gobby 0.2.5__py3-none-any.whl → 0.2.6__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- gobby/adapters/claude_code.py +13 -4
- gobby/adapters/codex.py +43 -3
- gobby/agents/runner.py +8 -0
- gobby/cli/__init__.py +6 -0
- gobby/cli/clones.py +419 -0
- gobby/cli/conductor.py +266 -0
- gobby/cli/installers/antigravity.py +3 -9
- gobby/cli/installers/claude.py +9 -9
- gobby/cli/installers/codex.py +2 -8
- gobby/cli/installers/gemini.py +2 -8
- gobby/cli/installers/shared.py +71 -8
- gobby/cli/skills.py +858 -0
- gobby/cli/tasks/ai.py +0 -440
- gobby/cli/tasks/crud.py +44 -6
- gobby/cli/tasks/main.py +0 -4
- gobby/cli/tui.py +2 -2
- gobby/cli/utils.py +3 -3
- gobby/clones/__init__.py +13 -0
- gobby/clones/git.py +547 -0
- gobby/conductor/__init__.py +16 -0
- gobby/conductor/alerts.py +135 -0
- gobby/conductor/loop.py +164 -0
- gobby/conductor/monitors/__init__.py +11 -0
- gobby/conductor/monitors/agents.py +116 -0
- gobby/conductor/monitors/tasks.py +155 -0
- gobby/conductor/pricing.py +234 -0
- gobby/conductor/token_tracker.py +160 -0
- gobby/config/app.py +63 -1
- gobby/config/search.py +110 -0
- gobby/config/servers.py +1 -1
- gobby/config/skills.py +43 -0
- gobby/config/tasks.py +6 -14
- gobby/hooks/event_handlers.py +145 -2
- gobby/hooks/hook_manager.py +48 -2
- gobby/hooks/skill_manager.py +130 -0
- gobby/install/claude/hooks/hook_dispatcher.py +4 -4
- gobby/install/codex/hooks/hook_dispatcher.py +1 -1
- gobby/install/gemini/hooks/hook_dispatcher.py +87 -12
- gobby/llm/claude.py +22 -34
- gobby/llm/claude_executor.py +46 -256
- gobby/llm/codex_executor.py +59 -291
- gobby/llm/executor.py +21 -0
- gobby/llm/gemini.py +134 -110
- gobby/llm/litellm_executor.py +143 -6
- gobby/llm/resolver.py +95 -33
- gobby/mcp_proxy/instructions.py +54 -0
- gobby/mcp_proxy/models.py +15 -0
- gobby/mcp_proxy/registries.py +68 -5
- gobby/mcp_proxy/server.py +33 -3
- gobby/mcp_proxy/services/tool_proxy.py +81 -1
- gobby/mcp_proxy/stdio.py +2 -1
- gobby/mcp_proxy/tools/__init__.py +0 -2
- gobby/mcp_proxy/tools/agent_messaging.py +317 -0
- gobby/mcp_proxy/tools/clones.py +903 -0
- gobby/mcp_proxy/tools/memory.py +1 -24
- gobby/mcp_proxy/tools/metrics.py +65 -1
- gobby/mcp_proxy/tools/orchestration/__init__.py +3 -0
- gobby/mcp_proxy/tools/orchestration/cleanup.py +151 -0
- gobby/mcp_proxy/tools/orchestration/wait.py +467 -0
- gobby/mcp_proxy/tools/session_messages.py +1 -2
- gobby/mcp_proxy/tools/skills/__init__.py +631 -0
- gobby/mcp_proxy/tools/task_orchestration.py +7 -0
- gobby/mcp_proxy/tools/task_readiness.py +14 -0
- gobby/mcp_proxy/tools/task_sync.py +1 -1
- gobby/mcp_proxy/tools/tasks/_context.py +0 -20
- gobby/mcp_proxy/tools/tasks/_crud.py +91 -4
- gobby/mcp_proxy/tools/tasks/_expansion.py +348 -0
- gobby/mcp_proxy/tools/tasks/_factory.py +6 -16
- gobby/mcp_proxy/tools/tasks/_lifecycle.py +60 -29
- gobby/mcp_proxy/tools/tasks/_lifecycle_validation.py +18 -29
- gobby/mcp_proxy/tools/workflows.py +1 -1
- gobby/mcp_proxy/tools/worktrees.py +5 -0
- gobby/memory/backends/__init__.py +6 -1
- gobby/memory/backends/mem0.py +6 -1
- gobby/memory/extractor.py +477 -0
- gobby/memory/manager.py +11 -2
- gobby/prompts/defaults/handoff/compact.md +63 -0
- gobby/prompts/defaults/handoff/session_end.md +57 -0
- gobby/prompts/defaults/memory/extract.md +61 -0
- gobby/runner.py +37 -16
- gobby/search/__init__.py +48 -6
- gobby/search/backends/__init__.py +159 -0
- gobby/search/backends/embedding.py +225 -0
- gobby/search/embeddings.py +238 -0
- gobby/search/models.py +148 -0
- gobby/search/unified.py +496 -0
- gobby/servers/http.py +23 -8
- gobby/servers/routes/admin.py +280 -0
- gobby/servers/routes/mcp/tools.py +241 -52
- gobby/servers/websocket.py +2 -2
- gobby/sessions/analyzer.py +2 -0
- gobby/sessions/transcripts/base.py +1 -0
- gobby/sessions/transcripts/claude.py +64 -5
- gobby/skills/__init__.py +91 -0
- gobby/skills/loader.py +685 -0
- gobby/skills/manager.py +384 -0
- gobby/skills/parser.py +258 -0
- gobby/skills/search.py +463 -0
- gobby/skills/sync.py +119 -0
- gobby/skills/updater.py +385 -0
- gobby/skills/validator.py +368 -0
- gobby/storage/clones.py +378 -0
- gobby/storage/database.py +1 -1
- gobby/storage/memories.py +43 -13
- gobby/storage/migrations.py +180 -6
- gobby/storage/sessions.py +73 -0
- gobby/storage/skills.py +749 -0
- gobby/storage/tasks/_crud.py +4 -4
- gobby/storage/tasks/_lifecycle.py +41 -6
- gobby/storage/tasks/_manager.py +14 -5
- gobby/storage/tasks/_models.py +8 -3
- gobby/sync/memories.py +39 -4
- gobby/sync/tasks.py +83 -6
- gobby/tasks/__init__.py +1 -2
- gobby/tasks/validation.py +24 -15
- gobby/tui/api_client.py +4 -7
- gobby/tui/app.py +5 -3
- gobby/tui/screens/orchestrator.py +1 -2
- gobby/tui/screens/tasks.py +2 -4
- gobby/tui/ws_client.py +1 -1
- gobby/utils/daemon_client.py +2 -2
- gobby/workflows/actions.py +84 -2
- gobby/workflows/context_actions.py +43 -0
- gobby/workflows/detection_helpers.py +115 -31
- gobby/workflows/engine.py +13 -2
- gobby/workflows/lifecycle_evaluator.py +29 -1
- gobby/workflows/loader.py +19 -6
- gobby/workflows/memory_actions.py +74 -0
- gobby/workflows/summary_actions.py +17 -0
- gobby/workflows/task_enforcement_actions.py +448 -6
- {gobby-0.2.5.dist-info → gobby-0.2.6.dist-info}/METADATA +82 -21
- {gobby-0.2.5.dist-info → gobby-0.2.6.dist-info}/RECORD +136 -107
- gobby/install/codex/prompts/forget.md +0 -7
- gobby/install/codex/prompts/memories.md +0 -7
- gobby/install/codex/prompts/recall.md +0 -7
- gobby/install/codex/prompts/remember.md +0 -13
- gobby/llm/gemini_executor.py +0 -339
- gobby/mcp_proxy/tools/task_expansion.py +0 -591
- gobby/tasks/context.py +0 -747
- gobby/tasks/criteria.py +0 -342
- gobby/tasks/expansion.py +0 -626
- gobby/tasks/prompts/expand.py +0 -327
- gobby/tasks/research.py +0 -421
- gobby/tasks/tdd.py +0 -352
- {gobby-0.2.5.dist-info → gobby-0.2.6.dist-info}/WHEEL +0 -0
- {gobby-0.2.5.dist-info → gobby-0.2.6.dist-info}/entry_points.txt +0 -0
- {gobby-0.2.5.dist-info → gobby-0.2.6.dist-info}/licenses/LICENSE.md +0 -0
- {gobby-0.2.5.dist-info → gobby-0.2.6.dist-info}/top_level.txt +0 -0
gobby/runner.py
CHANGED
|
@@ -18,6 +18,7 @@ from gobby.servers.http import HTTPServer
|
|
|
18
18
|
from gobby.servers.websocket import WebSocketConfig, WebSocketServer
|
|
19
19
|
from gobby.sessions.lifecycle import SessionLifecycleManager
|
|
20
20
|
from gobby.sessions.processor import SessionMessageProcessor
|
|
21
|
+
from gobby.storage.clones import LocalCloneManager
|
|
21
22
|
from gobby.storage.database import DatabaseProtocol, LocalDatabase
|
|
22
23
|
from gobby.storage.mcp import LocalMCPManager
|
|
23
24
|
from gobby.storage.migrations import run_migrations
|
|
@@ -28,10 +29,10 @@ from gobby.storage.tasks import LocalTaskManager
|
|
|
28
29
|
from gobby.storage.worktrees import LocalWorktreeManager
|
|
29
30
|
from gobby.sync.memories import MemorySyncManager
|
|
30
31
|
from gobby.sync.tasks import TaskSyncManager
|
|
31
|
-
from gobby.tasks.expansion import TaskExpander
|
|
32
32
|
from gobby.tasks.validation import TaskValidator
|
|
33
33
|
from gobby.utils.logging import setup_file_logging
|
|
34
34
|
from gobby.utils.machine_id import get_machine_id
|
|
35
|
+
from gobby.worktrees.git import WorktreeGitManager
|
|
35
36
|
|
|
36
37
|
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
|
37
38
|
|
|
@@ -43,7 +44,6 @@ class GobbyRunner:
|
|
|
43
44
|
|
|
44
45
|
def __init__(self, config_path: Path | None = None, verbose: bool = False):
|
|
45
46
|
setup_file_logging(verbose=verbose)
|
|
46
|
-
# setup_mcp_logging(verbose=verbose) # Removed as per instruction
|
|
47
47
|
|
|
48
48
|
config_file = str(config_path) if config_path else None
|
|
49
49
|
self.config = load_config(config_file)
|
|
@@ -59,6 +59,16 @@ class GobbyRunner:
|
|
|
59
59
|
self.task_manager = LocalTaskManager(self.database)
|
|
60
60
|
self.session_task_manager = SessionTaskManager(self.database)
|
|
61
61
|
|
|
62
|
+
# Sync bundled skills to database
|
|
63
|
+
from gobby.skills.sync import sync_bundled_skills
|
|
64
|
+
|
|
65
|
+
try:
|
|
66
|
+
skill_result = sync_bundled_skills(self.database)
|
|
67
|
+
if skill_result["synced"] > 0:
|
|
68
|
+
logger.info(f"Synced {skill_result['synced']} bundled skills to database")
|
|
69
|
+
except Exception as e:
|
|
70
|
+
logger.warning(f"Failed to sync bundled skills: {e}")
|
|
71
|
+
|
|
62
72
|
# Initialize LLM Service
|
|
63
73
|
self.llm_service: LLMService | None = None # Added type hint
|
|
64
74
|
try:
|
|
@@ -134,23 +144,11 @@ class GobbyRunner:
|
|
|
134
144
|
poll_interval=self.config.message_tracking.poll_interval,
|
|
135
145
|
)
|
|
136
146
|
|
|
137
|
-
# Initialize Task
|
|
138
|
-
self.task_expander: TaskExpander | None = None
|
|
147
|
+
# Initialize Task Validator (Phase 7.1)
|
|
139
148
|
self.task_validator: TaskValidator | None = None
|
|
140
149
|
|
|
141
150
|
if self.llm_service:
|
|
142
151
|
gobby_tasks_config = self.config.gobby_tasks
|
|
143
|
-
if gobby_tasks_config.expansion.enabled:
|
|
144
|
-
try:
|
|
145
|
-
self.task_expander = TaskExpander(
|
|
146
|
-
llm_service=self.llm_service,
|
|
147
|
-
config=gobby_tasks_config.expansion,
|
|
148
|
-
task_manager=self.task_manager,
|
|
149
|
-
mcp_manager=self.mcp_proxy,
|
|
150
|
-
)
|
|
151
|
-
except Exception as e:
|
|
152
|
-
logger.error(f"Failed to initialize TaskExpander: {e}")
|
|
153
|
-
|
|
154
152
|
if gobby_tasks_config.validation.enabled:
|
|
155
153
|
try:
|
|
156
154
|
self.task_validator = TaskValidator(
|
|
@@ -163,6 +161,26 @@ class GobbyRunner:
|
|
|
163
161
|
# Initialize Worktree Storage (Phase 7 - Subagents)
|
|
164
162
|
self.worktree_storage = LocalWorktreeManager(self.database)
|
|
165
163
|
|
|
164
|
+
# Initialize Clone Storage (local git clones for isolated development)
|
|
165
|
+
self.clone_storage = LocalCloneManager(self.database)
|
|
166
|
+
|
|
167
|
+
# Initialize Git Manager for current project (if in a git repo)
|
|
168
|
+
self.git_manager: WorktreeGitManager | None = None
|
|
169
|
+
self.project_id: str | None = None
|
|
170
|
+
try:
|
|
171
|
+
cwd = Path.cwd()
|
|
172
|
+
project_json = cwd / ".gobby" / "project.json"
|
|
173
|
+
if project_json.exists():
|
|
174
|
+
import json
|
|
175
|
+
|
|
176
|
+
project_data = json.loads(project_json.read_text())
|
|
177
|
+
repo_path = project_data.get("repo_path", str(cwd))
|
|
178
|
+
self.project_id = project_data.get("id")
|
|
179
|
+
self.git_manager = WorktreeGitManager(repo_path)
|
|
180
|
+
logger.info(f"Git manager initialized for project: {self.project_id}")
|
|
181
|
+
except Exception as e:
|
|
182
|
+
logger.debug(f"Could not initialize git manager: {e}")
|
|
183
|
+
|
|
166
184
|
# Initialize Agent Runner (Phase 7 - Subagents)
|
|
167
185
|
# Create executor registry for lazy executor creation
|
|
168
186
|
self.executor_registry = ExecutorRegistry(config=self.config)
|
|
@@ -196,6 +214,7 @@ class GobbyRunner:
|
|
|
196
214
|
# HTTP Server
|
|
197
215
|
self.http_server = HTTPServer(
|
|
198
216
|
port=self.config.daemon_port,
|
|
217
|
+
test_mode=self.config.test_mode,
|
|
199
218
|
mcp_manager=self.mcp_proxy,
|
|
200
219
|
mcp_db_manager=self.mcp_db_manager,
|
|
201
220
|
config=self.config,
|
|
@@ -207,11 +226,13 @@ class GobbyRunner:
|
|
|
207
226
|
llm_service=self.llm_service,
|
|
208
227
|
message_processor=self.message_processor,
|
|
209
228
|
memory_sync_manager=self.memory_sync_manager,
|
|
210
|
-
task_expander=self.task_expander,
|
|
211
229
|
task_validator=self.task_validator,
|
|
212
230
|
metrics_manager=self.metrics_manager,
|
|
213
231
|
agent_runner=self.agent_runner,
|
|
214
232
|
worktree_storage=self.worktree_storage,
|
|
233
|
+
clone_storage=self.clone_storage,
|
|
234
|
+
git_manager=self.git_manager,
|
|
235
|
+
project_id=self.project_id,
|
|
215
236
|
)
|
|
216
237
|
|
|
217
238
|
# Ensure message_processor property is set (redundant but explicit):
|
gobby/search/__init__.py
CHANGED
|
@@ -1,23 +1,65 @@
|
|
|
1
1
|
"""
|
|
2
|
-
|
|
2
|
+
Unified search backend abstraction.
|
|
3
3
|
|
|
4
|
-
Provides
|
|
5
|
-
- TF-IDF (default) - Built-in local search using scikit-learn
|
|
4
|
+
Provides a unified search layer with multiple backends:
|
|
5
|
+
- TF-IDF (default) - Built-in local search using scikit-learn
|
|
6
|
+
- Embedding - LiteLLM-based semantic search (OpenAI, Ollama, etc.)
|
|
7
|
+
- Unified - Orchestrates between backends with automatic fallback
|
|
6
8
|
|
|
7
|
-
|
|
8
|
-
from gobby.search import
|
|
9
|
+
Basic usage (sync TF-IDF):
|
|
10
|
+
from gobby.search import TFIDFSearcher
|
|
9
11
|
|
|
10
|
-
backend =
|
|
12
|
+
backend = TFIDFSearcher()
|
|
11
13
|
backend.fit([(id, content) for id, content in items])
|
|
12
14
|
results = backend.search("query text", top_k=10)
|
|
15
|
+
|
|
16
|
+
Unified search (async with fallback):
|
|
17
|
+
from gobby.search import UnifiedSearcher, SearchConfig
|
|
18
|
+
|
|
19
|
+
config = SearchConfig(mode="auto") # auto, tfidf, embedding, hybrid
|
|
20
|
+
searcher = UnifiedSearcher(config)
|
|
21
|
+
await searcher.fit_async([(id, content) for id, content in items])
|
|
22
|
+
results = await searcher.search_async("query text", top_k=10)
|
|
23
|
+
|
|
24
|
+
if searcher.is_using_fallback():
|
|
25
|
+
print(f"Using fallback: {searcher.get_fallback_reason()}")
|
|
13
26
|
"""
|
|
14
27
|
|
|
28
|
+
# Sync search backends (backwards compatibility)
|
|
29
|
+
# Async backends
|
|
30
|
+
from gobby.search.backends import AsyncSearchBackend, EmbeddingBackend, TFIDFBackend
|
|
31
|
+
|
|
32
|
+
# Embedding utilities
|
|
33
|
+
from gobby.search.embeddings import (
|
|
34
|
+
generate_embedding,
|
|
35
|
+
generate_embeddings,
|
|
36
|
+
is_embedding_available,
|
|
37
|
+
)
|
|
38
|
+
|
|
39
|
+
# Unified search (async with fallback)
|
|
40
|
+
from gobby.search.models import FallbackEvent, SearchConfig, SearchMode
|
|
15
41
|
from gobby.search.protocol import SearchBackend, SearchResult, get_search_backend
|
|
16
42
|
from gobby.search.tfidf import TFIDFSearcher
|
|
43
|
+
from gobby.search.unified import UnifiedSearcher
|
|
17
44
|
|
|
18
45
|
__all__ = [
|
|
46
|
+
# Sync backends (backwards compatible)
|
|
19
47
|
"SearchBackend",
|
|
20
48
|
"SearchResult",
|
|
21
49
|
"TFIDFSearcher",
|
|
22
50
|
"get_search_backend",
|
|
51
|
+
# Models
|
|
52
|
+
"SearchConfig",
|
|
53
|
+
"SearchMode",
|
|
54
|
+
"FallbackEvent",
|
|
55
|
+
# Unified searcher
|
|
56
|
+
"UnifiedSearcher",
|
|
57
|
+
# Async backends
|
|
58
|
+
"AsyncSearchBackend",
|
|
59
|
+
"TFIDFBackend",
|
|
60
|
+
"EmbeddingBackend",
|
|
61
|
+
# Embedding utilities
|
|
62
|
+
"generate_embedding",
|
|
63
|
+
"generate_embeddings",
|
|
64
|
+
"is_embedding_available",
|
|
23
65
|
]
|
|
@@ -0,0 +1,159 @@
|
|
|
1
|
+
"""Search backend abstractions.
|
|
2
|
+
|
|
3
|
+
This module provides the protocol and implementations for search backends
|
|
4
|
+
used by UnifiedSearcher:
|
|
5
|
+
|
|
6
|
+
- AsyncSearchBackend: Protocol for async search backends
|
|
7
|
+
- TFIDFBackend: TF-IDF based search (always available)
|
|
8
|
+
- EmbeddingBackend: Embedding-based search (requires API)
|
|
9
|
+
|
|
10
|
+
Usage:
|
|
11
|
+
from gobby.search.backends import AsyncSearchBackend, TFIDFBackend
|
|
12
|
+
|
|
13
|
+
backend: AsyncSearchBackend = TFIDFBackend()
|
|
14
|
+
await backend.fit_async([("id1", "content1"), ("id2", "content2")])
|
|
15
|
+
results = await backend.search_async("query", top_k=10)
|
|
16
|
+
"""
|
|
17
|
+
|
|
18
|
+
from __future__ import annotations
|
|
19
|
+
|
|
20
|
+
from typing import Any, Protocol, runtime_checkable
|
|
21
|
+
|
|
22
|
+
# Re-export sync TFIDFSearcher for backwards compatibility
|
|
23
|
+
from gobby.search.tfidf import TFIDFSearcher
|
|
24
|
+
|
|
25
|
+
__all__ = [
|
|
26
|
+
"AsyncSearchBackend",
|
|
27
|
+
"TFIDFBackend",
|
|
28
|
+
"EmbeddingBackend",
|
|
29
|
+
"TFIDFSearcher",
|
|
30
|
+
]
|
|
31
|
+
|
|
32
|
+
|
|
33
|
+
@runtime_checkable
|
|
34
|
+
class AsyncSearchBackend(Protocol):
|
|
35
|
+
"""Protocol for async search backends.
|
|
36
|
+
|
|
37
|
+
All search backends must implement this interface. The protocol
|
|
38
|
+
uses async methods to support embedding-based backends that need
|
|
39
|
+
to call external APIs.
|
|
40
|
+
|
|
41
|
+
Methods:
|
|
42
|
+
fit_async: Build/rebuild the search index
|
|
43
|
+
search_async: Find relevant items for a query
|
|
44
|
+
needs_refit: Check if index needs rebuilding
|
|
45
|
+
get_stats: Get backend statistics
|
|
46
|
+
clear: Clear the search index
|
|
47
|
+
"""
|
|
48
|
+
|
|
49
|
+
async def fit_async(self, items: list[tuple[str, str]]) -> None:
|
|
50
|
+
"""Build or rebuild the search index.
|
|
51
|
+
|
|
52
|
+
Args:
|
|
53
|
+
items: List of (item_id, content) tuples to index
|
|
54
|
+
"""
|
|
55
|
+
...
|
|
56
|
+
|
|
57
|
+
async def search_async(
|
|
58
|
+
self,
|
|
59
|
+
query: str,
|
|
60
|
+
top_k: int = 10,
|
|
61
|
+
) -> list[tuple[str, float]]:
|
|
62
|
+
"""Search for items matching the query.
|
|
63
|
+
|
|
64
|
+
Args:
|
|
65
|
+
query: Search query text
|
|
66
|
+
top_k: Maximum number of results to return
|
|
67
|
+
|
|
68
|
+
Returns:
|
|
69
|
+
List of (item_id, similarity_score) tuples, sorted by
|
|
70
|
+
relevance (highest similarity first).
|
|
71
|
+
"""
|
|
72
|
+
...
|
|
73
|
+
|
|
74
|
+
def needs_refit(self) -> bool:
|
|
75
|
+
"""Check if the search index needs rebuilding.
|
|
76
|
+
|
|
77
|
+
Returns:
|
|
78
|
+
True if fit_async() should be called before search_async()
|
|
79
|
+
"""
|
|
80
|
+
...
|
|
81
|
+
|
|
82
|
+
def get_stats(self) -> dict[str, Any]:
|
|
83
|
+
"""Get statistics about the search index.
|
|
84
|
+
|
|
85
|
+
Returns:
|
|
86
|
+
Dict with backend-specific statistics
|
|
87
|
+
"""
|
|
88
|
+
...
|
|
89
|
+
|
|
90
|
+
def clear(self) -> None:
|
|
91
|
+
"""Clear the search index."""
|
|
92
|
+
...
|
|
93
|
+
|
|
94
|
+
|
|
95
|
+
class TFIDFBackend:
|
|
96
|
+
"""Async wrapper around TFIDFSearcher.
|
|
97
|
+
|
|
98
|
+
Provides the AsyncSearchBackend interface for TF-IDF search.
|
|
99
|
+
This is a thin wrapper that delegates to the sync TFIDFSearcher.
|
|
100
|
+
"""
|
|
101
|
+
|
|
102
|
+
def __init__(
|
|
103
|
+
self,
|
|
104
|
+
ngram_range: tuple[int, int] = (1, 2),
|
|
105
|
+
max_features: int = 10000,
|
|
106
|
+
min_df: int = 1,
|
|
107
|
+
stop_words: str | None = "english",
|
|
108
|
+
refit_threshold: int = 10,
|
|
109
|
+
):
|
|
110
|
+
"""Initialize TF-IDF backend.
|
|
111
|
+
|
|
112
|
+
Args:
|
|
113
|
+
ngram_range: Min/max n-gram sizes for tokenization
|
|
114
|
+
max_features: Maximum vocabulary size
|
|
115
|
+
min_df: Minimum document frequency for inclusion
|
|
116
|
+
stop_words: Language for stop words (None to disable)
|
|
117
|
+
refit_threshold: Number of updates before automatic refit
|
|
118
|
+
"""
|
|
119
|
+
self._searcher = TFIDFSearcher(
|
|
120
|
+
ngram_range=ngram_range,
|
|
121
|
+
max_features=max_features,
|
|
122
|
+
min_df=min_df,
|
|
123
|
+
stop_words=stop_words,
|
|
124
|
+
refit_threshold=refit_threshold,
|
|
125
|
+
)
|
|
126
|
+
|
|
127
|
+
async def fit_async(self, items: list[tuple[str, str]]) -> None:
|
|
128
|
+
"""Build or rebuild the search index."""
|
|
129
|
+
self._searcher.fit(items)
|
|
130
|
+
|
|
131
|
+
async def search_async(
|
|
132
|
+
self,
|
|
133
|
+
query: str,
|
|
134
|
+
top_k: int = 10,
|
|
135
|
+
) -> list[tuple[str, float]]:
|
|
136
|
+
"""Search for items matching the query."""
|
|
137
|
+
return self._searcher.search(query, top_k)
|
|
138
|
+
|
|
139
|
+
def needs_refit(self) -> bool:
|
|
140
|
+
"""Check if the search index needs rebuilding."""
|
|
141
|
+
return self._searcher.needs_refit()
|
|
142
|
+
|
|
143
|
+
def get_stats(self) -> dict[str, Any]:
|
|
144
|
+
"""Get statistics about the search index."""
|
|
145
|
+
stats = self._searcher.get_stats()
|
|
146
|
+
stats["backend_type"] = "tfidf"
|
|
147
|
+
return stats
|
|
148
|
+
|
|
149
|
+
def clear(self) -> None:
|
|
150
|
+
"""Clear the search index."""
|
|
151
|
+
self._searcher.clear()
|
|
152
|
+
|
|
153
|
+
def mark_update(self) -> None:
|
|
154
|
+
"""Mark that an item update occurred."""
|
|
155
|
+
self._searcher.mark_update()
|
|
156
|
+
|
|
157
|
+
|
|
158
|
+
# Import EmbeddingBackend - needs to be at end to avoid circular imports
|
|
159
|
+
from gobby.search.backends.embedding import EmbeddingBackend # noqa: E402
|
|
@@ -0,0 +1,225 @@
|
|
|
1
|
+
"""Embedding-based search backend.
|
|
2
|
+
|
|
3
|
+
This module provides embedding-based semantic search using cosine similarity.
|
|
4
|
+
It stores embeddings in memory and uses LiteLLM for embedding generation.
|
|
5
|
+
"""
|
|
6
|
+
|
|
7
|
+
from __future__ import annotations
|
|
8
|
+
|
|
9
|
+
import logging
|
|
10
|
+
import math
|
|
11
|
+
from typing import TYPE_CHECKING, Any
|
|
12
|
+
|
|
13
|
+
if TYPE_CHECKING:
|
|
14
|
+
from gobby.search.models import SearchConfig
|
|
15
|
+
|
|
16
|
+
logger = logging.getLogger(__name__)
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
def _cosine_similarity(vec1: list[float], vec2: list[float]) -> float:
|
|
20
|
+
"""Compute cosine similarity between two vectors.
|
|
21
|
+
|
|
22
|
+
Args:
|
|
23
|
+
vec1: First vector
|
|
24
|
+
vec2: Second vector
|
|
25
|
+
|
|
26
|
+
Returns:
|
|
27
|
+
Cosine similarity score between -1 and 1
|
|
28
|
+
"""
|
|
29
|
+
if len(vec1) != len(vec2):
|
|
30
|
+
return 0.0
|
|
31
|
+
|
|
32
|
+
dot_product = sum(a * b for a, b in zip(vec1, vec2, strict=True))
|
|
33
|
+
norm1 = math.sqrt(sum(a * a for a in vec1))
|
|
34
|
+
norm2 = math.sqrt(sum(b * b for b in vec2))
|
|
35
|
+
|
|
36
|
+
if norm1 == 0 or norm2 == 0:
|
|
37
|
+
return 0.0
|
|
38
|
+
|
|
39
|
+
return dot_product / (norm1 * norm2)
|
|
40
|
+
|
|
41
|
+
|
|
42
|
+
class EmbeddingBackend:
|
|
43
|
+
"""Embedding-based search backend using LiteLLM.
|
|
44
|
+
|
|
45
|
+
This backend generates embeddings for indexed items and uses
|
|
46
|
+
cosine similarity for search. Embeddings are stored in memory.
|
|
47
|
+
|
|
48
|
+
Supports all providers supported by LiteLLM:
|
|
49
|
+
- OpenAI (text-embedding-3-small)
|
|
50
|
+
- Ollama (openai/nomic-embed-text with api_base)
|
|
51
|
+
- Azure, Gemini, Mistral, etc.
|
|
52
|
+
|
|
53
|
+
Example:
|
|
54
|
+
backend = EmbeddingBackend(
|
|
55
|
+
model="text-embedding-3-small",
|
|
56
|
+
api_key="sk-..."
|
|
57
|
+
)
|
|
58
|
+
await backend.fit_async([("id1", "hello"), ("id2", "world")])
|
|
59
|
+
results = await backend.search_async("greeting", top_k=5)
|
|
60
|
+
"""
|
|
61
|
+
|
|
62
|
+
def __init__(
|
|
63
|
+
self,
|
|
64
|
+
model: str = "text-embedding-3-small",
|
|
65
|
+
api_base: str | None = None,
|
|
66
|
+
api_key: str | None = None,
|
|
67
|
+
):
|
|
68
|
+
"""Initialize embedding backend.
|
|
69
|
+
|
|
70
|
+
Args:
|
|
71
|
+
model: LiteLLM model string
|
|
72
|
+
api_base: Optional API base URL for custom endpoints
|
|
73
|
+
api_key: Optional API key (uses env var if not set)
|
|
74
|
+
"""
|
|
75
|
+
self._model = model
|
|
76
|
+
self._api_base = api_base
|
|
77
|
+
self._api_key = api_key
|
|
78
|
+
|
|
79
|
+
# Item storage
|
|
80
|
+
self._item_ids: list[str] = []
|
|
81
|
+
self._item_embeddings: list[list[float]] = []
|
|
82
|
+
self._item_contents: dict[str, str] = {} # For reindexing
|
|
83
|
+
self._fitted = False
|
|
84
|
+
|
|
85
|
+
@classmethod
|
|
86
|
+
def from_config(cls, config: SearchConfig) -> EmbeddingBackend:
|
|
87
|
+
"""Create an EmbeddingBackend from a SearchConfig.
|
|
88
|
+
|
|
89
|
+
Args:
|
|
90
|
+
config: SearchConfig with model and API settings
|
|
91
|
+
|
|
92
|
+
Returns:
|
|
93
|
+
Configured EmbeddingBackend instance
|
|
94
|
+
"""
|
|
95
|
+
return cls(
|
|
96
|
+
model=config.embedding_model,
|
|
97
|
+
api_base=config.embedding_api_base,
|
|
98
|
+
api_key=config.embedding_api_key,
|
|
99
|
+
)
|
|
100
|
+
|
|
101
|
+
async def fit_async(self, items: list[tuple[str, str]]) -> None:
|
|
102
|
+
"""Build or rebuild the search index.
|
|
103
|
+
|
|
104
|
+
Generates embeddings for all items and stores them in memory.
|
|
105
|
+
|
|
106
|
+
Args:
|
|
107
|
+
items: List of (item_id, content) tuples to index
|
|
108
|
+
|
|
109
|
+
Raises:
|
|
110
|
+
RuntimeError: If embedding generation fails
|
|
111
|
+
"""
|
|
112
|
+
if not items:
|
|
113
|
+
self._item_ids = []
|
|
114
|
+
self._item_embeddings = []
|
|
115
|
+
self._item_contents = {}
|
|
116
|
+
self._fitted = False
|
|
117
|
+
logger.debug("Embedding index cleared (no items)")
|
|
118
|
+
return
|
|
119
|
+
|
|
120
|
+
from gobby.search.embeddings import generate_embeddings
|
|
121
|
+
|
|
122
|
+
# Store contents for potential reindexing
|
|
123
|
+
self._item_ids = [item_id for item_id, _ in items]
|
|
124
|
+
self._item_contents = dict(items)
|
|
125
|
+
contents = [content for _, content in items]
|
|
126
|
+
|
|
127
|
+
# Generate embeddings in batch
|
|
128
|
+
try:
|
|
129
|
+
self._item_embeddings = await generate_embeddings(
|
|
130
|
+
texts=contents,
|
|
131
|
+
model=self._model,
|
|
132
|
+
api_base=self._api_base,
|
|
133
|
+
api_key=self._api_key,
|
|
134
|
+
)
|
|
135
|
+
self._fitted = True
|
|
136
|
+
logger.info(f"Embedding index built with {len(items)} items")
|
|
137
|
+
except Exception as e:
|
|
138
|
+
# Clear stale state to prevent inconsistent data
|
|
139
|
+
self._item_ids = []
|
|
140
|
+
self._item_contents = {}
|
|
141
|
+
self._item_embeddings = []
|
|
142
|
+
self._fitted = False
|
|
143
|
+
logger.error(f"Failed to build embedding index: {e}")
|
|
144
|
+
raise
|
|
145
|
+
|
|
146
|
+
async def search_async(
|
|
147
|
+
self,
|
|
148
|
+
query: str,
|
|
149
|
+
top_k: int = 10,
|
|
150
|
+
) -> list[tuple[str, float]]:
|
|
151
|
+
"""Search for items matching the query.
|
|
152
|
+
|
|
153
|
+
Generates an embedding for the query and finds items with
|
|
154
|
+
highest cosine similarity.
|
|
155
|
+
|
|
156
|
+
Args:
|
|
157
|
+
query: Search query text
|
|
158
|
+
top_k: Maximum number of results to return
|
|
159
|
+
|
|
160
|
+
Returns:
|
|
161
|
+
List of (item_id, similarity_score) tuples, sorted by
|
|
162
|
+
similarity descending.
|
|
163
|
+
|
|
164
|
+
Raises:
|
|
165
|
+
RuntimeError: If embedding generation fails
|
|
166
|
+
"""
|
|
167
|
+
if not self._fitted or not self._item_embeddings:
|
|
168
|
+
return []
|
|
169
|
+
|
|
170
|
+
from gobby.search.embeddings import generate_embedding
|
|
171
|
+
|
|
172
|
+
# Generate query embedding
|
|
173
|
+
try:
|
|
174
|
+
query_embedding = await generate_embedding(
|
|
175
|
+
text=query,
|
|
176
|
+
model=self._model,
|
|
177
|
+
api_base=self._api_base,
|
|
178
|
+
api_key=self._api_key,
|
|
179
|
+
)
|
|
180
|
+
except Exception as e:
|
|
181
|
+
logger.error(f"Failed to embed query: {e}")
|
|
182
|
+
raise
|
|
183
|
+
|
|
184
|
+
# Compute similarities
|
|
185
|
+
similarities: list[tuple[str, float]] = []
|
|
186
|
+
for item_id, item_embedding in zip(self._item_ids, self._item_embeddings, strict=True):
|
|
187
|
+
similarity = _cosine_similarity(query_embedding, item_embedding)
|
|
188
|
+
if similarity > 0:
|
|
189
|
+
similarities.append((item_id, similarity))
|
|
190
|
+
|
|
191
|
+
# Sort by similarity descending
|
|
192
|
+
similarities.sort(key=lambda x: x[1], reverse=True)
|
|
193
|
+
|
|
194
|
+
return similarities[:top_k]
|
|
195
|
+
|
|
196
|
+
def needs_refit(self) -> bool:
|
|
197
|
+
"""Check if the search index needs rebuilding."""
|
|
198
|
+
return not self._fitted
|
|
199
|
+
|
|
200
|
+
def get_stats(self) -> dict[str, Any]:
|
|
201
|
+
"""Get statistics about the search index."""
|
|
202
|
+
return {
|
|
203
|
+
"backend_type": "embedding",
|
|
204
|
+
"fitted": self._fitted,
|
|
205
|
+
"item_count": len(self._item_ids),
|
|
206
|
+
"model": self._model,
|
|
207
|
+
"has_api_base": self._api_base is not None,
|
|
208
|
+
}
|
|
209
|
+
|
|
210
|
+
def clear(self) -> None:
|
|
211
|
+
"""Clear the search index."""
|
|
212
|
+
self._item_ids = []
|
|
213
|
+
self._item_embeddings = []
|
|
214
|
+
self._item_contents = {}
|
|
215
|
+
self._fitted = False
|
|
216
|
+
|
|
217
|
+
def get_item_contents(self) -> dict[str, str]:
|
|
218
|
+
"""Get stored item contents.
|
|
219
|
+
|
|
220
|
+
Useful for reindexing into a different backend (e.g., TF-IDF fallback).
|
|
221
|
+
|
|
222
|
+
Returns:
|
|
223
|
+
Dict mapping item_id to content
|
|
224
|
+
"""
|
|
225
|
+
return self._item_contents.copy()
|