google-cloud-pipeline-components 2.10.0__py3-none-any.whl → 2.12.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of google-cloud-pipeline-components might be problematic. Click here for more details.
- google_cloud_pipeline_components/_implementation/llm/batch_prediction_pairwise.py +14 -4
- google_cloud_pipeline_components/_implementation/llm/bulk_inferrer.py +7 -0
- google_cloud_pipeline_components/_implementation/llm/deployment_graph.py +6 -1
- google_cloud_pipeline_components/_implementation/llm/function_based.py +74 -168
- google_cloud_pipeline_components/_implementation/llm/generated/refined_image_versions.py +1 -1
- google_cloud_pipeline_components/_implementation/llm/model_evaluation_text_generation_pairwise.py +45 -3
- google_cloud_pipeline_components/_implementation/llm/online_evaluation_pairwise.py +14 -2
- google_cloud_pipeline_components/_implementation/llm/private_text_comparison_importer.py +9 -2
- google_cloud_pipeline_components/_implementation/llm/private_text_importer.py +8 -1
- google_cloud_pipeline_components/_implementation/llm/reinforcement_learning_graph.py +14 -28
- google_cloud_pipeline_components/_implementation/llm/reinforcer.py +13 -0
- google_cloud_pipeline_components/_implementation/llm/reward_model_graph.py +36 -27
- google_cloud_pipeline_components/_implementation/llm/reward_model_trainer.py +17 -0
- google_cloud_pipeline_components/_implementation/llm/rlhf_preprocessor.py +60 -0
- google_cloud_pipeline_components/_implementation/llm/supervised_fine_tuner.py +1 -0
- google_cloud_pipeline_components/_implementation/llm/utils.py +25 -2
- google_cloud_pipeline_components/_implementation/llm/validate_pipeline.py +113 -0
- google_cloud_pipeline_components/_implementation/model_evaluation/__init__.py +2 -0
- google_cloud_pipeline_components/_implementation/model_evaluation/endpoint_batch_predict/component.py +1 -1
- google_cloud_pipeline_components/_implementation/model_evaluation/llm_evaluation/component.py +2 -2
- google_cloud_pipeline_components/_implementation/model_evaluation/llm_evaluation_preprocessor/component.py +2 -2
- google_cloud_pipeline_components/_implementation/model_evaluation/model_name_preprocessor/__init__.py +14 -0
- google_cloud_pipeline_components/_implementation/model_evaluation/model_name_preprocessor/component.py +74 -0
- google_cloud_pipeline_components/_implementation/model_evaluation/version.py +1 -1
- google_cloud_pipeline_components/container/_implementation/model_evaluation/import_model_evaluation.py +7 -7
- google_cloud_pipeline_components/preview/llm/infer/__init__.py +13 -0
- google_cloud_pipeline_components/preview/llm/infer/component.py +10 -10
- google_cloud_pipeline_components/preview/llm/rlaif/component.py +10 -3
- google_cloud_pipeline_components/preview/llm/rlhf/component.py +43 -22
- google_cloud_pipeline_components/preview/model_evaluation/__init__.py +2 -2
- google_cloud_pipeline_components/preview/model_evaluation/model_based_llm_evaluation/autosxs/autosxs_pipeline.py +45 -3
- google_cloud_pipeline_components/proto/preflight_validations_pb2.py +19 -30
- google_cloud_pipeline_components/v1/custom_job/utils.py +22 -22
- google_cloud_pipeline_components/v1/model/get_model/component.py +1 -1
- google_cloud_pipeline_components/v1/model_evaluation/__init__.py +4 -0
- google_cloud_pipeline_components/{preview → v1}/model_evaluation/evaluation_llm_classification_pipeline.py +14 -2
- google_cloud_pipeline_components/{preview → v1}/model_evaluation/evaluation_llm_text_generation_pipeline.py +29 -17
- google_cloud_pipeline_components/version.py +1 -1
- {google_cloud_pipeline_components-2.10.0.dist-info → google_cloud_pipeline_components-2.12.0.dist-info}/METADATA +1 -2
- {google_cloud_pipeline_components-2.10.0.dist-info → google_cloud_pipeline_components-2.12.0.dist-info}/RECORD +43 -39
- {google_cloud_pipeline_components-2.10.0.dist-info → google_cloud_pipeline_components-2.12.0.dist-info}/WHEEL +1 -1
- {google_cloud_pipeline_components-2.10.0.dist-info → google_cloud_pipeline_components-2.12.0.dist-info}/LICENSE +0 -0
- {google_cloud_pipeline_components-2.10.0.dist-info → google_cloud_pipeline_components-2.12.0.dist-info}/top_level.txt +0 -0
|
@@ -75,30 +75,30 @@ def create_custom_training_job_from_component(
|
|
|
75
75
|
|
|
76
76
|
This utility converts a [KFP component](https://www.kubeflow.org/docs/components/pipelines/v2/components/) provided to `component_spec` into `CustomTrainingJobOp` component. Your components inputs, outputs, and logic are carried over, with additional [CustomJob](https://cloud.google.com/vertex-ai/docs/reference/rest/v1/CustomJobSpec) parameters exposed. Note that this utility constructs a ClusterSpec where the master and all the workers use the same spec, meaning all disk/machine spec related parameters will apply to all replicas. This is suitable for uses cases such as executing a training component over multiple replicas with [MultiWorkerMirroredStrategy](https://www.tensorflow.org/api_docs/python/tf/distribute/MultiWorkerMirroredStrategy) or [MirroredStrategy](https://www.tensorflow.org/api_docs/python/tf/distribute/MirroredStrategy). See [Create custom training jobs](https://cloud.google.com/vertex-ai/docs/training/create-custom-job) for more information.
|
|
77
77
|
|
|
78
|
-
|
|
79
|
-
|
|
80
|
-
|
|
81
|
-
|
|
82
|
-
|
|
83
|
-
|
|
84
|
-
|
|
85
|
-
|
|
86
|
-
|
|
87
|
-
|
|
88
|
-
|
|
89
|
-
|
|
90
|
-
|
|
91
|
-
|
|
92
|
-
|
|
93
|
-
|
|
94
|
-
|
|
95
|
-
|
|
96
|
-
|
|
97
|
-
|
|
98
|
-
|
|
78
|
+
Args:
|
|
79
|
+
component_spec: A KFP component.
|
|
80
|
+
display_name: The name of the CustomJob. If not provided the component's name will be used instead.
|
|
81
|
+
replica_count: The count of instances in the cluster. One replica always counts towards the master in worker_pool_spec[0] and the remaining replicas will be allocated in worker_pool_spec[1]. See [more information.](https://cloud.google.com/vertex-ai/docs/training/distributed-training#configure_a_distributed_training_job)
|
|
82
|
+
machine_type: The type of the machine to run the CustomJob. The default value is "n1-standard-4". See [more information](https://cloud.google.com/vertex-ai/docs/training/configure-compute#machine-types).
|
|
83
|
+
accelerator_type: The type of accelerator(s) that may be attached to the machine per `accelerator_count`. See [more information](https://cloud.google.com/vertex-ai/docs/reference/rest/v1/MachineSpec#acceleratortype).
|
|
84
|
+
accelerator_count: The number of accelerators to attach to the machine. Defaults to 1 if `accelerator_type` is set.
|
|
85
|
+
boot_disk_type: Type of the boot disk (default is "pd-ssd"). Valid values: "pd-ssd" (Persistent Disk Solid State Drive) or "pd-standard" (Persistent Disk Hard Disk Drive). boot_disk_type is set as a static value and cannot be changed as a pipeline parameter.
|
|
86
|
+
boot_disk_size_gb: Size in GB of the boot disk (default is 100GB). `boot_disk_size_gb` is set as a static value and cannot be changed as a pipeline parameter.
|
|
87
|
+
timeout: The maximum job running time. The default is 7 days. A duration in seconds with up to nine fractional digits, terminated by 's', for example: "3.5s".
|
|
88
|
+
restart_job_on_worker_restart: Restarts the entire CustomJob if a worker gets restarted. This feature can be used by distributed training jobs that are not resilient to workers leaving and joining a job.
|
|
89
|
+
service_account: Sets the default service account for workload run-as account. The [service account](https://cloud.google.com/vertex-ai/docs/pipelines/configure-project#service-account) running the pipeline submitting jobs must have act-as permission on this run-as account. If unspecified, the Vertex AI Custom Code [Service Agent](https://cloud.google.com/vertex-ai/docs/general/access-control#service-agents) for the CustomJob's project.
|
|
90
|
+
network: The full name of the Compute Engine network to which the job should be peered. For example, `projects/12345/global/networks/myVPC`. Format is of the form `projects/{project}/global/networks/{network}`. Where `{project}` is a project number, as in `12345`, and `{network}` is a network name. Private services access must already be configured for the network. If left unspecified, the job is not peered with any network.
|
|
91
|
+
encryption_spec_key_name: Customer-managed encryption key options for the CustomJob. If this is set, then all resources created by the CustomJob will be encrypted with the provided encryption key.
|
|
92
|
+
tensorboard: The name of a Vertex AI TensorBoard resource to which this CustomJob will upload TensorBoard logs.
|
|
93
|
+
enable_web_access: Whether you want Vertex AI to enable [interactive shell access](https://cloud.google.com/vertex-ai/docs/training/monitor-debug-interactive-shell) to training containers. If `True`, you can access interactive shells at the URIs given by [CustomJob.web_access_uris][].
|
|
94
|
+
reserved_ip_ranges: A list of names for the reserved IP ranges under the VPC network that can be used for this job. If set, we will deploy the job within the provided IP ranges. Otherwise, the job will be deployed to any IP ranges under the provided VPC network.
|
|
95
|
+
nfs_mounts: A list of [NfsMount](https://cloud.google.com/vertex-ai/docs/reference/rest/v1/CustomJobSpec#NfsMount) resource specs in Json dict format. For more details about mounting NFS for CustomJob, see [Mount an NFS share for custom training](https://cloud.google.com/vertex-ai/docs/training/train-nfs-share).
|
|
96
|
+
base_output_directory: The Cloud Storage location to store the output of this CustomJob or HyperparameterTuningJob. See [more information](https://cloud.google.com/vertex-ai/docs/reference/rest/v1/GcsDestination).
|
|
97
|
+
labels: The labels with user-defined metadata to organize the CustomJob. See [more information](https://goo.gl/xmQnxf).
|
|
98
|
+
env: Environment variables to be passed to the container. Takes the form `[{'name': '...', 'value': '...'}]`. Maximum limit is 100.
|
|
99
99
|
|
|
100
100
|
Returns:
|
|
101
|
-
|
|
101
|
+
A KFP component with CustomJob specification applied.
|
|
102
102
|
"""
|
|
103
103
|
# fmt: on
|
|
104
104
|
# This function constructs a Custom Job component based on the input
|
|
@@ -30,7 +30,7 @@ def model_get(
|
|
|
30
30
|
|
|
31
31
|
Args:
|
|
32
32
|
project: Project from which to get the VertexModel. Defaults to the project in which the PipelineJob is run.
|
|
33
|
-
model_name:
|
|
33
|
+
model_name: Specify the model name in one of the following formats: {model}: Fetches the default model version. {model}@{model_version_id}: Fetches the model version specified by its ID. {model}@{model_version_alias}: Fetches the model version specified by its alias.
|
|
34
34
|
location: Location from which to get the VertexModel. Defaults to `us-central1`.
|
|
35
35
|
|
|
36
36
|
Returns:
|
|
@@ -20,6 +20,8 @@ from google_cloud_pipeline_components.v1.model_evaluation.evaluation_automl_tabu
|
|
|
20
20
|
from google_cloud_pipeline_components.v1.model_evaluation.evaluation_automl_tabular_pipeline import evaluation_automl_tabular_pipeline
|
|
21
21
|
from google_cloud_pipeline_components.v1.model_evaluation.evaluation_automl_unstructure_data_pipeline import evaluation_automl_unstructure_data_pipeline
|
|
22
22
|
from google_cloud_pipeline_components.v1.model_evaluation.evaluation_feature_attribution_pipeline import evaluation_feature_attribution_pipeline
|
|
23
|
+
from google_cloud_pipeline_components.v1.model_evaluation.evaluation_llm_classification_pipeline import evaluation_llm_classification_pipeline
|
|
24
|
+
from google_cloud_pipeline_components.v1.model_evaluation.evaluation_llm_text_generation_pipeline import evaluation_llm_text_generation_pipeline
|
|
23
25
|
from google_cloud_pipeline_components.v1.model_evaluation.forecasting_component import model_evaluation_forecasting as ModelEvaluationForecastingOp
|
|
24
26
|
from google_cloud_pipeline_components.v1.model_evaluation.regression_component import model_evaluation_regression as ModelEvaluationRegressionOp
|
|
25
27
|
|
|
@@ -30,6 +32,8 @@ __all__ = [
|
|
|
30
32
|
'evaluation_automl_tabular_pipeline',
|
|
31
33
|
'evaluation_automl_unstructure_data_pipeline',
|
|
32
34
|
'evaluation_feature_attribution_pipeline',
|
|
35
|
+
'evaluation_llm_classification_pipeline',
|
|
36
|
+
'evaluation_llm_text_generation_pipeline',
|
|
33
37
|
'ModelEvaluationClassificationOp',
|
|
34
38
|
'ModelEvaluationRegressionOp',
|
|
35
39
|
'ModelEvaluationForecastingOp',
|
|
@@ -18,6 +18,7 @@ from typing import Dict, List, NamedTuple
|
|
|
18
18
|
from google_cloud_pipeline_components._implementation.model_evaluation import LLMEvaluationClassificationPredictionsPostprocessorOp
|
|
19
19
|
from google_cloud_pipeline_components._implementation.model_evaluation import LLMEvaluationPreprocessorOp
|
|
20
20
|
from google_cloud_pipeline_components._implementation.model_evaluation import ModelImportEvaluationOp
|
|
21
|
+
from google_cloud_pipeline_components._implementation.model_evaluation import ModelNamePreprocessorOp
|
|
21
22
|
from google_cloud_pipeline_components.types.artifact_types import ClassificationMetrics
|
|
22
23
|
from google_cloud_pipeline_components.types.artifact_types import VertexModel
|
|
23
24
|
from google_cloud_pipeline_components.v1.batch_predict_job import ModelBatchPredictOp
|
|
@@ -97,12 +98,23 @@ def evaluation_llm_classification_pipeline( # pylint: disable=dangerous-default
|
|
|
97
98
|
evaluation_resource_name=str,
|
|
98
99
|
)
|
|
99
100
|
|
|
101
|
+
preprocessed_model_name = ModelNamePreprocessorOp(
|
|
102
|
+
project=project,
|
|
103
|
+
location=location,
|
|
104
|
+
model_name=model_name,
|
|
105
|
+
service_account=service_account,
|
|
106
|
+
)
|
|
107
|
+
|
|
100
108
|
get_vertex_model_task = dsl.importer(
|
|
101
109
|
artifact_uri=(
|
|
102
|
-
f'https://{location}-aiplatform.googleapis.com/v1/{
|
|
110
|
+
f'https://{location}-aiplatform.googleapis.com/v1/{preprocessed_model_name.outputs["processed_model_name"]}'
|
|
103
111
|
),
|
|
104
112
|
artifact_class=VertexModel,
|
|
105
|
-
metadata={
|
|
113
|
+
metadata={
|
|
114
|
+
'resourceName': preprocessed_model_name.outputs[
|
|
115
|
+
'processed_model_name'
|
|
116
|
+
]
|
|
117
|
+
},
|
|
106
118
|
)
|
|
107
119
|
get_vertex_model_task.set_display_name('get-vertex-model')
|
|
108
120
|
|
|
@@ -18,6 +18,7 @@ from typing import Dict, List, NamedTuple
|
|
|
18
18
|
from google_cloud_pipeline_components._implementation.model_evaluation import LLMEvaluationPreprocessorOp
|
|
19
19
|
from google_cloud_pipeline_components._implementation.model_evaluation import LLMEvaluationTextGenerationOp
|
|
20
20
|
from google_cloud_pipeline_components._implementation.model_evaluation import ModelImportEvaluationOp
|
|
21
|
+
from google_cloud_pipeline_components._implementation.model_evaluation import ModelNamePreprocessorOp
|
|
21
22
|
from google_cloud_pipeline_components.types.artifact_types import VertexModel
|
|
22
23
|
from google_cloud_pipeline_components.v1.batch_predict_job import ModelBatchPredictOp
|
|
23
24
|
from kfp import dsl
|
|
@@ -33,6 +34,7 @@ def evaluation_llm_text_generation_pipeline( # pylint: disable=dangerous-defaul
|
|
|
33
34
|
location: str,
|
|
34
35
|
batch_predict_gcs_source_uris: List[str],
|
|
35
36
|
batch_predict_gcs_destination_output_uri: str,
|
|
37
|
+
service_account: str,
|
|
36
38
|
model_name: str = 'publishers/google/models/text-bison@002',
|
|
37
39
|
evaluation_task: str = 'text-generation',
|
|
38
40
|
input_field_name: str = 'input_text',
|
|
@@ -41,8 +43,7 @@ def evaluation_llm_text_generation_pipeline( # pylint: disable=dangerous-defaul
|
|
|
41
43
|
batch_predict_predictions_format: str = 'jsonl',
|
|
42
44
|
batch_predict_model_parameters: Dict[str, str] = {},
|
|
43
45
|
enable_row_based_metrics: bool = False,
|
|
44
|
-
machine_type: str = 'e2-
|
|
45
|
-
service_account: str = '',
|
|
46
|
+
machine_type: str = 'e2-standard-4',
|
|
46
47
|
network: str = '',
|
|
47
48
|
encryption_spec_key_name: str = '',
|
|
48
49
|
evaluation_display_name: str = 'evaluation-llm-text-generation-pipeline-{{$.pipeline_job_uuid}}',
|
|
@@ -59,18 +60,19 @@ def evaluation_llm_text_generation_pipeline( # pylint: disable=dangerous-defaul
|
|
|
59
60
|
project: Required. The GCP project that runs the pipeline components.
|
|
60
61
|
location: Required. The GCP region that runs the pipeline components.
|
|
61
62
|
batch_predict_gcs_source_uris: Required. Google Cloud Storage URI(s) to your eval dataset instances data to run batch prediction on. The instances data should also contain the ground truth (target) data, used for evaluation. May contain wildcards. For more information on [wildcards](https://cloud.google.com/storage/docs/gsutil/addlhelp/WildcardNames). For more details about this [input config](https://cloud.google.com/vertex-ai/docs/reference/rest/v1/projects.locations.batchPredictionJobs#InputConfig). The content of gcs source files should be preset to one of the following formats:
|
|
62
|
-
|
|
63
|
-
|
|
64
|
-
|
|
65
|
-
|
|
66
|
-
|
|
67
|
-
|
|
68
|
-
|
|
69
|
-
|
|
70
|
-
|
|
71
|
-
|
|
72
|
-
|
|
63
|
+
1) Prediction & Evaluation Dataset format, guaranteeing "prompt" and "ground_truth" attributes are included
|
|
64
|
+
{
|
|
65
|
+
"prompt": "your input/prompt text",
|
|
66
|
+
"ground_truth": "your ground truth output text"
|
|
67
|
+
}
|
|
68
|
+
or
|
|
69
|
+
2) Tuning Dataset format, guaranteeing "input_text" and "output_text" attributes are included.
|
|
70
|
+
{
|
|
71
|
+
"input_text": "your input/prompt text",
|
|
72
|
+
"output_text": "your ground truth output text"
|
|
73
|
+
}
|
|
73
74
|
batch_predict_gcs_destination_output_uri: Required. The Google Cloud Storage location of the directory where the eval pipeline output is to be written to.
|
|
75
|
+
service_account: Required. Sets the default service account for workload run-as account. The service account running the pipeline (https://cloud.google.com/vertex-ai/docs/pipelines/configure-project#service-account) submitting jobs must have act-as permission on this run-as account.
|
|
74
76
|
model_name: The Model name used to run evaluation. Must be a publisher Model or a managed Model sharing the same ancestor location. Starting this job has no impact on any existing deployments of the Model and their resources.
|
|
75
77
|
evaluation_task: The task that the large language model will be evaluated on. The evaluation component computes a set of metrics relevant to that specific task. Currently supported tasks are: `summarization`, `question-answering`, `text-generation`.
|
|
76
78
|
input_field_name: The field name of the input eval dataset instances that contains the input prompts to the LLM.
|
|
@@ -79,8 +81,7 @@ def evaluation_llm_text_generation_pipeline( # pylint: disable=dangerous-defaul
|
|
|
79
81
|
batch_predict_predictions_format: The format in which Vertex AI gives the predictions. Must be one of the Model's supportedOutputStorageFormats. Only "jsonl" is currently supported. For more details about this output config, see https://cloud.google.com/vertex-ai/docs/reference/rest/v1/projects.locations.batchPredictionJobs#OutputConfig.
|
|
80
82
|
batch_predict_model_parameters: A map of parameters that govern the predictions. Some acceptable parameters include: maxOutputTokens, topK, topP, and temperature.
|
|
81
83
|
enable_row_based_metrics: Flag of if row based metrics is enabled, default value is false.
|
|
82
|
-
machine_type: The machine type of this custom job. If not set, defaulted to `e2-
|
|
83
|
-
service_account: Sets the default service account for workload run-as account. The service account running the pipeline (https://cloud.google.com/vertex-ai/docs/pipelines/configure-project#service-account) submitting jobs must have act-as permission on this run-as account. If unspecified, the Vertex AI Custom Code Service Agent(https://cloud.google.com/vertex-ai/docs/general/access-control#service-agents) for the CustomJob's project.
|
|
84
|
+
machine_type: The machine type of this custom job. If not set, defaulted to `e2-standard-4`. More details: https://cloud.google.com/compute/docs/machine-resource
|
|
84
85
|
network: The full name of the Compute Engine network to which the job should be peered. For example, `projects/12345/global/networks/myVPC`. Format is of the form `projects/{project}/global/networks/{network}`. Where `{project}` is a project number, as in `12345`, and `{network}` is a network name, as in `myVPC`. To specify this field, you must have already configured VPC Network Peering for Vertex AI (https://cloud.google.com/vertex-ai/docs/general/vpc-peering). If left unspecified, the job is not peered with any network.
|
|
85
86
|
encryption_spec_key_name: Customer-managed encryption key options. If set, resources created by this pipeline will be encrypted with the provided encryption key. Has the form: `projects/my-project/locations/my-location/keyRings/my-kr/cryptoKeys/my-key`. The key needs to be in the same region as where the compute resource is created.
|
|
86
87
|
evaluation_display_name: The display name of the uploaded evaluation resource to the Vertex AI model.
|
|
@@ -96,12 +97,23 @@ def evaluation_llm_text_generation_pipeline( # pylint: disable=dangerous-defaul
|
|
|
96
97
|
evaluation_resource_name=str,
|
|
97
98
|
)
|
|
98
99
|
|
|
100
|
+
preprocessed_model_name = ModelNamePreprocessorOp(
|
|
101
|
+
project=project,
|
|
102
|
+
location=location,
|
|
103
|
+
model_name=model_name,
|
|
104
|
+
service_account=service_account,
|
|
105
|
+
)
|
|
106
|
+
|
|
99
107
|
get_vertex_model_task = dsl.importer(
|
|
100
108
|
artifact_uri=(
|
|
101
|
-
f'https://{location}-aiplatform.googleapis.com/v1/{
|
|
109
|
+
f'https://{location}-aiplatform.googleapis.com/v1/{preprocessed_model_name.outputs["processed_model_name"]}'
|
|
102
110
|
),
|
|
103
111
|
artifact_class=VertexModel,
|
|
104
|
-
metadata={
|
|
112
|
+
metadata={
|
|
113
|
+
'resourceName': preprocessed_model_name.outputs[
|
|
114
|
+
'processed_model_name'
|
|
115
|
+
]
|
|
116
|
+
},
|
|
105
117
|
)
|
|
106
118
|
get_vertex_model_task.set_display_name('get-vertex-model')
|
|
107
119
|
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: google-cloud-pipeline-components
|
|
3
|
-
Version: 2.
|
|
3
|
+
Version: 2.12.0
|
|
4
4
|
Summary: This SDK enables a set of First Party (Google owned) pipeline components that allow users to take their experience from Vertex AI SDK and other Google Cloud services and create a corresponding pipeline using KFP or Managed Pipelines.
|
|
5
5
|
Home-page: https://github.com/kubeflow/pipelines/tree/master/components/google-cloud
|
|
6
6
|
Author: The Google Cloud Pipeline Components authors
|
|
@@ -31,7 +31,6 @@ Classifier: Topic :: Software Development :: Libraries
|
|
|
31
31
|
Classifier: Topic :: Software Development :: Libraries :: Python Modules
|
|
32
32
|
Requires-Python: >=3.7.0,<3.12.0
|
|
33
33
|
Description-Content-Type: text/markdown
|
|
34
|
-
License-File: LICENSE
|
|
35
34
|
Requires-Dist: google-api-core (!=2.0.*,!=2.1.*,!=2.2.*,!=2.3.0,<3.0.0dev,>=1.31.5)
|
|
36
35
|
Requires-Dist: kfp (<=2.7.0,>=2.6.0)
|
|
37
36
|
Requires-Dist: google-cloud-aiplatform (<2,>=1.14.0)
|
|
@@ -2,38 +2,40 @@ google_cloud_pipeline_components/__init__.py,sha256=3Mr8_YbBkTzArlgPDkUKoMzoKHZx
|
|
|
2
2
|
google_cloud_pipeline_components/_image.py,sha256=lANDYNk1WSuGZSoTTRcWdjsUvCkkA-PmwouTM9Et7fY,828
|
|
3
3
|
google_cloud_pipeline_components/_placeholders.py,sha256=517N_NQthPEBFJtsy8NE3WkBJm_dmwmlXdYNtk5gH-c,1233
|
|
4
4
|
google_cloud_pipeline_components/utils.py,sha256=9FG7umyEXhyUvtNeC46NuQ04olDMR3o-Wp78V1xs8GY,11045
|
|
5
|
-
google_cloud_pipeline_components/version.py,sha256=
|
|
5
|
+
google_cloud_pipeline_components/version.py,sha256=NH1ZheZhE2081vUwDDmf6XB3U_sRDSXENrEAPZaux5E,678
|
|
6
6
|
google_cloud_pipeline_components/_implementation/__init__.py,sha256=sb6SfJl6rt3AKjiWxd-KO9DSiZ3PzGZRcsqKuc1A2Cg,606
|
|
7
7
|
google_cloud_pipeline_components/_implementation/llm/__init__.py,sha256=sb6SfJl6rt3AKjiWxd-KO9DSiZ3PzGZRcsqKuc1A2Cg,606
|
|
8
|
-
google_cloud_pipeline_components/_implementation/llm/batch_prediction_pairwise.py,sha256=
|
|
9
|
-
google_cloud_pipeline_components/_implementation/llm/bulk_inferrer.py,sha256=
|
|
8
|
+
google_cloud_pipeline_components/_implementation/llm/batch_prediction_pairwise.py,sha256=mARB-tDYFr0tpBrLCIh481H4LDuXdr_8UyKVUaOF5Cw,7569
|
|
9
|
+
google_cloud_pipeline_components/_implementation/llm/bulk_inferrer.py,sha256=k-MHsyESWboHdNeRm9q3MOGwbtZr37QNGm_Y_cGsETA,3958
|
|
10
10
|
google_cloud_pipeline_components/_implementation/llm/deploy_llm_model.py,sha256=Jjme37_M32AK1r_MmHMHZvW8k9LJiqfZ4eJEquWoTt4,5029
|
|
11
|
-
google_cloud_pipeline_components/_implementation/llm/deployment_graph.py,sha256=
|
|
11
|
+
google_cloud_pipeline_components/_implementation/llm/deployment_graph.py,sha256=Rpy_qVngv-uUmiEr_vhC8Xn0aw26ptK70cwAvDNkij0,5200
|
|
12
12
|
google_cloud_pipeline_components/_implementation/llm/env.py,sha256=zY5glHO9oPWsALfYquR0euJHJnXbv2w-21mWVNit2Gw,1864
|
|
13
|
-
google_cloud_pipeline_components/_implementation/llm/function_based.py,sha256=
|
|
14
|
-
google_cloud_pipeline_components/_implementation/llm/model_evaluation_text_generation_pairwise.py,sha256=
|
|
15
|
-
google_cloud_pipeline_components/_implementation/llm/online_evaluation_pairwise.py,sha256=
|
|
13
|
+
google_cloud_pipeline_components/_implementation/llm/function_based.py,sha256=dggSFXOtzAreNThA9zDYk3qoRxs6Z9Z8i0XUwk3rGtg,18415
|
|
14
|
+
google_cloud_pipeline_components/_implementation/llm/model_evaluation_text_generation_pairwise.py,sha256=W64FNFfbarOcDw1sSG9J-BQCVPUYx3zLAmwLhhGhth0,5102
|
|
15
|
+
google_cloud_pipeline_components/_implementation/llm/online_evaluation_pairwise.py,sha256=khEli4fSoIQlaiReXOm3zsvsM7BIdbJOXFGUzjcvxOI,5299
|
|
16
16
|
google_cloud_pipeline_components/_implementation/llm/preference_data_formatter.py,sha256=xqgvMsFgFIuiDAv3V3lf4XJSnLjZSTCHknGkmUcP9fs,5025
|
|
17
17
|
google_cloud_pipeline_components/_implementation/llm/preprocess_chat_dataset.py,sha256=dMf2uXW4znn9W8xv9ZRNSPI6nZvp64FTq5GAqjXFRDk,11746
|
|
18
|
-
google_cloud_pipeline_components/_implementation/llm/private_text_comparison_importer.py,sha256=
|
|
19
|
-
google_cloud_pipeline_components/_implementation/llm/private_text_importer.py,sha256=
|
|
20
|
-
google_cloud_pipeline_components/_implementation/llm/reinforcement_learning_graph.py,sha256=
|
|
21
|
-
google_cloud_pipeline_components/_implementation/llm/reinforcer.py,sha256=
|
|
22
|
-
google_cloud_pipeline_components/_implementation/llm/reward_model_graph.py,sha256=
|
|
23
|
-
google_cloud_pipeline_components/_implementation/llm/reward_model_trainer.py,sha256=
|
|
24
|
-
google_cloud_pipeline_components/_implementation/llm/
|
|
18
|
+
google_cloud_pipeline_components/_implementation/llm/private_text_comparison_importer.py,sha256=Cwug1Tmk6tvg-l_qyxA6qr1-rslx33RkxA17sedFCz4,4133
|
|
19
|
+
google_cloud_pipeline_components/_implementation/llm/private_text_importer.py,sha256=go6SqWEH5fuDuXYeIzglQIARNG_etOwhyhCsbQgFI8I,4418
|
|
20
|
+
google_cloud_pipeline_components/_implementation/llm/reinforcement_learning_graph.py,sha256=qFZRwHSXHKE4TCroZwFs4pAO5WJfhIvPqCMUlvoKHvg,10152
|
|
21
|
+
google_cloud_pipeline_components/_implementation/llm/reinforcer.py,sha256=yeg_2DGonlmf21KQYQXN28Mza0d6P0IPt9lDEyK5de8,6948
|
|
22
|
+
google_cloud_pipeline_components/_implementation/llm/reward_model_graph.py,sha256=b6IVt75nORhSmotK0dIwRN1Bx7qKAk6fBdQwQq0paEE,10767
|
|
23
|
+
google_cloud_pipeline_components/_implementation/llm/reward_model_trainer.py,sha256=xkj2hnHpZMLutGNxoewTVUsRR2bkLNkVUhWwjY9EXKA,5596
|
|
24
|
+
google_cloud_pipeline_components/_implementation/llm/rlhf_preprocessor.py,sha256=IqwZ2PXGOOfBNeDIp3exKeqPn6kGwaSaozJEr4cbhDs,2510
|
|
25
|
+
google_cloud_pipeline_components/_implementation/llm/supervised_fine_tuner.py,sha256=5HzjhMXMRmaWGv3BlAi8lBg6MMlaaHlbqKez3ZcX5Ss,4951
|
|
25
26
|
google_cloud_pipeline_components/_implementation/llm/upload_llm_model.py,sha256=e9LiGzrsIuLnPzfib9zT_bMbGxUUvFoZJNUO3Yiijaw,4742
|
|
26
27
|
google_cloud_pipeline_components/_implementation/llm/upload_tensorboard_metrics.py,sha256=BN-0TQFl49TcE54ltBRt4iZYTjO7718eCLwHKR58ips,4010
|
|
27
|
-
google_cloud_pipeline_components/_implementation/llm/utils.py,sha256=
|
|
28
|
+
google_cloud_pipeline_components/_implementation/llm/utils.py,sha256=E250cmvw0QUnt8NLDl5crK6K1o1FguUglQIdBVqfwQI,5548
|
|
28
29
|
google_cloud_pipeline_components/_implementation/llm/utils_test.py,sha256=co8gWyrowY5CpkFNsaLGQlD_gpIykkVI7czxIizp5cM,2864
|
|
30
|
+
google_cloud_pipeline_components/_implementation/llm/validate_pipeline.py,sha256=SRIqcvZIvFgioH1zvcUsJtmYi8apEsmHtrhmUVK-Pgs,4078
|
|
29
31
|
google_cloud_pipeline_components/_implementation/llm/generated/__init__.py,sha256=LYxMCPeZcfGqRbt3mo3hY7U02A6G8aWdP_RtdoqxNrQ,606
|
|
30
|
-
google_cloud_pipeline_components/_implementation/llm/generated/refined_image_versions.py,sha256=
|
|
32
|
+
google_cloud_pipeline_components/_implementation/llm/generated/refined_image_versions.py,sha256=C9B3k4m6r22Qvg7GN1E8S_Os3hkk4akAy7ML5nON42Y,763
|
|
31
33
|
google_cloud_pipeline_components/_implementation/model/__init__.py,sha256=KmOW74re0WZ93DWM1lqqQYbv6w1aIW66BMV3gaAdg3s,811
|
|
32
34
|
google_cloud_pipeline_components/_implementation/model/get_model/__init__.py,sha256=cXMkDUZHVSbXeXSa3qsI6Ef8Tad9nmusw5NUZaYORdE,662
|
|
33
35
|
google_cloud_pipeline_components/_implementation/model/get_model/component.py,sha256=H2sbMTWCw8nMDMT-Ni9-pdzVXEFmHYjtP3z1LcI5m5w,2307
|
|
34
|
-
google_cloud_pipeline_components/_implementation/model_evaluation/__init__.py,sha256=
|
|
36
|
+
google_cloud_pipeline_components/_implementation/model_evaluation/__init__.py,sha256=eq9g2RsGgKmIHsjsUEvoD1GFmix0Pk-GIzU1hfapCbM,5839
|
|
35
37
|
google_cloud_pipeline_components/_implementation/model_evaluation/utils.py,sha256=9V34RtPZSRNeBwcsImaZM6YC3T7CafT_E00Iby4KHxw,3540
|
|
36
|
-
google_cloud_pipeline_components/_implementation/model_evaluation/version.py,sha256=
|
|
38
|
+
google_cloud_pipeline_components/_implementation/model_evaluation/version.py,sha256=QHCvg6WZkQq-VdX7hbWCQHK-7SjHpxSppGa9ppyJNmk,963
|
|
37
39
|
google_cloud_pipeline_components/_implementation/model_evaluation/chunking/__init__.py,sha256=PRHVsIq1dFb0mweuU0kfUUP90FbX--kxdBGCpwfLTgA,665
|
|
38
40
|
google_cloud_pipeline_components/_implementation/model_evaluation/chunking/component.py,sha256=lv0eNdIBtnCUs9wi9CGUWE_fd4zodGN7M8fTBiCg0g0,4436
|
|
39
41
|
google_cloud_pipeline_components/_implementation/model_evaluation/chunking/feature_store_grounding_pipeline.py,sha256=zGCMJhBCWBV-Dg5gz-wpheLQhD-GuEW_fgcb0cWa78U,4167
|
|
@@ -42,7 +44,7 @@ google_cloud_pipeline_components/_implementation/model_evaluation/data_sampler/c
|
|
|
42
44
|
google_cloud_pipeline_components/_implementation/model_evaluation/dataset_preprocessor/__init__.py,sha256=s7-HxTa9wuPsOcxs9iN1gKrjIlAhoPLje96aFSqM1Vs,677
|
|
43
45
|
google_cloud_pipeline_components/_implementation/model_evaluation/dataset_preprocessor/component.py,sha256=bBJfDO5RNgRnyIpbSyTEERDnzf5F5blvuZz0UycKsr0,7039
|
|
44
46
|
google_cloud_pipeline_components/_implementation/model_evaluation/endpoint_batch_predict/__init__.py,sha256=t-qAYEJd27dzl0Wrf21b8J8TON6rTJsoEmK5p5o83wE,679
|
|
45
|
-
google_cloud_pipeline_components/_implementation/model_evaluation/endpoint_batch_predict/component.py,sha256=
|
|
47
|
+
google_cloud_pipeline_components/_implementation/model_evaluation/endpoint_batch_predict/component.py,sha256=KHMxxkSY218Cl3IrAJWSzoSEhisbV6jAK1ajR6frOqY,11988
|
|
46
48
|
google_cloud_pipeline_components/_implementation/model_evaluation/error_analysis_annotation/__init__.py,sha256=LSc-h1veE7xA7pVsP0LlamhQ4cTeN6X-ghAKyazdN7Q,671
|
|
47
49
|
google_cloud_pipeline_components/_implementation/model_evaluation/error_analysis_annotation/component.py,sha256=xyJ89zWKj2yrQjTlbTgYd2DzJ6rqXe2MQGK-EETFP9E,4092
|
|
48
50
|
google_cloud_pipeline_components/_implementation/model_evaluation/evaluated_annotation/__init__.py,sha256=UBMB8ThxUAXaLxUe4RP_0LpiQRdBuFpKBVC3ldaP7CM,677
|
|
@@ -63,9 +65,9 @@ google_cloud_pipeline_components/_implementation/model_evaluation/llm_embedding/
|
|
|
63
65
|
google_cloud_pipeline_components/_implementation/model_evaluation/llm_embedding_retrieval/__init__.py,sha256=Q9YimgEKkKP8QW8fV50nNRjWXdt0_90Qr_gfQ0A9fao,691
|
|
64
66
|
google_cloud_pipeline_components/_implementation/model_evaluation/llm_embedding_retrieval/component.py,sha256=er26AxV0ydpKFbhrLs2IIia9hbLxXhe78Q-fQvvK_20,7265
|
|
65
67
|
google_cloud_pipeline_components/_implementation/model_evaluation/llm_evaluation/__init__.py,sha256=gDyltb_vTZRncaVZbMUkXYBHZsEg_CuaPAQVWUOGy7c,671
|
|
66
|
-
google_cloud_pipeline_components/_implementation/model_evaluation/llm_evaluation/component.py,sha256=
|
|
68
|
+
google_cloud_pipeline_components/_implementation/model_evaluation/llm_evaluation/component.py,sha256=rclGlXxDr6vozQ6elDDCDbdJXWjG461Z9nmTaiKGsFs,7478
|
|
67
69
|
google_cloud_pipeline_components/_implementation/model_evaluation/llm_evaluation_preprocessor/__init__.py,sha256=LLvQQ9Mv_md1POK_XErR7NUr-XAZX28w5KD0EQiT32w,684
|
|
68
|
-
google_cloud_pipeline_components/_implementation/model_evaluation/llm_evaluation_preprocessor/component.py,sha256=
|
|
70
|
+
google_cloud_pipeline_components/_implementation/model_evaluation/llm_evaluation_preprocessor/component.py,sha256=H_rqyBZJP3VXO9_S5kr5soY6wJ0bFCIxXoDTIqR1Pxg,7952
|
|
69
71
|
google_cloud_pipeline_components/_implementation/model_evaluation/llm_information_retrieval_preprocessor/__init__.py,sha256=UcAfohvqwJ7X8rlV6I2RsZ5ohYWbafXI5yYRAAwvspE,695
|
|
70
72
|
google_cloud_pipeline_components/_implementation/model_evaluation/llm_information_retrieval_preprocessor/component.py,sha256=hpwra0rXUP_LG6WNdnB9RD0cy1Gn3InrzAUJIk-oRc4,8142
|
|
71
73
|
google_cloud_pipeline_components/_implementation/model_evaluation/llm_retrieval_metrics/__init__.py,sha256=oVVVTCE230KYGcuz_rXYEuypZmm6OKg7K2BsFtpcDw0,701
|
|
@@ -75,6 +77,8 @@ google_cloud_pipeline_components/_implementation/model_evaluation/llm_safety_bia
|
|
|
75
77
|
google_cloud_pipeline_components/_implementation/model_evaluation/llm_safety_bias/evaluation_llm_safety_bias_pipeline.py,sha256=n5I3_RPbDR3XZh8E2z_3hX2H3oVZB5nFzmrXOM3lB-A,7005
|
|
76
78
|
google_cloud_pipeline_components/_implementation/model_evaluation/model_inference/__init__.py,sha256=71Kfj1wk1UuUch15F1u2Nv47v2lAjeL28uZ-8Fw61_c,672
|
|
77
79
|
google_cloud_pipeline_components/_implementation/model_evaluation/model_inference/component.py,sha256=0A9-gUDLg7lb3KBXd1ipOb1hnY0z48ey_M2NDIXFkqU,16211
|
|
80
|
+
google_cloud_pipeline_components/_implementation/model_evaluation/model_name_preprocessor/__init__.py,sha256=HSHK9T5ApjeFSjrTvweQkYf2PiCZ481NpEcv1DGfeR4,647
|
|
81
|
+
google_cloud_pipeline_components/_implementation/model_evaluation/model_name_preprocessor/component.py,sha256=--RQmRZ-m4nlX4SgF-b4NxpcX9pIGkHv7YnAkdoe2OA,2583
|
|
78
82
|
google_cloud_pipeline_components/_implementation/model_evaluation/target_field_data_remover/__init__.py,sha256=B4VuH-pN_qGbJjaVNWB5b2vfdPP5yqqTphRNLukMY6o,682
|
|
79
83
|
google_cloud_pipeline_components/_implementation/model_evaluation/target_field_data_remover/component.py,sha256=OeMON9Oms1xso5Emm4W5q6oUgcix9XWLlKoTmN-OUfI,5738
|
|
80
84
|
google_cloud_pipeline_components/_implementation/model_evaluation/text2sql/__init__.py,sha256=xGhjYMo_kirteCvrJqoF2jiSLexdkSRY0C-2sNkNlbk,664
|
|
@@ -96,7 +100,7 @@ google_cloud_pipeline_components/container/_implementation/model/get_model/__ini
|
|
|
96
100
|
google_cloud_pipeline_components/container/_implementation/model/get_model/get_model.py,sha256=BHZHxaXMFUPlhsRTmQZBrMf0DZd0R5rvMgG3enw70p8,4975
|
|
97
101
|
google_cloud_pipeline_components/container/_implementation/model_evaluation/__init__.py,sha256=d0va9RCvobpiyxTwpxBhxrslwAUqm8SsWI-AUx2La5A,678
|
|
98
102
|
google_cloud_pipeline_components/container/_implementation/model_evaluation/import_evaluated_annotation.py,sha256=PvTrdoklV6ZBaUZIwJn0_hv9pV3b2XYJMlTmafnEvMQ,10196
|
|
99
|
-
google_cloud_pipeline_components/container/_implementation/model_evaluation/import_model_evaluation.py,sha256=
|
|
103
|
+
google_cloud_pipeline_components/container/_implementation/model_evaluation/import_model_evaluation.py,sha256=ZdGKe5o02X2FQEiChOfcpVNSwvpBVhPvbkDthrg038g,17895
|
|
100
104
|
google_cloud_pipeline_components/container/preview/__init__.py,sha256=tOrlxtIqA4e41GJDdcldd7y32wrWjZvwT6Hq8R33l1I,651
|
|
101
105
|
google_cloud_pipeline_components/container/preview/custom_job/__init__.py,sha256=KK7TRANpB8dE3H8VNxzSUDIVWaLBHNM9BfDF8JvcwXk,686
|
|
102
106
|
google_cloud_pipeline_components/container/preview/custom_job/launcher.py,sha256=mpfayP1I_qbbPLc6M9C3YpLo6fHmzonEeVJy_o43zYU,1922
|
|
@@ -320,26 +324,24 @@ google_cloud_pipeline_components/preview/custom_job/component.py,sha256=dnSrcilF
|
|
|
320
324
|
google_cloud_pipeline_components/preview/custom_job/utils.py,sha256=knm5G8cI1_zdRilHQWujUJ3PNZG9RMo7diQ22FQQXs0,16062
|
|
321
325
|
google_cloud_pipeline_components/preview/dataflow/__init__.py,sha256=74-o9aye0R356KRmf5sBeXZ3OkBWEn62pywrclsEIW4,773
|
|
322
326
|
google_cloud_pipeline_components/preview/llm/__init__.py,sha256=acmo31OFe-d7Ubo5FC2baLwxORFQzLtLdm8o5cO15qY,996
|
|
323
|
-
google_cloud_pipeline_components/preview/llm/infer/__init__.py,sha256=
|
|
324
|
-
google_cloud_pipeline_components/preview/llm/infer/component.py,sha256=
|
|
327
|
+
google_cloud_pipeline_components/preview/llm/infer/__init__.py,sha256=sb6SfJl6rt3AKjiWxd-KO9DSiZ3PzGZRcsqKuc1A2Cg,606
|
|
328
|
+
google_cloud_pipeline_components/preview/llm/infer/component.py,sha256=lRksuPdsDj9UYkBWh7Rb9w-HZ_SbrTAgZKeTtQYmkR8,7798
|
|
325
329
|
google_cloud_pipeline_components/preview/llm/rlaif/__init__.py,sha256=LYxMCPeZcfGqRbt3mo3hY7U02A6G8aWdP_RtdoqxNrQ,606
|
|
326
|
-
google_cloud_pipeline_components/preview/llm/rlaif/component.py,sha256=
|
|
330
|
+
google_cloud_pipeline_components/preview/llm/rlaif/component.py,sha256=F4uzuz2pcLDd5IJ6--IkZf2dcmimiYfCivwmPwL_QIg,10801
|
|
327
331
|
google_cloud_pipeline_components/preview/llm/rlhf/__init__.py,sha256=sb6SfJl6rt3AKjiWxd-KO9DSiZ3PzGZRcsqKuc1A2Cg,606
|
|
328
|
-
google_cloud_pipeline_components/preview/llm/rlhf/component.py,sha256=
|
|
329
|
-
google_cloud_pipeline_components/preview/model_evaluation/__init__.py,sha256=
|
|
332
|
+
google_cloud_pipeline_components/preview/llm/rlhf/component.py,sha256=xZfzOZ91_TB7yJgWT63WmC9jQiiROsavIZgC7lsWNIk,12613
|
|
333
|
+
google_cloud_pipeline_components/preview/model_evaluation/__init__.py,sha256=GvsNkxuUH0Z9HpZpTXxTPRL8621lWDbXMwg_UUDtrCg,1939
|
|
330
334
|
google_cloud_pipeline_components/preview/model_evaluation/data_bias_component.py,sha256=YiwkWfbGymX_lDIg_x7AP6nYMm3MQp_NgV8xuSZxCpU,5791
|
|
331
|
-
google_cloud_pipeline_components/preview/model_evaluation/evaluation_llm_classification_pipeline.py,sha256=IjCIakZFh7KB6kmku7ztaH-qFm9LoEctwwMtxmDOg5g,11262
|
|
332
|
-
google_cloud_pipeline_components/preview/model_evaluation/evaluation_llm_text_generation_pipeline.py,sha256=afS9-rkKbQHDwOldtFC8w7Xv9UOqIU-Xt6ZEim14fqg,10761
|
|
333
335
|
google_cloud_pipeline_components/preview/model_evaluation/feature_attribution_component.py,sha256=XWrI1inQ9hKixFrp2LUdgu7hONYUvbsxv2GXZ-UTkCY,7450
|
|
334
336
|
google_cloud_pipeline_components/preview/model_evaluation/feature_attribution_graph_component.py,sha256=jesgBUKbIB_qQoYb5-Bv_LBbFHl0tPyMlVFx-o1eE6k,13624
|
|
335
337
|
google_cloud_pipeline_components/preview/model_evaluation/model_bias_component.py,sha256=R8WhT8jf_OOpMuABRh2BYTDEcfiGAf6VA-vFgiTymYY,6674
|
|
336
338
|
google_cloud_pipeline_components/preview/model_evaluation/utils.py,sha256=oRlEvA3zMSTzgxJklZD0A-BzFDx0-PsBHBXZ4kmaREY,7539
|
|
337
339
|
google_cloud_pipeline_components/preview/model_evaluation/model_based_llm_evaluation/__init__.py,sha256=ee_EyGhwqXIjR3Rx9t-o2gV9TssU-VErMU7LtDA7s9k,838
|
|
338
340
|
google_cloud_pipeline_components/preview/model_evaluation/model_based_llm_evaluation/autosxs/__init__.py,sha256=sb6SfJl6rt3AKjiWxd-KO9DSiZ3PzGZRcsqKuc1A2Cg,606
|
|
339
|
-
google_cloud_pipeline_components/preview/model_evaluation/model_based_llm_evaluation/autosxs/autosxs_pipeline.py,sha256=
|
|
341
|
+
google_cloud_pipeline_components/preview/model_evaluation/model_based_llm_evaluation/autosxs/autosxs_pipeline.py,sha256=Sw-OvuJnDId9l1kmpX6zgOA-nEskUV9EQ7rcHqShI9g,8856
|
|
340
342
|
google_cloud_pipeline_components/proto/__init__.py,sha256=aiPUc6gpQwG9cRTYfw3ChFCJfDr3vAIsm2eMYUDJjJQ,661
|
|
341
343
|
google_cloud_pipeline_components/proto/gcp_resources_pb2.py,sha256=ssNNm4zjiWbuBUS7IH6kyrvvfmcC_Z5F7hOAuQe_YLk,2134
|
|
342
|
-
google_cloud_pipeline_components/proto/preflight_validations_pb2.py,sha256=
|
|
344
|
+
google_cloud_pipeline_components/proto/preflight_validations_pb2.py,sha256=5MioLb12O4to8LYXFv-irH31BKot2LGtXvxOeXZSQlQ,2588
|
|
343
345
|
google_cloud_pipeline_components/proto/template_metadata_pb2.py,sha256=chzvvNZj5XEvifJbN77L7ZJv7jta-4ycHUKjTLZYCAg,7773
|
|
344
346
|
google_cloud_pipeline_components/types/__init__.py,sha256=1WFkL49QEy-gNb6ywQOE4yZkD7DoULAeiL1tLdb3S28,606
|
|
345
347
|
google_cloud_pipeline_components/types/artifact_types.py,sha256=zvwvzRuFb_s1VS1mtKkltOOACATJk-kG7dVFOUasfw4,23725
|
|
@@ -433,7 +435,7 @@ google_cloud_pipeline_components/v1/bigquery/query_job/__init__.py,sha256=Ot_1Bl
|
|
|
433
435
|
google_cloud_pipeline_components/v1/bigquery/query_job/component.py,sha256=100KwAgJZ8fQrSCfy8oMwjghsO9HICvQRHOQjDwqh_I,5187
|
|
434
436
|
google_cloud_pipeline_components/v1/custom_job/__init__.py,sha256=qxHupfqqpAQ3sK3Pp7pKNGfPKsS4qb1E9xM067U5MMw,1278
|
|
435
437
|
google_cloud_pipeline_components/v1/custom_job/component.py,sha256=vluHmVr_7jqJgx4t9n8HE2dHhxjZRtgT05sTa-95Pvw,6070
|
|
436
|
-
google_cloud_pipeline_components/v1/custom_job/utils.py,sha256=
|
|
438
|
+
google_cloud_pipeline_components/v1/custom_job/utils.py,sha256=9KGLjblWqfLEZVDGwDo1M-bliBJ0lg97MejUQSHXI8Q,15466
|
|
437
439
|
google_cloud_pipeline_components/v1/dataflow/__init__.py,sha256=ZPJGssKq2P5iwFY_I68gZPoXSPHVNYQ59nVlA8mOtOo,1063
|
|
438
440
|
google_cloud_pipeline_components/v1/dataflow/flex_template/__init__.py,sha256=uG42x7_0zehtVV7f_fHvPHBJ48aqi3jJwLY6tplH8jk,669
|
|
439
441
|
google_cloud_pipeline_components/v1/dataflow/flex_template/component.py,sha256=C9oHSlOwh0fTUPN9b2u7vNvM2NbkWT-FX82kPOKkzLc,11701
|
|
@@ -502,10 +504,10 @@ google_cloud_pipeline_components/v1/model/delete_model/component.py,sha256=uKA9s
|
|
|
502
504
|
google_cloud_pipeline_components/v1/model/export_model/__init__.py,sha256=c4fG2x5dxyMDY4m9YrqJK67qqSVa3W7HA0E0jCO2OYQ,661
|
|
503
505
|
google_cloud_pipeline_components/v1/model/export_model/component.py,sha256=7Pb4GI9U7ITAqpCNBMvM43r4qCQqMsjgZJRNWAJ51lI,4908
|
|
504
506
|
google_cloud_pipeline_components/v1/model/get_model/__init__.py,sha256=oAWKl9PXSXXsMY-M9EizQbIVvHNY-Qw84xfBGimvYLQ,662
|
|
505
|
-
google_cloud_pipeline_components/v1/model/get_model/component.py,sha256=
|
|
507
|
+
google_cloud_pipeline_components/v1/model/get_model/component.py,sha256=lx5x2MJ-Ji75z12W1RMqKlGzxbmgZZAmYBy48XQmWFI,2089
|
|
506
508
|
google_cloud_pipeline_components/v1/model/upload_model/__init__.py,sha256=6uwVQw6h3TXxei5imUE4JaS97XXzDRPQyNnTE-qFjck,661
|
|
507
509
|
google_cloud_pipeline_components/v1/model/upload_model/component.py,sha256=6zy9G2AK2twiyT-B2X15qovvi6qHu0koRzzzelgN8CQ,7280
|
|
508
|
-
google_cloud_pipeline_components/v1/model_evaluation/__init__.py,sha256=
|
|
510
|
+
google_cloud_pipeline_components/v1/model_evaluation/__init__.py,sha256=haAiMuha2cEVJQjOcbf3XblUBdSieLm_JUT_wwyVssc,2739
|
|
509
511
|
google_cloud_pipeline_components/v1/model_evaluation/classification_component.py,sha256=x0pUY4OwFIkmS11Q7rDLI6fspaDUBo6wU5BBP2jAKC0,12122
|
|
510
512
|
google_cloud_pipeline_components/v1/model_evaluation/error_analysis_pipeline.py,sha256=l972cEWDViVV41oCy0jTsX96Pau49D3KdJA3yAjKEY0,20122
|
|
511
513
|
google_cloud_pipeline_components/v1/model_evaluation/evaluated_annotation_pipeline.py,sha256=JskLsIHvLNNvNaMD8gTa0NWlB5gKiSSyqeC78Fn5OW8,12142
|
|
@@ -513,14 +515,16 @@ google_cloud_pipeline_components/v1/model_evaluation/evaluation_automl_tabular_f
|
|
|
513
515
|
google_cloud_pipeline_components/v1/model_evaluation/evaluation_automl_tabular_pipeline.py,sha256=p-GH_tVqffHwck5Sll0BHsnvVAHQk48WNAUohZxATcs,37108
|
|
514
516
|
google_cloud_pipeline_components/v1/model_evaluation/evaluation_automl_unstructure_data_pipeline.py,sha256=aiZOK5BE5mdqJL3s4pU1Y_ynHvWBE9JIxl9UrJuNsco,42404
|
|
515
517
|
google_cloud_pipeline_components/v1/model_evaluation/evaluation_feature_attribution_pipeline.py,sha256=ChDwHvPCn0prrK1FLvEhAbaTmA153M9NG3Wj3QIlNHs,51173
|
|
518
|
+
google_cloud_pipeline_components/v1/model_evaluation/evaluation_llm_classification_pipeline.py,sha256=Vf_O-8VWKZlR_tCmFNNcQWp6VWK8c67IBWKxbt3ZQBg,11672
|
|
519
|
+
google_cloud_pipeline_components/v1/model_evaluation/evaluation_llm_text_generation_pipeline.py,sha256=ufVZwpEerSLLo_yGJVh7cgBBTeL3RmkVuWKHkCiaQ9U,11056
|
|
516
520
|
google_cloud_pipeline_components/v1/model_evaluation/forecasting_component.py,sha256=gOnvKAJWa3velczeuVBCzW6b_tcc2v_lNFqHXGhjD44,10017
|
|
517
521
|
google_cloud_pipeline_components/v1/model_evaluation/regression_component.py,sha256=eFrjrKQot3-SlRCoKoTOEsyp2Xj0GfDtrjpxTDKAHYY,9117
|
|
518
522
|
google_cloud_pipeline_components/v1/vertex_notification_email/__init__.py,sha256=YIRljNy_oHY_vRda-kfhm5QiulNd_SIIPbmpzOiYJ0k,863
|
|
519
523
|
google_cloud_pipeline_components/v1/vertex_notification_email/component.py,sha256=Dau8ZI0mzLBnLOUBQm6EtK8gbtX1u57t76Ud5qlg9xc,2163
|
|
520
524
|
google_cloud_pipeline_components/v1/wait_gcp_resources/__init__.py,sha256=w6dfz-rYsYnxFapRH1Dix3GVz0mhPW0m1IVpE6z8jbg,878
|
|
521
525
|
google_cloud_pipeline_components/v1/wait_gcp_resources/component.py,sha256=Nsfj5c3eeZq83fHLvv2IlpK4jrjxLxRksFYOl5W6JnA,2468
|
|
522
|
-
google_cloud_pipeline_components-2.
|
|
523
|
-
google_cloud_pipeline_components-2.
|
|
524
|
-
google_cloud_pipeline_components-2.
|
|
525
|
-
google_cloud_pipeline_components-2.
|
|
526
|
-
google_cloud_pipeline_components-2.
|
|
526
|
+
google_cloud_pipeline_components-2.12.0.dist-info/LICENSE,sha256=VAc1R5OxOELKsX5L5Ldp5THfNtxtt1cMIZBaC0Jdj5Q,13118
|
|
527
|
+
google_cloud_pipeline_components-2.12.0.dist-info/METADATA,sha256=GeF9-FA9p-AwA9y2--CTyacsia2uBSyr8i2aTNUwyOk,5890
|
|
528
|
+
google_cloud_pipeline_components-2.12.0.dist-info/WHEEL,sha256=pkctZYzUS4AYVn6dJ-7367OJZivF2e8RA9b_ZBjif18,92
|
|
529
|
+
google_cloud_pipeline_components-2.12.0.dist-info/top_level.txt,sha256=E8T4T8KGMGLXbHvt2goa98oezRpxryPC6QhWBZ27Hhc,33
|
|
530
|
+
google_cloud_pipeline_components-2.12.0.dist-info/RECORD,,
|
|
File without changes
|