214_1325",
5576
+ {"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240419_0625",
5577
5577
  "args": ["forecasting_mp_ensemble", "--transform_output_path={{$.inputs.artifacts[''transform_output''].uri}}",
5578
5578
  "--error_file_path={{$.inputs.parameters[''root_dir'']}}/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb",
5579
5579
  "--metadata_path={{$.inputs.artifacts[''metadata''].uri}}", "--tuning_result_input_path={{$.inputs.artifacts[''tuning_result_input''].uri}}",
@@ -5607,7 +5607,7 @@ deploymentSpec:
5607
5607
  - '{"display_name": "automl-forecasting-ensemble-{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}",
5608
5608
  "encryption_spec": {"kms_key_name": "{{$.inputs.parameters[''encryption_spec_key_name'']}}"},
5609
5609
  "job_spec": {"worker_pool_specs": [{"replica_count": 1, "machine_spec":
5610
- {"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240214_1325",
5610
+ {"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240419_0625",
5611
5611
  "args": ["forecasting_mp_ensemble", "--transform_output_path={{$.inputs.artifacts[''transform_output''].uri}}",
5612
5612
  "--error_file_path={{$.inputs.parameters[''root_dir'']}}/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb",
5613
5613
  "--metadata_path={{$.inputs.artifacts[''metadata''].uri}}", "--tuning_result_input_path={{$.inputs.artifacts[''tuning_result_input''].uri}}",
@@ -5642,11 +5642,11 @@ deploymentSpec:
5642
5642
  \"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
5643
5643
  "\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
5644
5644
  {\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
5645
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240214_1325",
5645
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240419_0625",
5646
5646
  "\", \"args\": [\"forecasting_mp_l2l_stage_1_tuner", "\", \"--region=",
5647
5647
  "{{$.inputs.parameters[''location'']}}", "\", \"--transform_output_path=",
5648
5648
  "{{$.inputs.artifacts[''transform_output''].uri}}", "\", \"--training_docker_uri=",
5649
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240214_1325",
5649
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240419_0625",
5650
5650
  "\", \"--reduce_search_space_mode=", "{{$.inputs.parameters[''reduce_search_space_mode'']}}",
5651
5651
  "\", \"--component_id={{$.pipeline_task_uuid}}", "\", \"--training_base_dir=",
5652
5652
  "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/train",
@@ -5685,11 +5685,11 @@ deploymentSpec:
5685
5685
  \"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
5686
5686
  "\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
5687
5687
  {\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
5688
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240214_1325",
5688
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240419_0625",
5689
5689
  "\", \"args\": [\"forecasting_mp_l2l_stage_2_tuner", "\", \"--region=",
5690
5690
  "{{$.inputs.parameters[''location'']}}", "\", \"--transform_output_path=",
5691
5691
  "{{$.inputs.artifacts[''transform_output''].uri}}", "\", \"--training_docker_uri=",
5692
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240214_1325",
5692
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240419_0625",
5693
5693
  "\", \"--component_id={{$.pipeline_task_uuid}}", "\", \"--training_base_dir=",
5694
5694
  "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/train",
5695
5695
  "\", \"--num_parallel_trial=", "{{$.inputs.parameters[''num_parallel_trials'']}}",
@@ -5728,7 +5728,7 @@ deploymentSpec:
5728
5728
  \"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
5729
5729
  "\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
5730
5730
  {\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
5731
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240214_1325", "\",
5731
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240419_0625", "\",
5732
5732
  \"args\": [\"cancel_l2l_tuner\", \"--error_file_path=", "{{$.inputs.parameters[''root_dir'']}}",
5733
5733
  "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb\", \"--cleanup_lro_job_infos=",
5734
5734
  "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/lro\"]}}]}}"]}'
@@ -5793,7 +5793,7 @@ deploymentSpec:
5793
5793
  \ 'stage_2_single_run_max_secs',\n ],\n )(\n stage_1_deadline_hours,\n\
5794
5794
  \ stage_1_single_run_max_secs,\n stage_2_deadline_hours,\n \
5795
5795
  \ stage_2_single_run_max_secs,\n )\n\n"
5796
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240214_1325
5796
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
5797
5797
  exec-calculate-training-parameters-2:
5798
5798
  container:
5799
5799
  args:
@@ -5849,7 +5849,7 @@ deploymentSpec:
5849
5849
  \ 'stage_2_single_run_max_secs',\n ],\n )(\n stage_1_deadline_hours,\n\
5850
5850
  \ stage_1_single_run_max_secs,\n stage_2_deadline_hours,\n \
5851
5851
  \ stage_2_single_run_max_secs,\n )\n\n"
5852
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240214_1325
5852
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
5853
5853
  exec-feature-attribution:
5854
5854
  container:
5855
5855
  args:
@@ -6040,8 +6040,8 @@ deploymentSpec:
6040
6040
  "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/dataflow_tmp"]}'
6041
6041
  - '{"Concat": ["--dataflow_max_num_workers=", "{{$.inputs.parameters[''dataflow_max_num_workers'']}}"]}'
6042
6042
  - '{"Concat": ["--dataflow_machine_type=", "{{$.inputs.parameters[''dataflow_machine_type'']}}"]}'
6043
- - --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240214_1325
6044
- - --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240214_1325
6043
+ - --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240419_0625
6044
+ - --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240419_0625
6045
6045
  - '{"Concat": ["--dataflow_disk_size_gb=", "{{$.inputs.parameters[''dataflow_disk_size_gb'']}}"]}'
6046
6046
  - '{"Concat": ["--dataflow_subnetwork_fully_qualified=", "{{$.inputs.parameters[''dataflow_subnetwork'']}}"]}'
6047
6047
  - '{"Concat": ["--dataflow_use_public_ips=", "{{$.inputs.parameters[''dataflow_use_public_ips'']}}"]}'
@@ -6058,7 +6058,7 @@ deploymentSpec:
6058
6058
  - '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
6059
6059
  ["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
6060
6060
  - '{"Concat": ["--encryption_spec_key_name=", "{{$.inputs.parameters[''encryption_spec_key_name'']}}"]}'
6061
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240214_1325
6061
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240419_0625
6062
6062
  resources:
6063
6063
  cpuLimit: 8.0
6064
6064
  memoryLimit: 30.0
@@ -6089,7 +6089,7 @@ deploymentSpec:
6089
6089
  \ = 'point'\n else:\n forecasting_type = 'quantile'\n\n return collections.namedtuple(\n\
6090
6090
  \ 'Outputs',\n (\n 'forecasting_type',\n 'quantiles',\n\
6091
6091
  \ ),\n )(forecasting_type, quantiles)\n\n"
6092
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240214_1325
6092
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6093
6093
  exec-finalize-eval-quantile-parameters-2:
6094
6094
  container:
6095
6095
  args:
@@ -6117,7 +6117,7 @@ deploymentSpec:
6117
6117
  \ = 'point'\n else:\n forecasting_type = 'quantile'\n\n return collections.namedtuple(\n\
6118
6118
  \ 'Outputs',\n (\n 'forecasting_type',\n 'quantiles',\n\
6119
6119
  \ ),\n )(forecasting_type, quantiles)\n\n"
6120
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240214_1325
6120
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6121
6121
  exec-get-or-create-model-description:
6122
6122
  container:
6123
6123
  args:
@@ -6146,7 +6146,7 @@ deploymentSpec:
6146
6146
  \ return f'{original_description} From: {pipeline_url}'\n\n # The pipeline\
6147
6147
  \ url contains KFP placeholders injected at runtime.\n return f'Vertex\
6148
6148
  \ forecasting model trained in the pipeline: {pipeline_url}'\n\n"
6149
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240214_1325
6149
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6150
6150
  exec-get-or-create-model-description-2:
6151
6151
  container:
6152
6152
  args:
@@ -6175,7 +6175,7 @@ deploymentSpec:
6175
6175
  \ return f'{original_description} From: {pipeline_url}'\n\n # The pipeline\
6176
6176
  \ url contains KFP placeholders injected at runtime.\n return f'Vertex\
6177
6177
  \ forecasting model trained in the pipeline: {pipeline_url}'\n\n"
6178
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240214_1325
6178
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6179
6179
  exec-get-prediction-image-uri:
6180
6180
  container:
6181
6181
  args:
@@ -6198,14 +6198,14 @@ deploymentSpec:
6198
6198
  Returns the prediction image corresponding to the given model type.\"\"\"\
6199
6199
  \n # Keys come from AutoMlTimeSeriesForecastingTrainSpec.\n # The URIs\
6200
6200
  \ must be hardcoded without any breaks in the code so string\n # replacement\
6201
- \ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20240214_1325',\n\
6202
- \ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:20240214_1325',\n\
6203
- \ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:20240214_1325',\n\
6204
- \ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:20240214_1325',\n\
6201
+ \ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20240419_0625',\n\
6202
+ \ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:20240419_0625',\n\
6203
+ \ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:20240419_0625',\n\
6204
+ \ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:20240419_0625',\n\
6205
6205
  \ }\n if model_type not in images:\n raise ValueError(\n f'Invalid\
6206
6206
  \ forecasting model type: {model_type}. Valid options are: '\n f'{images.keys()}.'\n\
6207
6207
  \ )\n return images[model_type]\n\n"
6208
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240214_1325
6208
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6209
6209
  exec-get-prediction-image-uri-2:
6210
6210
  container:
6211
6211
  args:
@@ -6228,14 +6228,14 @@ deploymentSpec:
6228
6228
  Returns the prediction image corresponding to the given model type.\"\"\"\
6229
6229
  \n # Keys come from AutoMlTimeSeriesForecastingTrainSpec.\n # The URIs\
6230
6230
  \ must be hardcoded without any breaks in the code so string\n # replacement\
6231
- \ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20240214_1325',\n\
6232
- \ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:20240214_1325',\n\
6233
- \ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:20240214_1325',\n\
6234
- \ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:20240214_1325',\n\
6231
+ \ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20240419_0625',\n\
6232
+ \ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:20240419_0625',\n\
6233
+ \ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:20240419_0625',\n\
6234
+ \ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:20240419_0625',\n\
6235
6235
  \ }\n if model_type not in images:\n raise ValueError(\n f'Invalid\
6236
6236
  \ forecasting model type: {model_type}. Valid options are: '\n f'{images.keys()}.'\n\
6237
6237
  \ )\n return images[model_type]\n\n"
6238
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240214_1325
6238
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6239
6239
  exec-get-predictions-column:
6240
6240
  container:
6241
6241
  args:
@@ -6258,7 +6258,7 @@ deploymentSpec:
6258
6258
  \ str) -> str:\n \"\"\"Generates the BP output's target column name.\"\"\
6259
6259
  \"\n if forecasting_type == 'quantile':\n return f'predicted_{target_column}.quantile_predictions'\n\
6260
6260
  \ return f'predicted_{target_column}.value'\n\n"
6261
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240214_1325
6261
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6262
6262
  exec-get-predictions-column-2:
6263
6263
  container:
6264
6264
  args:
@@ -6281,7 +6281,7 @@ deploymentSpec:
6281
6281
  \ str) -> str:\n \"\"\"Generates the BP output's target column name.\"\"\
6282
6282
  \"\n if forecasting_type == 'quantile':\n return f'predicted_{target_column}.quantile_predictions'\n\
6283
6283
  \ return f'predicted_{target_column}.value'\n\n"
6284
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240214_1325
6284
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6285
6285
  exec-importer:
6286
6286
  importer:
6287
6287
  artifactUri:
@@ -6813,7 +6813,7 @@ deploymentSpec:
6813
6813
  \ 'model_display_name',\n 'transformations',\n ],\n\
6814
6814
  \ )(\n data_source_csv_filenames,\n data_source_bigquery_table_path,\n\
6815
6815
  \ model_display_name,\n transformations,\n )\n\n"
6816
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240214_1325
6816
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6817
6817
  exec-split-materialized-data:
6818
6818
  container:
6819
6819
  args:
@@ -6859,7 +6859,7 @@ deploymentSpec:
6859
6859
  \ 'w') as f:\n f.write(file_patterns[0])\n\n with tf.io.gfile.GFile(materialized_eval_split,\
6860
6860
  \ 'w') as f:\n f.write(file_patterns[1])\n\n with tf.io.gfile.GFile(materialized_test_split,\
6861
6861
  \ 'w') as f:\n f.write(file_patterns[2])\n\n"
6862
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240214_1325
6862
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240419_0625
6863
6863
  exec-string-not-empty:
6864
6864
  container:
6865
6865
  args:
@@ -6883,7 +6883,7 @@ deploymentSpec:
6883
6883
  \n Returns:\n Boolean value. -> 'true' if empty, 'false' if not empty.\
6884
6884
  \ We need to use str\n instead of bool due to a limitation in KFP compiler.\n\
6885
6885
  \ \"\"\"\n return 'true' if value else 'false'\n\n"
6886
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240214_1325
6886
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6887
6887
  exec-table-to-uri:
6888
6888
  container:
6889
6889
  args:
@@ -6913,7 +6913,7 @@ deploymentSpec:
6913
6913
  \ if use_bq_prefix:\n bq_uri = 'bq://' + bq_uri\n outputs.append(bq_uri)\n\
6914
6914
  \ return collections.namedtuple(\n 'Outputs',\n ['project_id',\
6915
6915
  \ 'dataset_id', 'table_id', 'uri'],\n )(*outputs)\n\n"
6916
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240214_1325
6916
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6917
6917
  exec-table-to-uri-2:
6918
6918
  container:
6919
6919
  args:
@@ -6943,7 +6943,7 @@ deploymentSpec:
6943
6943
  \ if use_bq_prefix:\n bq_uri = 'bq://' + bq_uri\n outputs.append(bq_uri)\n\
6944
6944
  \ return collections.namedtuple(\n 'Outputs',\n ['project_id',\
6945
6945
  \ 'dataset_id', 'table_id', 'uri'],\n )(*outputs)\n\n"
6946
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240214_1325
6946
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6947
6947
  exec-training-configurator-and-validator:
6948
6948
  container:
6949
6949
  args:
@@ -6988,7 +6988,7 @@ deploymentSpec:
6988
6988
  ["--temporal_total_weight=", "{{$.inputs.parameters[''temporal_total_weight'']}}"]}}}'
6989
6989
  - '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
6990
6990
  ["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
6991
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240214_1325
6991
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240419_0625
6992
6992
  pipelineInfo:
6993
6993
  description: The Timeseries Dense Encoder (TiDE) Forecasting pipeline.
6994
6994
  name: time-series-dense-encoder-forecasting
@@ -65,7 +65,7 @@ def automated_feature_engineering(
65
65
  ' 1, "machine_spec": {"machine_type": "n1-standard-16"},'
66
66
  ' "container_spec": {"image_uri":"'
67
67
  ),
68
- 'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240214_1325',
68
+ 'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240419_0625',
69
69
  '", "args": ["feature_engineering", "--project=', project,
70
70
  '", "--location=', location, '", "--data_source_bigquery_table_path=',
71
71
  data_source_bigquery_table_path,