google-cloud-pipeline-components 2.10.0__py3-none-any.whl → 2.12.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of google-cloud-pipeline-components might be problematic. Click here for more details.

Files changed (43) hide show
  1. google_cloud_pipeline_components/_implementation/llm/batch_prediction_pairwise.py +14 -4
  2. google_cloud_pipeline_components/_implementation/llm/bulk_inferrer.py +7 -0
  3. google_cloud_pipeline_components/_implementation/llm/deployment_graph.py +6 -1
  4. google_cloud_pipeline_components/_implementation/llm/function_based.py +74 -168
  5. google_cloud_pipeline_components/_implementation/llm/generated/refined_image_versions.py +1 -1
  6. google_cloud_pipeline_components/_implementation/llm/model_evaluation_text_generation_pairwise.py +45 -3
  7. google_cloud_pipeline_components/_implementation/llm/online_evaluation_pairwise.py +14 -2
  8. google_cloud_pipeline_components/_implementation/llm/private_text_comparison_importer.py +9 -2
  9. google_cloud_pipeline_components/_implementation/llm/private_text_importer.py +8 -1
  10. google_cloud_pipeline_components/_implementation/llm/reinforcement_learning_graph.py +14 -28
  11. google_cloud_pipeline_components/_implementation/llm/reinforcer.py +13 -0
  12. google_cloud_pipeline_components/_implementation/llm/reward_model_graph.py +36 -27
  13. google_cloud_pipeline_components/_implementation/llm/reward_model_trainer.py +17 -0
  14. google_cloud_pipeline_components/_implementation/llm/rlhf_preprocessor.py +60 -0
  15. google_cloud_pipeline_components/_implementation/llm/supervised_fine_tuner.py +1 -0
  16. google_cloud_pipeline_components/_implementation/llm/utils.py +25 -2
  17. google_cloud_pipeline_components/_implementation/llm/validate_pipeline.py +113 -0
  18. google_cloud_pipeline_components/_implementation/model_evaluation/__init__.py +2 -0
  19. google_cloud_pipeline_components/_implementation/model_evaluation/endpoint_batch_predict/component.py +1 -1
  20. google_cloud_pipeline_components/_implementation/model_evaluation/llm_evaluation/component.py +2 -2
  21. google_cloud_pipeline_components/_implementation/model_evaluation/llm_evaluation_preprocessor/component.py +2 -2
  22. google_cloud_pipeline_components/_implementation/model_evaluation/model_name_preprocessor/__init__.py +14 -0
  23. google_cloud_pipeline_components/_implementation/model_evaluation/model_name_preprocessor/component.py +74 -0
  24. google_cloud_pipeline_components/_implementation/model_evaluation/version.py +1 -1
  25. google_cloud_pipeline_components/container/_implementation/model_evaluation/import_model_evaluation.py +7 -7
  26. google_cloud_pipeline_components/preview/llm/infer/__init__.py +13 -0
  27. google_cloud_pipeline_components/preview/llm/infer/component.py +10 -10
  28. google_cloud_pipeline_components/preview/llm/rlaif/component.py +10 -3
  29. google_cloud_pipeline_components/preview/llm/rlhf/component.py +43 -22
  30. google_cloud_pipeline_components/preview/model_evaluation/__init__.py +2 -2
  31. google_cloud_pipeline_components/preview/model_evaluation/model_based_llm_evaluation/autosxs/autosxs_pipeline.py +45 -3
  32. google_cloud_pipeline_components/proto/preflight_validations_pb2.py +19 -30
  33. google_cloud_pipeline_components/v1/custom_job/utils.py +22 -22
  34. google_cloud_pipeline_components/v1/model/get_model/component.py +1 -1
  35. google_cloud_pipeline_components/v1/model_evaluation/__init__.py +4 -0
  36. google_cloud_pipeline_components/{preview → v1}/model_evaluation/evaluation_llm_classification_pipeline.py +14 -2
  37. google_cloud_pipeline_components/{preview → v1}/model_evaluation/evaluation_llm_text_generation_pipeline.py +29 -17
  38. google_cloud_pipeline_components/version.py +1 -1
  39. {google_cloud_pipeline_components-2.10.0.dist-info → google_cloud_pipeline_components-2.12.0.dist-info}/METADATA +1 -2
  40. {google_cloud_pipeline_components-2.10.0.dist-info → google_cloud_pipeline_components-2.12.0.dist-info}/RECORD +43 -39
  41. {google_cloud_pipeline_components-2.10.0.dist-info → google_cloud_pipeline_components-2.12.0.dist-info}/WHEEL +1 -1
  42. {google_cloud_pipeline_components-2.10.0.dist-info → google_cloud_pipeline_components-2.12.0.dist-info}/LICENSE +0 -0
  43. {google_cloud_pipeline_components-2.10.0.dist-info → google_cloud_pipeline_components-2.12.0.dist-info}/top_level.txt +0 -0
@@ -75,30 +75,30 @@ def create_custom_training_job_from_component(
75
75
 
76
76
  This utility converts a [KFP component](https://www.kubeflow.org/docs/components/pipelines/v2/components/) provided to `component_spec` into `CustomTrainingJobOp` component. Your components inputs, outputs, and logic are carried over, with additional [CustomJob](https://cloud.google.com/vertex-ai/docs/reference/rest/v1/CustomJobSpec) parameters exposed. Note that this utility constructs a ClusterSpec where the master and all the workers use the same spec, meaning all disk/machine spec related parameters will apply to all replicas. This is suitable for uses cases such as executing a training component over multiple replicas with [MultiWorkerMirroredStrategy](https://www.tensorflow.org/api_docs/python/tf/distribute/MultiWorkerMirroredStrategy) or [MirroredStrategy](https://www.tensorflow.org/api_docs/python/tf/distribute/MirroredStrategy). See [Create custom training jobs](https://cloud.google.com/vertex-ai/docs/training/create-custom-job) for more information.
77
77
 
78
- Args:
79
- component_spec: A KFP component.
80
- display_name: The name of the CustomJob. If not provided the component's name will be used instead.
81
- replica_count: The count of instances in the cluster. One replica always counts towards the master in worker_pool_spec[0] and the remaining replicas will be allocated in worker_pool_spec[1]. See [more information.](https://cloud.google.com/vertex-ai/docs/training/distributed-training#configure_a_distributed_training_job)
82
- machine_type: The type of the machine to run the CustomJob. The default value is "n1-standard-4". See [more information](https://cloud.google.com/vertex-ai/docs/training/configure-compute#machine-types).
83
- accelerator_type: The type of accelerator(s) that may be attached to the machine per `accelerator_count`. See [more information](https://cloud.google.com/vertex-ai/docs/reference/rest/v1/MachineSpec#acceleratortype).
84
- accelerator_count: The number of accelerators to attach to the machine. Defaults to 1 if `accelerator_type` is set.
85
- boot_disk_type: Type of the boot disk (default is "pd-ssd"). Valid values: "pd-ssd" (Persistent Disk Solid State Drive) or "pd-standard" (Persistent Disk Hard Disk Drive). boot_disk_type is set as a static value and cannot be changed as a pipeline parameter.
86
- boot_disk_size_gb: Size in GB of the boot disk (default is 100GB). `boot_disk_size_gb` is set as a static value and cannot be changed as a pipeline parameter.
87
- timeout: The maximum job running time. The default is 7 days. A duration in seconds with up to nine fractional digits, terminated by 's', for example: "3.5s".
88
- restart_job_on_worker_restart: Restarts the entire CustomJob if a worker gets restarted. This feature can be used by distributed training jobs that are not resilient to workers leaving and joining a job.
89
- service_account: Sets the default service account for workload run-as account. The [service account](https://cloud.google.com/vertex-ai/docs/pipelines/configure-project#service-account) running the pipeline submitting jobs must have act-as permission on this run-as account. If unspecified, the Vertex AI Custom Code [Service Agent](https://cloud.google.com/vertex-ai/docs/general/access-control#service-agents) for the CustomJob's project.
90
- network: The full name of the Compute Engine network to which the job should be peered. For example, `projects/12345/global/networks/myVPC`. Format is of the form `projects/{project}/global/networks/{network}`. Where `{project}` is a project number, as in `12345`, and `{network}` is a network name. Private services access must already be configured for the network. If left unspecified, the job is not peered with any network.
91
- encryption_spec_key_name: Customer-managed encryption key options for the CustomJob. If this is set, then all resources created by the CustomJob will be encrypted with the provided encryption key.
92
- tensorboard: The name of a Vertex AI TensorBoard resource to which this CustomJob will upload TensorBoard logs.
93
- enable_web_access: Whether you want Vertex AI to enable [interactive shell access](https://cloud.google.com/vertex-ai/docs/training/monitor-debug-interactive-shell) to training containers. If `True`, you can access interactive shells at the URIs given by [CustomJob.web_access_uris][].
94
- reserved_ip_ranges: A list of names for the reserved IP ranges under the VPC network that can be used for this job. If set, we will deploy the job within the provided IP ranges. Otherwise, the job will be deployed to any IP ranges under the provided VPC network.
95
- nfs_mounts: A list of [NfsMount](https://cloud.google.com/vertex-ai/docs/reference/rest/v1/CustomJobSpec#NfsMount) resource specs in Json dict format. For more details about mounting NFS for CustomJob, see [Mount an NFS share for custom training](https://cloud.google.com/vertex-ai/docs/training/train-nfs-share).
96
- base_output_directory: The Cloud Storage location to store the output of this CustomJob or HyperparameterTuningJob. See [more information](https://cloud.google.com/vertex-ai/docs/reference/rest/v1/GcsDestination).
97
- labels: The labels with user-defined metadata to organize the CustomJob. See [more information](https://goo.gl/xmQnxf).
98
- env: Environment variables to be passed to the container. Takes the form `[{'name': '...', 'value': '...'}]`. Maximum limit is 100.
78
+ Args:
79
+ component_spec: A KFP component.
80
+ display_name: The name of the CustomJob. If not provided the component's name will be used instead.
81
+ replica_count: The count of instances in the cluster. One replica always counts towards the master in worker_pool_spec[0] and the remaining replicas will be allocated in worker_pool_spec[1]. See [more information.](https://cloud.google.com/vertex-ai/docs/training/distributed-training#configure_a_distributed_training_job)
82
+ machine_type: The type of the machine to run the CustomJob. The default value is "n1-standard-4". See [more information](https://cloud.google.com/vertex-ai/docs/training/configure-compute#machine-types).
83
+ accelerator_type: The type of accelerator(s) that may be attached to the machine per `accelerator_count`. See [more information](https://cloud.google.com/vertex-ai/docs/reference/rest/v1/MachineSpec#acceleratortype).
84
+ accelerator_count: The number of accelerators to attach to the machine. Defaults to 1 if `accelerator_type` is set.
85
+ boot_disk_type: Type of the boot disk (default is "pd-ssd"). Valid values: "pd-ssd" (Persistent Disk Solid State Drive) or "pd-standard" (Persistent Disk Hard Disk Drive). boot_disk_type is set as a static value and cannot be changed as a pipeline parameter.
86
+ boot_disk_size_gb: Size in GB of the boot disk (default is 100GB). `boot_disk_size_gb` is set as a static value and cannot be changed as a pipeline parameter.
87
+ timeout: The maximum job running time. The default is 7 days. A duration in seconds with up to nine fractional digits, terminated by 's', for example: "3.5s".
88
+ restart_job_on_worker_restart: Restarts the entire CustomJob if a worker gets restarted. This feature can be used by distributed training jobs that are not resilient to workers leaving and joining a job.
89
+ service_account: Sets the default service account for workload run-as account. The [service account](https://cloud.google.com/vertex-ai/docs/pipelines/configure-project#service-account) running the pipeline submitting jobs must have act-as permission on this run-as account. If unspecified, the Vertex AI Custom Code [Service Agent](https://cloud.google.com/vertex-ai/docs/general/access-control#service-agents) for the CustomJob's project.
90
+ network: The full name of the Compute Engine network to which the job should be peered. For example, `projects/12345/global/networks/myVPC`. Format is of the form `projects/{project}/global/networks/{network}`. Where `{project}` is a project number, as in `12345`, and `{network}` is a network name. Private services access must already be configured for the network. If left unspecified, the job is not peered with any network.
91
+ encryption_spec_key_name: Customer-managed encryption key options for the CustomJob. If this is set, then all resources created by the CustomJob will be encrypted with the provided encryption key.
92
+ tensorboard: The name of a Vertex AI TensorBoard resource to which this CustomJob will upload TensorBoard logs.
93
+ enable_web_access: Whether you want Vertex AI to enable [interactive shell access](https://cloud.google.com/vertex-ai/docs/training/monitor-debug-interactive-shell) to training containers. If `True`, you can access interactive shells at the URIs given by [CustomJob.web_access_uris][].
94
+ reserved_ip_ranges: A list of names for the reserved IP ranges under the VPC network that can be used for this job. If set, we will deploy the job within the provided IP ranges. Otherwise, the job will be deployed to any IP ranges under the provided VPC network.
95
+ nfs_mounts: A list of [NfsMount](https://cloud.google.com/vertex-ai/docs/reference/rest/v1/CustomJobSpec#NfsMount) resource specs in Json dict format. For more details about mounting NFS for CustomJob, see [Mount an NFS share for custom training](https://cloud.google.com/vertex-ai/docs/training/train-nfs-share).
96
+ base_output_directory: The Cloud Storage location to store the output of this CustomJob or HyperparameterTuningJob. See [more information](https://cloud.google.com/vertex-ai/docs/reference/rest/v1/GcsDestination).
97
+ labels: The labels with user-defined metadata to organize the CustomJob. See [more information](https://goo.gl/xmQnxf).
98
+ env: Environment variables to be passed to the container. Takes the form `[{'name': '...', 'value': '...'}]`. Maximum limit is 100.
99
99
 
100
100
  Returns:
101
- A KFP component with CustomJob specification applied.
101
+ A KFP component with CustomJob specification applied.
102
102
  """
103
103
  # fmt: on
104
104
  # This function constructs a Custom Job component based on the input
@@ -30,7 +30,7 @@ def model_get(
30
30
 
31
31
  Args:
32
32
  project: Project from which to get the VertexModel. Defaults to the project in which the PipelineJob is run.
33
- model_name: Vertex model resource name in the format of `projects/{project}/locations/{location}/models/{model}` or `projects/{project}/locations/{location}/models/{model}@{model_version_id or model_version_alias}`. If no version ID or alias is specified, the "default" version will be returned.
33
+ model_name: Specify the model name in one of the following formats: {model}: Fetches the default model version. {model}@{model_version_id}: Fetches the model version specified by its ID. {model}@{model_version_alias}: Fetches the model version specified by its alias.
34
34
  location: Location from which to get the VertexModel. Defaults to `us-central1`.
35
35
 
36
36
  Returns:
@@ -20,6 +20,8 @@ from google_cloud_pipeline_components.v1.model_evaluation.evaluation_automl_tabu
20
20
  from google_cloud_pipeline_components.v1.model_evaluation.evaluation_automl_tabular_pipeline import evaluation_automl_tabular_pipeline
21
21
  from google_cloud_pipeline_components.v1.model_evaluation.evaluation_automl_unstructure_data_pipeline import evaluation_automl_unstructure_data_pipeline
22
22
  from google_cloud_pipeline_components.v1.model_evaluation.evaluation_feature_attribution_pipeline import evaluation_feature_attribution_pipeline
23
+ from google_cloud_pipeline_components.v1.model_evaluation.evaluation_llm_classification_pipeline import evaluation_llm_classification_pipeline
24
+ from google_cloud_pipeline_components.v1.model_evaluation.evaluation_llm_text_generation_pipeline import evaluation_llm_text_generation_pipeline
23
25
  from google_cloud_pipeline_components.v1.model_evaluation.forecasting_component import model_evaluation_forecasting as ModelEvaluationForecastingOp
24
26
  from google_cloud_pipeline_components.v1.model_evaluation.regression_component import model_evaluation_regression as ModelEvaluationRegressionOp
25
27
 
@@ -30,6 +32,8 @@ __all__ = [
30
32
  'evaluation_automl_tabular_pipeline',
31
33
  'evaluation_automl_unstructure_data_pipeline',
32
34
  'evaluation_feature_attribution_pipeline',
35
+ 'evaluation_llm_classification_pipeline',
36
+ 'evaluation_llm_text_generation_pipeline',
33
37
  'ModelEvaluationClassificationOp',
34
38
  'ModelEvaluationRegressionOp',
35
39
  'ModelEvaluationForecastingOp',
@@ -18,6 +18,7 @@ from typing import Dict, List, NamedTuple
18
18
  from google_cloud_pipeline_components._implementation.model_evaluation import LLMEvaluationClassificationPredictionsPostprocessorOp
19
19
  from google_cloud_pipeline_components._implementation.model_evaluation import LLMEvaluationPreprocessorOp
20
20
  from google_cloud_pipeline_components._implementation.model_evaluation import ModelImportEvaluationOp
21
+ from google_cloud_pipeline_components._implementation.model_evaluation import ModelNamePreprocessorOp
21
22
  from google_cloud_pipeline_components.types.artifact_types import ClassificationMetrics
22
23
  from google_cloud_pipeline_components.types.artifact_types import VertexModel
23
24
  from google_cloud_pipeline_components.v1.batch_predict_job import ModelBatchPredictOp
@@ -97,12 +98,23 @@ def evaluation_llm_classification_pipeline( # pylint: disable=dangerous-default
97
98
  evaluation_resource_name=str,
98
99
  )
99
100
 
101
+ preprocessed_model_name = ModelNamePreprocessorOp(
102
+ project=project,
103
+ location=location,
104
+ model_name=model_name,
105
+ service_account=service_account,
106
+ )
107
+
100
108
  get_vertex_model_task = dsl.importer(
101
109
  artifact_uri=(
102
- f'https://{location}-aiplatform.googleapis.com/v1/{model_name}'
110
+ f'https://{location}-aiplatform.googleapis.com/v1/{preprocessed_model_name.outputs["processed_model_name"]}'
103
111
  ),
104
112
  artifact_class=VertexModel,
105
- metadata={'resourceName': model_name},
113
+ metadata={
114
+ 'resourceName': preprocessed_model_name.outputs[
115
+ 'processed_model_name'
116
+ ]
117
+ },
106
118
  )
107
119
  get_vertex_model_task.set_display_name('get-vertex-model')
108
120
 
@@ -18,6 +18,7 @@ from typing import Dict, List, NamedTuple
18
18
  from google_cloud_pipeline_components._implementation.model_evaluation import LLMEvaluationPreprocessorOp
19
19
  from google_cloud_pipeline_components._implementation.model_evaluation import LLMEvaluationTextGenerationOp
20
20
  from google_cloud_pipeline_components._implementation.model_evaluation import ModelImportEvaluationOp
21
+ from google_cloud_pipeline_components._implementation.model_evaluation import ModelNamePreprocessorOp
21
22
  from google_cloud_pipeline_components.types.artifact_types import VertexModel
22
23
  from google_cloud_pipeline_components.v1.batch_predict_job import ModelBatchPredictOp
23
24
  from kfp import dsl
@@ -33,6 +34,7 @@ def evaluation_llm_text_generation_pipeline( # pylint: disable=dangerous-defaul
33
34
  location: str,
34
35
  batch_predict_gcs_source_uris: List[str],
35
36
  batch_predict_gcs_destination_output_uri: str,
37
+ service_account: str,
36
38
  model_name: str = 'publishers/google/models/text-bison@002',
37
39
  evaluation_task: str = 'text-generation',
38
40
  input_field_name: str = 'input_text',
@@ -41,8 +43,7 @@ def evaluation_llm_text_generation_pipeline( # pylint: disable=dangerous-defaul
41
43
  batch_predict_predictions_format: str = 'jsonl',
42
44
  batch_predict_model_parameters: Dict[str, str] = {},
43
45
  enable_row_based_metrics: bool = False,
44
- machine_type: str = 'e2-highmem-16',
45
- service_account: str = '',
46
+ machine_type: str = 'e2-standard-4',
46
47
  network: str = '',
47
48
  encryption_spec_key_name: str = '',
48
49
  evaluation_display_name: str = 'evaluation-llm-text-generation-pipeline-{{$.pipeline_job_uuid}}',
@@ -59,18 +60,19 @@ def evaluation_llm_text_generation_pipeline( # pylint: disable=dangerous-defaul
59
60
  project: Required. The GCP project that runs the pipeline components.
60
61
  location: Required. The GCP region that runs the pipeline components.
61
62
  batch_predict_gcs_source_uris: Required. Google Cloud Storage URI(s) to your eval dataset instances data to run batch prediction on. The instances data should also contain the ground truth (target) data, used for evaluation. May contain wildcards. For more information on [wildcards](https://cloud.google.com/storage/docs/gsutil/addlhelp/WildcardNames). For more details about this [input config](https://cloud.google.com/vertex-ai/docs/reference/rest/v1/projects.locations.batchPredictionJobs#InputConfig). The content of gcs source files should be preset to one of the following formats:
62
- 1) Prediction & Evaluation Dataset format, guaranteeing "prompt" and "ground_truth" attributes are included
63
- {
64
- "prompt": "your input/prompt text",
65
- "ground_truth": "your ground truth output text"
66
- }
67
- or
68
- 2) Tuning Dataset format, guaranteeing "input_text" and "output_text" attributes are included.
69
- {
70
- "input_text": "your input/prompt text",
71
- "output_text": "your ground truth output text"
72
- }
63
+ 1) Prediction & Evaluation Dataset format, guaranteeing "prompt" and "ground_truth" attributes are included
64
+ {
65
+ "prompt": "your input/prompt text",
66
+ "ground_truth": "your ground truth output text"
67
+ }
68
+ or
69
+ 2) Tuning Dataset format, guaranteeing "input_text" and "output_text" attributes are included.
70
+ {
71
+ "input_text": "your input/prompt text",
72
+ "output_text": "your ground truth output text"
73
+ }
73
74
  batch_predict_gcs_destination_output_uri: Required. The Google Cloud Storage location of the directory where the eval pipeline output is to be written to.
75
+ service_account: Required. Sets the default service account for workload run-as account. The service account running the pipeline (https://cloud.google.com/vertex-ai/docs/pipelines/configure-project#service-account) submitting jobs must have act-as permission on this run-as account.
74
76
  model_name: The Model name used to run evaluation. Must be a publisher Model or a managed Model sharing the same ancestor location. Starting this job has no impact on any existing deployments of the Model and their resources.
75
77
  evaluation_task: The task that the large language model will be evaluated on. The evaluation component computes a set of metrics relevant to that specific task. Currently supported tasks are: `summarization`, `question-answering`, `text-generation`.
76
78
  input_field_name: The field name of the input eval dataset instances that contains the input prompts to the LLM.
@@ -79,8 +81,7 @@ def evaluation_llm_text_generation_pipeline( # pylint: disable=dangerous-defaul
79
81
  batch_predict_predictions_format: The format in which Vertex AI gives the predictions. Must be one of the Model's supportedOutputStorageFormats. Only "jsonl" is currently supported. For more details about this output config, see https://cloud.google.com/vertex-ai/docs/reference/rest/v1/projects.locations.batchPredictionJobs#OutputConfig.
80
82
  batch_predict_model_parameters: A map of parameters that govern the predictions. Some acceptable parameters include: maxOutputTokens, topK, topP, and temperature.
81
83
  enable_row_based_metrics: Flag of if row based metrics is enabled, default value is false.
82
- machine_type: The machine type of this custom job. If not set, defaulted to `e2-highmem-16`. More details: https://cloud.google.com/compute/docs/machine-resource
83
- service_account: Sets the default service account for workload run-as account. The service account running the pipeline (https://cloud.google.com/vertex-ai/docs/pipelines/configure-project#service-account) submitting jobs must have act-as permission on this run-as account. If unspecified, the Vertex AI Custom Code Service Agent(https://cloud.google.com/vertex-ai/docs/general/access-control#service-agents) for the CustomJob's project.
84
+ machine_type: The machine type of this custom job. If not set, defaulted to `e2-standard-4`. More details: https://cloud.google.com/compute/docs/machine-resource
84
85
  network: The full name of the Compute Engine network to which the job should be peered. For example, `projects/12345/global/networks/myVPC`. Format is of the form `projects/{project}/global/networks/{network}`. Where `{project}` is a project number, as in `12345`, and `{network}` is a network name, as in `myVPC`. To specify this field, you must have already configured VPC Network Peering for Vertex AI (https://cloud.google.com/vertex-ai/docs/general/vpc-peering). If left unspecified, the job is not peered with any network.
85
86
  encryption_spec_key_name: Customer-managed encryption key options. If set, resources created by this pipeline will be encrypted with the provided encryption key. Has the form: `projects/my-project/locations/my-location/keyRings/my-kr/cryptoKeys/my-key`. The key needs to be in the same region as where the compute resource is created.
86
87
  evaluation_display_name: The display name of the uploaded evaluation resource to the Vertex AI model.
@@ -96,12 +97,23 @@ def evaluation_llm_text_generation_pipeline( # pylint: disable=dangerous-defaul
96
97
  evaluation_resource_name=str,
97
98
  )
98
99
 
100
+ preprocessed_model_name = ModelNamePreprocessorOp(
101
+ project=project,
102
+ location=location,
103
+ model_name=model_name,
104
+ service_account=service_account,
105
+ )
106
+
99
107
  get_vertex_model_task = dsl.importer(
100
108
  artifact_uri=(
101
- f'https://{location}-aiplatform.googleapis.com/v1/{model_name}'
109
+ f'https://{location}-aiplatform.googleapis.com/v1/{preprocessed_model_name.outputs["processed_model_name"]}'
102
110
  ),
103
111
  artifact_class=VertexModel,
104
- metadata={'resourceName': model_name},
112
+ metadata={
113
+ 'resourceName': preprocessed_model_name.outputs[
114
+ 'processed_model_name'
115
+ ]
116
+ },
105
117
  )
106
118
  get_vertex_model_task.set_display_name('get-vertex-model')
107
119
 
@@ -13,4 +13,4 @@
13
13
  # limitations under the License.
14
14
  """Google Cloud Pipeline Components version."""
15
15
 
16
- __version__ = "2.10.0"
16
+ __version__ = "2.12.0"
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: google-cloud-pipeline-components
3
- Version: 2.10.0
3
+ Version: 2.12.0
4
4
  Summary: This SDK enables a set of First Party (Google owned) pipeline components that allow users to take their experience from Vertex AI SDK and other Google Cloud services and create a corresponding pipeline using KFP or Managed Pipelines.
5
5
  Home-page: https://github.com/kubeflow/pipelines/tree/master/components/google-cloud
6
6
  Author: The Google Cloud Pipeline Components authors
@@ -31,7 +31,6 @@ Classifier: Topic :: Software Development :: Libraries
31
31
  Classifier: Topic :: Software Development :: Libraries :: Python Modules
32
32
  Requires-Python: >=3.7.0,<3.12.0
33
33
  Description-Content-Type: text/markdown
34
- License-File: LICENSE
35
34
  Requires-Dist: google-api-core (!=2.0.*,!=2.1.*,!=2.2.*,!=2.3.0,<3.0.0dev,>=1.31.5)
36
35
  Requires-Dist: kfp (<=2.7.0,>=2.6.0)
37
36
  Requires-Dist: google-cloud-aiplatform (<2,>=1.14.0)
@@ -2,38 +2,40 @@ google_cloud_pipeline_components/__init__.py,sha256=3Mr8_YbBkTzArlgPDkUKoMzoKHZx
2
2
  google_cloud_pipeline_components/_image.py,sha256=lANDYNk1WSuGZSoTTRcWdjsUvCkkA-PmwouTM9Et7fY,828
3
3
  google_cloud_pipeline_components/_placeholders.py,sha256=517N_NQthPEBFJtsy8NE3WkBJm_dmwmlXdYNtk5gH-c,1233
4
4
  google_cloud_pipeline_components/utils.py,sha256=9FG7umyEXhyUvtNeC46NuQ04olDMR3o-Wp78V1xs8GY,11045
5
- google_cloud_pipeline_components/version.py,sha256=tyM0aRNpNPiE3UO_2Q1R_p343Qxdg0QpJR-UDlS1J-w,678
5
+ google_cloud_pipeline_components/version.py,sha256=NH1ZheZhE2081vUwDDmf6XB3U_sRDSXENrEAPZaux5E,678
6
6
  google_cloud_pipeline_components/_implementation/__init__.py,sha256=sb6SfJl6rt3AKjiWxd-KO9DSiZ3PzGZRcsqKuc1A2Cg,606
7
7
  google_cloud_pipeline_components/_implementation/llm/__init__.py,sha256=sb6SfJl6rt3AKjiWxd-KO9DSiZ3PzGZRcsqKuc1A2Cg,606
8
- google_cloud_pipeline_components/_implementation/llm/batch_prediction_pairwise.py,sha256=PTCCxOKkgjQEBOY3rTaHvJL40VLN5xFVoL3TfixZ8SA,7096
9
- google_cloud_pipeline_components/_implementation/llm/bulk_inferrer.py,sha256=_ewR_Bt6_SBiybtE2fGRpcobWBNyH66XZcIB-K6Tx8Q,3567
8
+ google_cloud_pipeline_components/_implementation/llm/batch_prediction_pairwise.py,sha256=mARB-tDYFr0tpBrLCIh481H4LDuXdr_8UyKVUaOF5Cw,7569
9
+ google_cloud_pipeline_components/_implementation/llm/bulk_inferrer.py,sha256=k-MHsyESWboHdNeRm9q3MOGwbtZr37QNGm_Y_cGsETA,3958
10
10
  google_cloud_pipeline_components/_implementation/llm/deploy_llm_model.py,sha256=Jjme37_M32AK1r_MmHMHZvW8k9LJiqfZ4eJEquWoTt4,5029
11
- google_cloud_pipeline_components/_implementation/llm/deployment_graph.py,sha256=smTV-2wMcKA0y58WObvMY2mmPF4X2lqHjFXwYghmHTI,4663
11
+ google_cloud_pipeline_components/_implementation/llm/deployment_graph.py,sha256=Rpy_qVngv-uUmiEr_vhC8Xn0aw26ptK70cwAvDNkij0,5200
12
12
  google_cloud_pipeline_components/_implementation/llm/env.py,sha256=zY5glHO9oPWsALfYquR0euJHJnXbv2w-21mWVNit2Gw,1864
13
- google_cloud_pipeline_components/_implementation/llm/function_based.py,sha256=EyTJwcVzqTaAp2equ_n0KfldWz6EWPyn9rdwT44bTdE,21780
14
- google_cloud_pipeline_components/_implementation/llm/model_evaluation_text_generation_pairwise.py,sha256=GW-3vImhzfO6HaOWjDkcoWnZ53_kXq3vZnEe8Hxoamc,2628
15
- google_cloud_pipeline_components/_implementation/llm/online_evaluation_pairwise.py,sha256=T1CPpVlz-3LRHZvZeBqUSE7zBoTRb0Xud8NqjCeqNEs,4691
13
+ google_cloud_pipeline_components/_implementation/llm/function_based.py,sha256=dggSFXOtzAreNThA9zDYk3qoRxs6Z9Z8i0XUwk3rGtg,18415
14
+ google_cloud_pipeline_components/_implementation/llm/model_evaluation_text_generation_pairwise.py,sha256=W64FNFfbarOcDw1sSG9J-BQCVPUYx3zLAmwLhhGhth0,5102
15
+ google_cloud_pipeline_components/_implementation/llm/online_evaluation_pairwise.py,sha256=khEli4fSoIQlaiReXOm3zsvsM7BIdbJOXFGUzjcvxOI,5299
16
16
  google_cloud_pipeline_components/_implementation/llm/preference_data_formatter.py,sha256=xqgvMsFgFIuiDAv3V3lf4XJSnLjZSTCHknGkmUcP9fs,5025
17
17
  google_cloud_pipeline_components/_implementation/llm/preprocess_chat_dataset.py,sha256=dMf2uXW4znn9W8xv9ZRNSPI6nZvp64FTq5GAqjXFRDk,11746
18
- google_cloud_pipeline_components/_implementation/llm/private_text_comparison_importer.py,sha256=XlUjRe9CY6-6kf7BaVY0njAdJd2gec1cPxyxiyA248o,3673
19
- google_cloud_pipeline_components/_implementation/llm/private_text_importer.py,sha256=Eus4bc-0JA63JZZvC-OTImbvIFjULYM6HkaRDpqBJxM,4032
20
- google_cloud_pipeline_components/_implementation/llm/reinforcement_learning_graph.py,sha256=XScBguSaVFzsu4l3lHs_RrtII6o_Vhl2hPx1d929TkI,10510
21
- google_cloud_pipeline_components/_implementation/llm/reinforcer.py,sha256=BU1m-tJYsHvSsqNeew4hwgd9bMht_CM5iHtpXgCrHSo,6186
22
- google_cloud_pipeline_components/_implementation/llm/reward_model_graph.py,sha256=49kRS9B1GUxf2jZjzZ3v7YvVqby-EWJrlSqjn8ShTP4,10242
23
- google_cloud_pipeline_components/_implementation/llm/reward_model_trainer.py,sha256=DIVGWvMWXvcK_uhxZT2yUXsYKHNZON0eX1FzvvZ1QqY,4642
24
- google_cloud_pipeline_components/_implementation/llm/supervised_fine_tuner.py,sha256=-JWtsOfb9ZHAxBHUYTM6xk6q9eAhF1gqTWCsjoXNShY,4901
18
+ google_cloud_pipeline_components/_implementation/llm/private_text_comparison_importer.py,sha256=Cwug1Tmk6tvg-l_qyxA6qr1-rslx33RkxA17sedFCz4,4133
19
+ google_cloud_pipeline_components/_implementation/llm/private_text_importer.py,sha256=go6SqWEH5fuDuXYeIzglQIARNG_etOwhyhCsbQgFI8I,4418
20
+ google_cloud_pipeline_components/_implementation/llm/reinforcement_learning_graph.py,sha256=qFZRwHSXHKE4TCroZwFs4pAO5WJfhIvPqCMUlvoKHvg,10152
21
+ google_cloud_pipeline_components/_implementation/llm/reinforcer.py,sha256=yeg_2DGonlmf21KQYQXN28Mza0d6P0IPt9lDEyK5de8,6948
22
+ google_cloud_pipeline_components/_implementation/llm/reward_model_graph.py,sha256=b6IVt75nORhSmotK0dIwRN1Bx7qKAk6fBdQwQq0paEE,10767
23
+ google_cloud_pipeline_components/_implementation/llm/reward_model_trainer.py,sha256=xkj2hnHpZMLutGNxoewTVUsRR2bkLNkVUhWwjY9EXKA,5596
24
+ google_cloud_pipeline_components/_implementation/llm/rlhf_preprocessor.py,sha256=IqwZ2PXGOOfBNeDIp3exKeqPn6kGwaSaozJEr4cbhDs,2510
25
+ google_cloud_pipeline_components/_implementation/llm/supervised_fine_tuner.py,sha256=5HzjhMXMRmaWGv3BlAi8lBg6MMlaaHlbqKez3ZcX5Ss,4951
25
26
  google_cloud_pipeline_components/_implementation/llm/upload_llm_model.py,sha256=e9LiGzrsIuLnPzfib9zT_bMbGxUUvFoZJNUO3Yiijaw,4742
26
27
  google_cloud_pipeline_components/_implementation/llm/upload_tensorboard_metrics.py,sha256=BN-0TQFl49TcE54ltBRt4iZYTjO7718eCLwHKR58ips,4010
27
- google_cloud_pipeline_components/_implementation/llm/utils.py,sha256=0OXBfo6TTmJ4sCgH3C527xtKrwXFPtq7ZIflZ98XVQE,4680
28
+ google_cloud_pipeline_components/_implementation/llm/utils.py,sha256=E250cmvw0QUnt8NLDl5crK6K1o1FguUglQIdBVqfwQI,5548
28
29
  google_cloud_pipeline_components/_implementation/llm/utils_test.py,sha256=co8gWyrowY5CpkFNsaLGQlD_gpIykkVI7czxIizp5cM,2864
30
+ google_cloud_pipeline_components/_implementation/llm/validate_pipeline.py,sha256=SRIqcvZIvFgioH1zvcUsJtmYi8apEsmHtrhmUVK-Pgs,4078
29
31
  google_cloud_pipeline_components/_implementation/llm/generated/__init__.py,sha256=LYxMCPeZcfGqRbt3mo3hY7U02A6G8aWdP_RtdoqxNrQ,606
30
- google_cloud_pipeline_components/_implementation/llm/generated/refined_image_versions.py,sha256=2nGKhfr9a_f64F_XaVuYjJHFT_MeHE83XU6u4lV5B6A,768
32
+ google_cloud_pipeline_components/_implementation/llm/generated/refined_image_versions.py,sha256=C9B3k4m6r22Qvg7GN1E8S_Os3hkk4akAy7ML5nON42Y,763
31
33
  google_cloud_pipeline_components/_implementation/model/__init__.py,sha256=KmOW74re0WZ93DWM1lqqQYbv6w1aIW66BMV3gaAdg3s,811
32
34
  google_cloud_pipeline_components/_implementation/model/get_model/__init__.py,sha256=cXMkDUZHVSbXeXSa3qsI6Ef8Tad9nmusw5NUZaYORdE,662
33
35
  google_cloud_pipeline_components/_implementation/model/get_model/component.py,sha256=H2sbMTWCw8nMDMT-Ni9-pdzVXEFmHYjtP3z1LcI5m5w,2307
34
- google_cloud_pipeline_components/_implementation/model_evaluation/__init__.py,sha256=Ubgd_Fi7p7O0y_dzmYFRdbR36W9kKvTuxJOFSMiUrMk,5645
36
+ google_cloud_pipeline_components/_implementation/model_evaluation/__init__.py,sha256=eq9g2RsGgKmIHsjsUEvoD1GFmix0Pk-GIzU1hfapCbM,5839
35
37
  google_cloud_pipeline_components/_implementation/model_evaluation/utils.py,sha256=9V34RtPZSRNeBwcsImaZM6YC3T7CafT_E00Iby4KHxw,3540
36
- google_cloud_pipeline_components/_implementation/model_evaluation/version.py,sha256=Qfa2_V-1QNxFKQFVZnOhl6BOBZUIBmHzuhyIf19CqYI,963
38
+ google_cloud_pipeline_components/_implementation/model_evaluation/version.py,sha256=QHCvg6WZkQq-VdX7hbWCQHK-7SjHpxSppGa9ppyJNmk,963
37
39
  google_cloud_pipeline_components/_implementation/model_evaluation/chunking/__init__.py,sha256=PRHVsIq1dFb0mweuU0kfUUP90FbX--kxdBGCpwfLTgA,665
38
40
  google_cloud_pipeline_components/_implementation/model_evaluation/chunking/component.py,sha256=lv0eNdIBtnCUs9wi9CGUWE_fd4zodGN7M8fTBiCg0g0,4436
39
41
  google_cloud_pipeline_components/_implementation/model_evaluation/chunking/feature_store_grounding_pipeline.py,sha256=zGCMJhBCWBV-Dg5gz-wpheLQhD-GuEW_fgcb0cWa78U,4167
@@ -42,7 +44,7 @@ google_cloud_pipeline_components/_implementation/model_evaluation/data_sampler/c
42
44
  google_cloud_pipeline_components/_implementation/model_evaluation/dataset_preprocessor/__init__.py,sha256=s7-HxTa9wuPsOcxs9iN1gKrjIlAhoPLje96aFSqM1Vs,677
43
45
  google_cloud_pipeline_components/_implementation/model_evaluation/dataset_preprocessor/component.py,sha256=bBJfDO5RNgRnyIpbSyTEERDnzf5F5blvuZz0UycKsr0,7039
44
46
  google_cloud_pipeline_components/_implementation/model_evaluation/endpoint_batch_predict/__init__.py,sha256=t-qAYEJd27dzl0Wrf21b8J8TON6rTJsoEmK5p5o83wE,679
45
- google_cloud_pipeline_components/_implementation/model_evaluation/endpoint_batch_predict/component.py,sha256=YdUOuJfmnc4A7Mg4x_3qF5AgCNO7ysL0OUy0UAMeI3o,12001
47
+ google_cloud_pipeline_components/_implementation/model_evaluation/endpoint_batch_predict/component.py,sha256=KHMxxkSY218Cl3IrAJWSzoSEhisbV6jAK1ajR6frOqY,11988
46
48
  google_cloud_pipeline_components/_implementation/model_evaluation/error_analysis_annotation/__init__.py,sha256=LSc-h1veE7xA7pVsP0LlamhQ4cTeN6X-ghAKyazdN7Q,671
47
49
  google_cloud_pipeline_components/_implementation/model_evaluation/error_analysis_annotation/component.py,sha256=xyJ89zWKj2yrQjTlbTgYd2DzJ6rqXe2MQGK-EETFP9E,4092
48
50
  google_cloud_pipeline_components/_implementation/model_evaluation/evaluated_annotation/__init__.py,sha256=UBMB8ThxUAXaLxUe4RP_0LpiQRdBuFpKBVC3ldaP7CM,677
@@ -63,9 +65,9 @@ google_cloud_pipeline_components/_implementation/model_evaluation/llm_embedding/
63
65
  google_cloud_pipeline_components/_implementation/model_evaluation/llm_embedding_retrieval/__init__.py,sha256=Q9YimgEKkKP8QW8fV50nNRjWXdt0_90Qr_gfQ0A9fao,691
64
66
  google_cloud_pipeline_components/_implementation/model_evaluation/llm_embedding_retrieval/component.py,sha256=er26AxV0ydpKFbhrLs2IIia9hbLxXhe78Q-fQvvK_20,7265
65
67
  google_cloud_pipeline_components/_implementation/model_evaluation/llm_evaluation/__init__.py,sha256=gDyltb_vTZRncaVZbMUkXYBHZsEg_CuaPAQVWUOGy7c,671
66
- google_cloud_pipeline_components/_implementation/model_evaluation/llm_evaluation/component.py,sha256=3eo6QFoHj9Sujvfq3Z8vT3mhOLbSe4cA6hLww_wuJ1M,7478
68
+ google_cloud_pipeline_components/_implementation/model_evaluation/llm_evaluation/component.py,sha256=rclGlXxDr6vozQ6elDDCDbdJXWjG461Z9nmTaiKGsFs,7478
67
69
  google_cloud_pipeline_components/_implementation/model_evaluation/llm_evaluation_preprocessor/__init__.py,sha256=LLvQQ9Mv_md1POK_XErR7NUr-XAZX28w5KD0EQiT32w,684
68
- google_cloud_pipeline_components/_implementation/model_evaluation/llm_evaluation_preprocessor/component.py,sha256=n-d-Re3qBHZh4YZutF891yWtIahV0TE5193TT40T3N0,7952
70
+ google_cloud_pipeline_components/_implementation/model_evaluation/llm_evaluation_preprocessor/component.py,sha256=H_rqyBZJP3VXO9_S5kr5soY6wJ0bFCIxXoDTIqR1Pxg,7952
69
71
  google_cloud_pipeline_components/_implementation/model_evaluation/llm_information_retrieval_preprocessor/__init__.py,sha256=UcAfohvqwJ7X8rlV6I2RsZ5ohYWbafXI5yYRAAwvspE,695
70
72
  google_cloud_pipeline_components/_implementation/model_evaluation/llm_information_retrieval_preprocessor/component.py,sha256=hpwra0rXUP_LG6WNdnB9RD0cy1Gn3InrzAUJIk-oRc4,8142
71
73
  google_cloud_pipeline_components/_implementation/model_evaluation/llm_retrieval_metrics/__init__.py,sha256=oVVVTCE230KYGcuz_rXYEuypZmm6OKg7K2BsFtpcDw0,701
@@ -75,6 +77,8 @@ google_cloud_pipeline_components/_implementation/model_evaluation/llm_safety_bia
75
77
  google_cloud_pipeline_components/_implementation/model_evaluation/llm_safety_bias/evaluation_llm_safety_bias_pipeline.py,sha256=n5I3_RPbDR3XZh8E2z_3hX2H3oVZB5nFzmrXOM3lB-A,7005
76
78
  google_cloud_pipeline_components/_implementation/model_evaluation/model_inference/__init__.py,sha256=71Kfj1wk1UuUch15F1u2Nv47v2lAjeL28uZ-8Fw61_c,672
77
79
  google_cloud_pipeline_components/_implementation/model_evaluation/model_inference/component.py,sha256=0A9-gUDLg7lb3KBXd1ipOb1hnY0z48ey_M2NDIXFkqU,16211
80
+ google_cloud_pipeline_components/_implementation/model_evaluation/model_name_preprocessor/__init__.py,sha256=HSHK9T5ApjeFSjrTvweQkYf2PiCZ481NpEcv1DGfeR4,647
81
+ google_cloud_pipeline_components/_implementation/model_evaluation/model_name_preprocessor/component.py,sha256=--RQmRZ-m4nlX4SgF-b4NxpcX9pIGkHv7YnAkdoe2OA,2583
78
82
  google_cloud_pipeline_components/_implementation/model_evaluation/target_field_data_remover/__init__.py,sha256=B4VuH-pN_qGbJjaVNWB5b2vfdPP5yqqTphRNLukMY6o,682
79
83
  google_cloud_pipeline_components/_implementation/model_evaluation/target_field_data_remover/component.py,sha256=OeMON9Oms1xso5Emm4W5q6oUgcix9XWLlKoTmN-OUfI,5738
80
84
  google_cloud_pipeline_components/_implementation/model_evaluation/text2sql/__init__.py,sha256=xGhjYMo_kirteCvrJqoF2jiSLexdkSRY0C-2sNkNlbk,664
@@ -96,7 +100,7 @@ google_cloud_pipeline_components/container/_implementation/model/get_model/__ini
96
100
  google_cloud_pipeline_components/container/_implementation/model/get_model/get_model.py,sha256=BHZHxaXMFUPlhsRTmQZBrMf0DZd0R5rvMgG3enw70p8,4975
97
101
  google_cloud_pipeline_components/container/_implementation/model_evaluation/__init__.py,sha256=d0va9RCvobpiyxTwpxBhxrslwAUqm8SsWI-AUx2La5A,678
98
102
  google_cloud_pipeline_components/container/_implementation/model_evaluation/import_evaluated_annotation.py,sha256=PvTrdoklV6ZBaUZIwJn0_hv9pV3b2XYJMlTmafnEvMQ,10196
99
- google_cloud_pipeline_components/container/_implementation/model_evaluation/import_model_evaluation.py,sha256=d9QI78XLB3hRnEz0pZ2fkfutQAfARwcL7mcn9SAAU3M,17835
103
+ google_cloud_pipeline_components/container/_implementation/model_evaluation/import_model_evaluation.py,sha256=ZdGKe5o02X2FQEiChOfcpVNSwvpBVhPvbkDthrg038g,17895
100
104
  google_cloud_pipeline_components/container/preview/__init__.py,sha256=tOrlxtIqA4e41GJDdcldd7y32wrWjZvwT6Hq8R33l1I,651
101
105
  google_cloud_pipeline_components/container/preview/custom_job/__init__.py,sha256=KK7TRANpB8dE3H8VNxzSUDIVWaLBHNM9BfDF8JvcwXk,686
102
106
  google_cloud_pipeline_components/container/preview/custom_job/launcher.py,sha256=mpfayP1I_qbbPLc6M9C3YpLo6fHmzonEeVJy_o43zYU,1922
@@ -320,26 +324,24 @@ google_cloud_pipeline_components/preview/custom_job/component.py,sha256=dnSrcilF
320
324
  google_cloud_pipeline_components/preview/custom_job/utils.py,sha256=knm5G8cI1_zdRilHQWujUJ3PNZG9RMo7diQ22FQQXs0,16062
321
325
  google_cloud_pipeline_components/preview/dataflow/__init__.py,sha256=74-o9aye0R356KRmf5sBeXZ3OkBWEn62pywrclsEIW4,773
322
326
  google_cloud_pipeline_components/preview/llm/__init__.py,sha256=acmo31OFe-d7Ubo5FC2baLwxORFQzLtLdm8o5cO15qY,996
323
- google_cloud_pipeline_components/preview/llm/infer/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
324
- google_cloud_pipeline_components/preview/llm/infer/component.py,sha256=Wwy-PJ89fBIrGbUfocr8DRhLY24qyP_UrJct8RyR1Vs,7387
327
+ google_cloud_pipeline_components/preview/llm/infer/__init__.py,sha256=sb6SfJl6rt3AKjiWxd-KO9DSiZ3PzGZRcsqKuc1A2Cg,606
328
+ google_cloud_pipeline_components/preview/llm/infer/component.py,sha256=lRksuPdsDj9UYkBWh7Rb9w-HZ_SbrTAgZKeTtQYmkR8,7798
325
329
  google_cloud_pipeline_components/preview/llm/rlaif/__init__.py,sha256=LYxMCPeZcfGqRbt3mo3hY7U02A6G8aWdP_RtdoqxNrQ,606
326
- google_cloud_pipeline_components/preview/llm/rlaif/component.py,sha256=YpXEMdtJ-i00gnWRh94VCbgR9yMkWPh6lDmlX8PvFi8,10238
330
+ google_cloud_pipeline_components/preview/llm/rlaif/component.py,sha256=F4uzuz2pcLDd5IJ6--IkZf2dcmimiYfCivwmPwL_QIg,10801
327
331
  google_cloud_pipeline_components/preview/llm/rlhf/__init__.py,sha256=sb6SfJl6rt3AKjiWxd-KO9DSiZ3PzGZRcsqKuc1A2Cg,606
328
- google_cloud_pipeline_components/preview/llm/rlhf/component.py,sha256=wLNtE8r67oVctriJQRFIMdZz5MTa3YafQ4kW1TnPigY,10977
329
- google_cloud_pipeline_components/preview/model_evaluation/__init__.py,sha256=k5dgMt_ijQR94SN_xr9pWgynxWM0z3d71Jnw7JZgg18,1949
332
+ google_cloud_pipeline_components/preview/llm/rlhf/component.py,sha256=xZfzOZ91_TB7yJgWT63WmC9jQiiROsavIZgC7lsWNIk,12613
333
+ google_cloud_pipeline_components/preview/model_evaluation/__init__.py,sha256=GvsNkxuUH0Z9HpZpTXxTPRL8621lWDbXMwg_UUDtrCg,1939
330
334
  google_cloud_pipeline_components/preview/model_evaluation/data_bias_component.py,sha256=YiwkWfbGymX_lDIg_x7AP6nYMm3MQp_NgV8xuSZxCpU,5791
331
- google_cloud_pipeline_components/preview/model_evaluation/evaluation_llm_classification_pipeline.py,sha256=IjCIakZFh7KB6kmku7ztaH-qFm9LoEctwwMtxmDOg5g,11262
332
- google_cloud_pipeline_components/preview/model_evaluation/evaluation_llm_text_generation_pipeline.py,sha256=afS9-rkKbQHDwOldtFC8w7Xv9UOqIU-Xt6ZEim14fqg,10761
333
335
  google_cloud_pipeline_components/preview/model_evaluation/feature_attribution_component.py,sha256=XWrI1inQ9hKixFrp2LUdgu7hONYUvbsxv2GXZ-UTkCY,7450
334
336
  google_cloud_pipeline_components/preview/model_evaluation/feature_attribution_graph_component.py,sha256=jesgBUKbIB_qQoYb5-Bv_LBbFHl0tPyMlVFx-o1eE6k,13624
335
337
  google_cloud_pipeline_components/preview/model_evaluation/model_bias_component.py,sha256=R8WhT8jf_OOpMuABRh2BYTDEcfiGAf6VA-vFgiTymYY,6674
336
338
  google_cloud_pipeline_components/preview/model_evaluation/utils.py,sha256=oRlEvA3zMSTzgxJklZD0A-BzFDx0-PsBHBXZ4kmaREY,7539
337
339
  google_cloud_pipeline_components/preview/model_evaluation/model_based_llm_evaluation/__init__.py,sha256=ee_EyGhwqXIjR3Rx9t-o2gV9TssU-VErMU7LtDA7s9k,838
338
340
  google_cloud_pipeline_components/preview/model_evaluation/model_based_llm_evaluation/autosxs/__init__.py,sha256=sb6SfJl6rt3AKjiWxd-KO9DSiZ3PzGZRcsqKuc1A2Cg,606
339
- google_cloud_pipeline_components/preview/model_evaluation/model_based_llm_evaluation/autosxs/autosxs_pipeline.py,sha256=rymTHXZZCMFtwzf9qOjDx2qd2yCdTYzUO0kfja7kAiE,7055
341
+ google_cloud_pipeline_components/preview/model_evaluation/model_based_llm_evaluation/autosxs/autosxs_pipeline.py,sha256=Sw-OvuJnDId9l1kmpX6zgOA-nEskUV9EQ7rcHqShI9g,8856
340
342
  google_cloud_pipeline_components/proto/__init__.py,sha256=aiPUc6gpQwG9cRTYfw3ChFCJfDr3vAIsm2eMYUDJjJQ,661
341
343
  google_cloud_pipeline_components/proto/gcp_resources_pb2.py,sha256=ssNNm4zjiWbuBUS7IH6kyrvvfmcC_Z5F7hOAuQe_YLk,2134
342
- google_cloud_pipeline_components/proto/preflight_validations_pb2.py,sha256=ZZFTISXvqQl-284O_zPJrgXO4REPLwn3qxXg8BTJHM0,3056
344
+ google_cloud_pipeline_components/proto/preflight_validations_pb2.py,sha256=5MioLb12O4to8LYXFv-irH31BKot2LGtXvxOeXZSQlQ,2588
343
345
  google_cloud_pipeline_components/proto/template_metadata_pb2.py,sha256=chzvvNZj5XEvifJbN77L7ZJv7jta-4ycHUKjTLZYCAg,7773
344
346
  google_cloud_pipeline_components/types/__init__.py,sha256=1WFkL49QEy-gNb6ywQOE4yZkD7DoULAeiL1tLdb3S28,606
345
347
  google_cloud_pipeline_components/types/artifact_types.py,sha256=zvwvzRuFb_s1VS1mtKkltOOACATJk-kG7dVFOUasfw4,23725
@@ -433,7 +435,7 @@ google_cloud_pipeline_components/v1/bigquery/query_job/__init__.py,sha256=Ot_1Bl
433
435
  google_cloud_pipeline_components/v1/bigquery/query_job/component.py,sha256=100KwAgJZ8fQrSCfy8oMwjghsO9HICvQRHOQjDwqh_I,5187
434
436
  google_cloud_pipeline_components/v1/custom_job/__init__.py,sha256=qxHupfqqpAQ3sK3Pp7pKNGfPKsS4qb1E9xM067U5MMw,1278
435
437
  google_cloud_pipeline_components/v1/custom_job/component.py,sha256=vluHmVr_7jqJgx4t9n8HE2dHhxjZRtgT05sTa-95Pvw,6070
436
- google_cloud_pipeline_components/v1/custom_job/utils.py,sha256=M_AN2mh5fk_6A4M1_G8rT8JkA6eGjGLmcrcNKYjMT1Q,15509
438
+ google_cloud_pipeline_components/v1/custom_job/utils.py,sha256=9KGLjblWqfLEZVDGwDo1M-bliBJ0lg97MejUQSHXI8Q,15466
437
439
  google_cloud_pipeline_components/v1/dataflow/__init__.py,sha256=ZPJGssKq2P5iwFY_I68gZPoXSPHVNYQ59nVlA8mOtOo,1063
438
440
  google_cloud_pipeline_components/v1/dataflow/flex_template/__init__.py,sha256=uG42x7_0zehtVV7f_fHvPHBJ48aqi3jJwLY6tplH8jk,669
439
441
  google_cloud_pipeline_components/v1/dataflow/flex_template/component.py,sha256=C9oHSlOwh0fTUPN9b2u7vNvM2NbkWT-FX82kPOKkzLc,11701
@@ -502,10 +504,10 @@ google_cloud_pipeline_components/v1/model/delete_model/component.py,sha256=uKA9s
502
504
  google_cloud_pipeline_components/v1/model/export_model/__init__.py,sha256=c4fG2x5dxyMDY4m9YrqJK67qqSVa3W7HA0E0jCO2OYQ,661
503
505
  google_cloud_pipeline_components/v1/model/export_model/component.py,sha256=7Pb4GI9U7ITAqpCNBMvM43r4qCQqMsjgZJRNWAJ51lI,4908
504
506
  google_cloud_pipeline_components/v1/model/get_model/__init__.py,sha256=oAWKl9PXSXXsMY-M9EizQbIVvHNY-Qw84xfBGimvYLQ,662
505
- google_cloud_pipeline_components/v1/model/get_model/component.py,sha256=zLd4zHVdCIkrf6jN04r1sLw7k5zbg4CMbRnJfPoawZM,2117
507
+ google_cloud_pipeline_components/v1/model/get_model/component.py,sha256=lx5x2MJ-Ji75z12W1RMqKlGzxbmgZZAmYBy48XQmWFI,2089
506
508
  google_cloud_pipeline_components/v1/model/upload_model/__init__.py,sha256=6uwVQw6h3TXxei5imUE4JaS97XXzDRPQyNnTE-qFjck,661
507
509
  google_cloud_pipeline_components/v1/model/upload_model/component.py,sha256=6zy9G2AK2twiyT-B2X15qovvi6qHu0koRzzzelgN8CQ,7280
508
- google_cloud_pipeline_components/v1/model_evaluation/__init__.py,sha256=8hxWO8ijYDmg48H3IEy0G3ihjORkVctdTkur4ECoyR0,2358
510
+ google_cloud_pipeline_components/v1/model_evaluation/__init__.py,sha256=haAiMuha2cEVJQjOcbf3XblUBdSieLm_JUT_wwyVssc,2739
509
511
  google_cloud_pipeline_components/v1/model_evaluation/classification_component.py,sha256=x0pUY4OwFIkmS11Q7rDLI6fspaDUBo6wU5BBP2jAKC0,12122
510
512
  google_cloud_pipeline_components/v1/model_evaluation/error_analysis_pipeline.py,sha256=l972cEWDViVV41oCy0jTsX96Pau49D3KdJA3yAjKEY0,20122
511
513
  google_cloud_pipeline_components/v1/model_evaluation/evaluated_annotation_pipeline.py,sha256=JskLsIHvLNNvNaMD8gTa0NWlB5gKiSSyqeC78Fn5OW8,12142
@@ -513,14 +515,16 @@ google_cloud_pipeline_components/v1/model_evaluation/evaluation_automl_tabular_f
513
515
  google_cloud_pipeline_components/v1/model_evaluation/evaluation_automl_tabular_pipeline.py,sha256=p-GH_tVqffHwck5Sll0BHsnvVAHQk48WNAUohZxATcs,37108
514
516
  google_cloud_pipeline_components/v1/model_evaluation/evaluation_automl_unstructure_data_pipeline.py,sha256=aiZOK5BE5mdqJL3s4pU1Y_ynHvWBE9JIxl9UrJuNsco,42404
515
517
  google_cloud_pipeline_components/v1/model_evaluation/evaluation_feature_attribution_pipeline.py,sha256=ChDwHvPCn0prrK1FLvEhAbaTmA153M9NG3Wj3QIlNHs,51173
518
+ google_cloud_pipeline_components/v1/model_evaluation/evaluation_llm_classification_pipeline.py,sha256=Vf_O-8VWKZlR_tCmFNNcQWp6VWK8c67IBWKxbt3ZQBg,11672
519
+ google_cloud_pipeline_components/v1/model_evaluation/evaluation_llm_text_generation_pipeline.py,sha256=ufVZwpEerSLLo_yGJVh7cgBBTeL3RmkVuWKHkCiaQ9U,11056
516
520
  google_cloud_pipeline_components/v1/model_evaluation/forecasting_component.py,sha256=gOnvKAJWa3velczeuVBCzW6b_tcc2v_lNFqHXGhjD44,10017
517
521
  google_cloud_pipeline_components/v1/model_evaluation/regression_component.py,sha256=eFrjrKQot3-SlRCoKoTOEsyp2Xj0GfDtrjpxTDKAHYY,9117
518
522
  google_cloud_pipeline_components/v1/vertex_notification_email/__init__.py,sha256=YIRljNy_oHY_vRda-kfhm5QiulNd_SIIPbmpzOiYJ0k,863
519
523
  google_cloud_pipeline_components/v1/vertex_notification_email/component.py,sha256=Dau8ZI0mzLBnLOUBQm6EtK8gbtX1u57t76Ud5qlg9xc,2163
520
524
  google_cloud_pipeline_components/v1/wait_gcp_resources/__init__.py,sha256=w6dfz-rYsYnxFapRH1Dix3GVz0mhPW0m1IVpE6z8jbg,878
521
525
  google_cloud_pipeline_components/v1/wait_gcp_resources/component.py,sha256=Nsfj5c3eeZq83fHLvv2IlpK4jrjxLxRksFYOl5W6JnA,2468
522
- google_cloud_pipeline_components-2.10.0.dist-info/LICENSE,sha256=VAc1R5OxOELKsX5L5Ldp5THfNtxtt1cMIZBaC0Jdj5Q,13118
523
- google_cloud_pipeline_components-2.10.0.dist-info/METADATA,sha256=Ne2NO7-WvlKObn9Eu__9EBcs-q2L70bNYik4-Rckbu0,5912
524
- google_cloud_pipeline_components-2.10.0.dist-info/WHEEL,sha256=ewwEueio1C2XeHTvT17n8dZUJgOvyCWCt0WVNLClP9o,92
525
- google_cloud_pipeline_components-2.10.0.dist-info/top_level.txt,sha256=E8T4T8KGMGLXbHvt2goa98oezRpxryPC6QhWBZ27Hhc,33
526
- google_cloud_pipeline_components-2.10.0.dist-info/RECORD,,
526
+ google_cloud_pipeline_components-2.12.0.dist-info/LICENSE,sha256=VAc1R5OxOELKsX5L5Ldp5THfNtxtt1cMIZBaC0Jdj5Q,13118
527
+ google_cloud_pipeline_components-2.12.0.dist-info/METADATA,sha256=GeF9-FA9p-AwA9y2--CTyacsia2uBSyr8i2aTNUwyOk,5890
528
+ google_cloud_pipeline_components-2.12.0.dist-info/WHEEL,sha256=pkctZYzUS4AYVn6dJ-7367OJZivF2e8RA9b_ZBjif18,92
529
+ google_cloud_pipeline_components-2.12.0.dist-info/top_level.txt,sha256=E8T4T8KGMGLXbHvt2goa98oezRpxryPC6QhWBZ27Hhc,33
530
+ google_cloud_pipeline_components-2.12.0.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: bdist_wheel (0.37.0)
2
+ Generator: bdist_wheel (0.40.0)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5