gllm-inference-binary 0.5.65__cp313-cp313-macosx_13_0_arm64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (140) hide show
  1. gllm_inference/__init__.pyi +0 -0
  2. gllm_inference/builder/__init__.pyi +6 -0
  3. gllm_inference/builder/_build_invoker.pyi +28 -0
  4. gllm_inference/builder/build_em_invoker.pyi +130 -0
  5. gllm_inference/builder/build_lm_invoker.pyi +222 -0
  6. gllm_inference/builder/build_lm_request_processor.pyi +88 -0
  7. gllm_inference/builder/build_output_parser.pyi +29 -0
  8. gllm_inference/catalog/__init__.pyi +4 -0
  9. gllm_inference/catalog/catalog.pyi +121 -0
  10. gllm_inference/catalog/lm_request_processor_catalog.pyi +112 -0
  11. gllm_inference/catalog/prompt_builder_catalog.pyi +82 -0
  12. gllm_inference/constants.pyi +12 -0
  13. gllm_inference/em_invoker/__init__.pyi +12 -0
  14. gllm_inference/em_invoker/azure_openai_em_invoker.pyi +88 -0
  15. gllm_inference/em_invoker/bedrock_em_invoker.pyi +118 -0
  16. gllm_inference/em_invoker/cohere_em_invoker.pyi +127 -0
  17. gllm_inference/em_invoker/em_invoker.pyi +90 -0
  18. gllm_inference/em_invoker/google_em_invoker.pyi +129 -0
  19. gllm_inference/em_invoker/jina_em_invoker.pyi +103 -0
  20. gllm_inference/em_invoker/langchain/__init__.pyi +3 -0
  21. gllm_inference/em_invoker/langchain/em_invoker_embeddings.pyi +84 -0
  22. gllm_inference/em_invoker/langchain_em_invoker.pyi +46 -0
  23. gllm_inference/em_invoker/openai_compatible_em_invoker.pyi +41 -0
  24. gllm_inference/em_invoker/openai_em_invoker.pyi +118 -0
  25. gllm_inference/em_invoker/schema/__init__.pyi +0 -0
  26. gllm_inference/em_invoker/schema/bedrock.pyi +29 -0
  27. gllm_inference/em_invoker/schema/cohere.pyi +20 -0
  28. gllm_inference/em_invoker/schema/google.pyi +9 -0
  29. gllm_inference/em_invoker/schema/jina.pyi +29 -0
  30. gllm_inference/em_invoker/schema/langchain.pyi +5 -0
  31. gllm_inference/em_invoker/schema/openai.pyi +7 -0
  32. gllm_inference/em_invoker/schema/openai_compatible.pyi +7 -0
  33. gllm_inference/em_invoker/schema/twelvelabs.pyi +17 -0
  34. gllm_inference/em_invoker/schema/voyage.pyi +15 -0
  35. gllm_inference/em_invoker/twelevelabs_em_invoker.pyi +101 -0
  36. gllm_inference/em_invoker/voyage_em_invoker.pyi +104 -0
  37. gllm_inference/exceptions/__init__.pyi +4 -0
  38. gllm_inference/exceptions/error_parser.pyi +41 -0
  39. gllm_inference/exceptions/exceptions.pyi +132 -0
  40. gllm_inference/exceptions/provider_error_map.pyi +24 -0
  41. gllm_inference/lm_invoker/__init__.pyi +15 -0
  42. gllm_inference/lm_invoker/anthropic_lm_invoker.pyi +320 -0
  43. gllm_inference/lm_invoker/azure_openai_lm_invoker.pyi +237 -0
  44. gllm_inference/lm_invoker/batch/__init__.pyi +3 -0
  45. gllm_inference/lm_invoker/batch/batch_operations.pyi +128 -0
  46. gllm_inference/lm_invoker/bedrock_lm_invoker.pyi +212 -0
  47. gllm_inference/lm_invoker/datasaur_lm_invoker.pyi +157 -0
  48. gllm_inference/lm_invoker/google_lm_invoker.pyi +421 -0
  49. gllm_inference/lm_invoker/langchain_lm_invoker.pyi +239 -0
  50. gllm_inference/lm_invoker/litellm_lm_invoker.pyi +224 -0
  51. gllm_inference/lm_invoker/lm_invoker.pyi +183 -0
  52. gllm_inference/lm_invoker/openai_chat_completions_lm_invoker.pyi +252 -0
  53. gllm_inference/lm_invoker/openai_compatible_lm_invoker.pyi +52 -0
  54. gllm_inference/lm_invoker/openai_lm_invoker.pyi +437 -0
  55. gllm_inference/lm_invoker/portkey_lm_invoker.pyi +296 -0
  56. gllm_inference/lm_invoker/schema/__init__.pyi +0 -0
  57. gllm_inference/lm_invoker/schema/anthropic.pyi +56 -0
  58. gllm_inference/lm_invoker/schema/bedrock.pyi +53 -0
  59. gllm_inference/lm_invoker/schema/datasaur.pyi +14 -0
  60. gllm_inference/lm_invoker/schema/google.pyi +36 -0
  61. gllm_inference/lm_invoker/schema/langchain.pyi +23 -0
  62. gllm_inference/lm_invoker/schema/openai.pyi +109 -0
  63. gllm_inference/lm_invoker/schema/openai_chat_completions.pyi +62 -0
  64. gllm_inference/lm_invoker/schema/portkey.pyi +31 -0
  65. gllm_inference/lm_invoker/schema/xai.pyi +31 -0
  66. gllm_inference/lm_invoker/sea_lion_lm_invoker.pyi +48 -0
  67. gllm_inference/lm_invoker/xai_lm_invoker.pyi +252 -0
  68. gllm_inference/model/__init__.pyi +13 -0
  69. gllm_inference/model/em/__init__.pyi +0 -0
  70. gllm_inference/model/em/cohere_em.pyi +17 -0
  71. gllm_inference/model/em/google_em.pyi +16 -0
  72. gllm_inference/model/em/jina_em.pyi +22 -0
  73. gllm_inference/model/em/openai_em.pyi +15 -0
  74. gllm_inference/model/em/twelvelabs_em.pyi +13 -0
  75. gllm_inference/model/em/voyage_em.pyi +20 -0
  76. gllm_inference/model/lm/__init__.pyi +0 -0
  77. gllm_inference/model/lm/anthropic_lm.pyi +22 -0
  78. gllm_inference/model/lm/google_lm.pyi +18 -0
  79. gllm_inference/model/lm/openai_lm.pyi +27 -0
  80. gllm_inference/model/lm/sea_lion_lm.pyi +16 -0
  81. gllm_inference/model/lm/xai_lm.pyi +19 -0
  82. gllm_inference/output_parser/__init__.pyi +3 -0
  83. gllm_inference/output_parser/json_output_parser.pyi +60 -0
  84. gllm_inference/output_parser/output_parser.pyi +27 -0
  85. gllm_inference/prompt_builder/__init__.pyi +3 -0
  86. gllm_inference/prompt_builder/format_strategy/__init__.pyi +4 -0
  87. gllm_inference/prompt_builder/format_strategy/format_strategy.pyi +55 -0
  88. gllm_inference/prompt_builder/format_strategy/jinja_format_strategy.pyi +45 -0
  89. gllm_inference/prompt_builder/format_strategy/string_format_strategy.pyi +20 -0
  90. gllm_inference/prompt_builder/prompt_builder.pyi +73 -0
  91. gllm_inference/prompt_formatter/__init__.pyi +7 -0
  92. gllm_inference/prompt_formatter/agnostic_prompt_formatter.pyi +49 -0
  93. gllm_inference/prompt_formatter/huggingface_prompt_formatter.pyi +55 -0
  94. gllm_inference/prompt_formatter/llama_prompt_formatter.pyi +59 -0
  95. gllm_inference/prompt_formatter/mistral_prompt_formatter.pyi +53 -0
  96. gllm_inference/prompt_formatter/openai_prompt_formatter.pyi +35 -0
  97. gllm_inference/prompt_formatter/prompt_formatter.pyi +30 -0
  98. gllm_inference/realtime_chat/__init__.pyi +3 -0
  99. gllm_inference/realtime_chat/google_realtime_chat.pyi +205 -0
  100. gllm_inference/realtime_chat/input_streamer/__init__.pyi +4 -0
  101. gllm_inference/realtime_chat/input_streamer/input_streamer.pyi +36 -0
  102. gllm_inference/realtime_chat/input_streamer/keyboard_input_streamer.pyi +27 -0
  103. gllm_inference/realtime_chat/input_streamer/linux_mic_input_streamer.pyi +36 -0
  104. gllm_inference/realtime_chat/output_streamer/__init__.pyi +4 -0
  105. gllm_inference/realtime_chat/output_streamer/console_output_streamer.pyi +21 -0
  106. gllm_inference/realtime_chat/output_streamer/linux_speaker_output_streamer.pyi +42 -0
  107. gllm_inference/realtime_chat/output_streamer/output_streamer.pyi +33 -0
  108. gllm_inference/realtime_chat/realtime_chat.pyi +28 -0
  109. gllm_inference/request_processor/__init__.pyi +4 -0
  110. gllm_inference/request_processor/lm_request_processor.pyi +101 -0
  111. gllm_inference/request_processor/uses_lm_mixin.pyi +130 -0
  112. gllm_inference/schema/__init__.pyi +19 -0
  113. gllm_inference/schema/activity.pyi +64 -0
  114. gllm_inference/schema/attachment.pyi +102 -0
  115. gllm_inference/schema/code_exec_result.pyi +14 -0
  116. gllm_inference/schema/config.pyi +15 -0
  117. gllm_inference/schema/enums.pyi +82 -0
  118. gllm_inference/schema/events.pyi +105 -0
  119. gllm_inference/schema/formatter.pyi +31 -0
  120. gllm_inference/schema/lm_input.pyi +4 -0
  121. gllm_inference/schema/lm_output.pyi +266 -0
  122. gllm_inference/schema/mcp.pyi +31 -0
  123. gllm_inference/schema/message.pyi +52 -0
  124. gllm_inference/schema/model_id.pyi +176 -0
  125. gllm_inference/schema/reasoning.pyi +15 -0
  126. gllm_inference/schema/token_usage.pyi +75 -0
  127. gllm_inference/schema/tool_call.pyi +14 -0
  128. gllm_inference/schema/tool_result.pyi +11 -0
  129. gllm_inference/schema/type_alias.pyi +11 -0
  130. gllm_inference/utils/__init__.pyi +5 -0
  131. gllm_inference/utils/io_utils.pyi +26 -0
  132. gllm_inference/utils/langchain.pyi +30 -0
  133. gllm_inference/utils/validation.pyi +15 -0
  134. gllm_inference.build/.gitignore +1 -0
  135. gllm_inference.cpython-313-darwin.so +0 -0
  136. gllm_inference.pyi +156 -0
  137. gllm_inference_binary-0.5.65.dist-info/METADATA +138 -0
  138. gllm_inference_binary-0.5.65.dist-info/RECORD +140 -0
  139. gllm_inference_binary-0.5.65.dist-info/WHEEL +5 -0
  140. gllm_inference_binary-0.5.65.dist-info/top_level.txt +1 -0
@@ -0,0 +1,3 @@
1
+ from gllm_inference.prompt_builder.prompt_builder import PromptBuilder as PromptBuilder
2
+
3
+ __all__ = ['PromptBuilder']
@@ -0,0 +1,4 @@
1
+ from gllm_inference.prompt_builder.format_strategy.jinja_format_strategy import JinjaFormatStrategy as JinjaFormatStrategy
2
+ from gllm_inference.prompt_builder.format_strategy.string_format_strategy import StringFormatStrategy as StringFormatStrategy
3
+
4
+ __all__ = ['StringFormatStrategy', 'JinjaFormatStrategy']
@@ -0,0 +1,55 @@
1
+ import abc
2
+ from _typeshed import Incomplete
3
+ from abc import ABC, abstractmethod
4
+ from gllm_inference.schema.message import MessageContent as MessageContent
5
+
6
+ class BasePromptFormattingStrategy(ABC, metaclass=abc.ABCMeta):
7
+ """Base class for prompt formatting strategies.
8
+
9
+ This class defines the interface for different prompt templating engines. Subclasses
10
+ implement specific formatting strategies to render templates with variable
11
+ substitution.
12
+
13
+ The strategy pattern allows the PromptBuilder to work with different templating engines
14
+ without changing its core logic.
15
+
16
+ Attributes:
17
+ key_defaults (dict[str, str]): The default values for the keys.
18
+ """
19
+ key_defaults: Incomplete
20
+ def __init__(self, key_defaults: dict[str, str] | None = None) -> None:
21
+ """Initialize the BasePromptFormattingStrategy.
22
+
23
+ Args:
24
+ key_defaults (dict[str, str] | None, optional): The default values for the keys. Defaults to None,
25
+ in which case no default values are used.
26
+ """
27
+ def format(self, template: str, variables_map: dict[str, str] | None = None, extra_contents: list[MessageContent] | None = None) -> list[str]:
28
+ """Format template with variables using the template method pattern.
29
+
30
+ This is a template method that defines the algorithm for formatting:
31
+ 1. Merge key_defaults and variables_map
32
+ 2. Render the template (delegated to subclass via _render_template)
33
+ 3. Append extra_contents to the result
34
+
35
+ Args:
36
+ template (str): Template string to format.
37
+ variables_map (dict[str, str] | None, optional): Variables for substitution. Defaults to None.
38
+ extra_contents (list[MessageContent] | None, optional): Extra contents to format. Defaults to None.
39
+
40
+ Returns:
41
+ str: Formatted template string.
42
+ """
43
+ @abstractmethod
44
+ def extract_keys(self, template: str | None) -> set[str]:
45
+ """Extract variable keys from template.
46
+
47
+ Args:
48
+ template (str | None): Template string to extract keys from.
49
+
50
+ Returns:
51
+ set[str]: Set of variable keys found in template.
52
+
53
+ Raises:
54
+ NotImplementedError: If the method is not implemented.
55
+ """
@@ -0,0 +1,45 @@
1
+ from _typeshed import Incomplete
2
+ from gllm_inference.prompt_builder.format_strategy.format_strategy import BasePromptFormattingStrategy as BasePromptFormattingStrategy
3
+ from gllm_inference.schema import JinjaEnvType as JinjaEnvType
4
+ from jinja2.sandbox import SandboxedEnvironment
5
+ from typing import Any
6
+
7
+ JINJA_DEFAULT_BLACKLISTED_FILTERS: list[str]
8
+ JINJA_DEFAULT_SAFE_GLOBALS: dict[str, Any]
9
+ JINJA_DANGEROUS_PATTERNS: list[str]
10
+ PROMPT_BUILDER_VARIABLE_START_STRING: str
11
+ PROMPT_BUILDER_VARIABLE_END_STRING: str
12
+
13
+ class JinjaFormatStrategy(BasePromptFormattingStrategy):
14
+ """Jinja2 template engine for formatting prompts.
15
+
16
+ Attributes:
17
+ jinja_env (SandboxedEnvironment): The Jinja environment for rendering templates.
18
+ key_defaults (dict[str, str]): The default values for the keys.
19
+ """
20
+ jinja_env: Incomplete
21
+ def __init__(self, environment: JinjaEnvType | SandboxedEnvironment = ..., key_defaults: dict[str, str] | None = None) -> None:
22
+ """Initialize the JinjaFormatStrategy.
23
+
24
+ Args:
25
+ environment (JinjaEnvType | SandboxedEnvironment, optional): The environment for Jinja rendering.
26
+ It can be one of the following:
27
+ 1. `JinjaEnvType.RESTRICTED`: Uses a minimal, restricted Jinja environment.
28
+ Safest for most cases.
29
+ 2. `JinjaEnvType.JINJA_DEFAULT`: Uses the full Jinja environment. Allows more powerful templating,
30
+ but with fewer safety restrictions.
31
+ 3. `SandboxedEnvironment` instance: A custom Jinja `SandboxedEnvironment` object provided by the
32
+ user. Offers fine-grained control over template execution.
33
+ Defaults to `JinjaEnvType.RESTRICTED`
34
+ key_defaults (dict[str, str], optional): The default values for the keys. Defaults to None, in which
35
+ case no default values are used.
36
+ """
37
+ def extract_keys(self, template: str | None) -> set[str]:
38
+ """Extract keys from Jinja template using AST analysis.
39
+
40
+ Args:
41
+ template (str | None): The template to extract keys from.
42
+
43
+ Returns:
44
+ set[str]: The set of keys found in the template.
45
+ """
@@ -0,0 +1,20 @@
1
+ from _typeshed import Incomplete
2
+ from gllm_inference.prompt_builder.format_strategy.format_strategy import BasePromptFormattingStrategy as BasePromptFormattingStrategy
3
+
4
+ KEY_EXTRACTOR_REGEX: Incomplete
5
+
6
+ class StringFormatStrategy(BasePromptFormattingStrategy):
7
+ """String format strategy using str.format() method.
8
+
9
+ Attributes:
10
+ key_defaults (dict[str, str]): The default values for the keys.
11
+ """
12
+ def extract_keys(self, template: str | None) -> set[str]:
13
+ """Extract keys from a template.
14
+
15
+ Args:
16
+ template (str | None): The template to extract keys from.
17
+
18
+ Returns:
19
+ set[str]: The set of keys found in the template.
20
+ """
@@ -0,0 +1,73 @@
1
+ from _typeshed import Incomplete
2
+ from gllm_inference.prompt_builder.format_strategy import JinjaFormatStrategy as JinjaFormatStrategy, StringFormatStrategy as StringFormatStrategy
3
+ from gllm_inference.schema import HistoryFormatter as HistoryFormatter, JinjaEnvType as JinjaEnvType, Message as Message, MessageContent as MessageContent, MessageRole as MessageRole
4
+ from jinja2.sandbox import SandboxedEnvironment as SandboxedEnvironment
5
+ from typing import Any
6
+
7
+ class PromptBuilder:
8
+ """A prompt builder class used in Gen AI applications.
9
+
10
+ Attributes:
11
+ system_template (str): The system prompt template. May contain placeholders enclosed in curly braces `{}`.
12
+ user_template (str): The user prompt template. May contain placeholders enclosed in curly braces `{}`.
13
+ prompt_key_set (set[str]): A set of expected keys that must be present in the prompt templates.
14
+ key_defaults (dict[str, str]): Default values for the keys in the prompt templates.
15
+ strategy (BasePromptFormattingStrategy): The format strategy to be used for formatting the prompt.
16
+ history_formatter (HistoryFormatter): The history formatter to be used for formatting the history.
17
+ """
18
+ key_defaults: Incomplete
19
+ system_template: Incomplete
20
+ user_template: Incomplete
21
+ history_formatter: Incomplete
22
+ strategy: Incomplete
23
+ prompt_key_set: Incomplete
24
+ def __init__(self, system_template: str = '', user_template: str = '', key_defaults: dict[str, str] | None = None, ignore_extra_keys: bool | None = None, history_formatter: HistoryFormatter | None = None, use_jinja: bool | None = False, jinja_env: JinjaEnvType | SandboxedEnvironment | None = None) -> None:
25
+ """Initializes a new instance of the PromptBuilder class.
26
+
27
+ Args:
28
+ system_template (str, optional): The system prompt template. May contain placeholders enclosed in curly
29
+ braces `{}`. Defaults to an empty string.
30
+ user_template (str, optional): The user prompt template. May contain placeholders enclosed in curly
31
+ braces `{}`. Defaults to an empty string.
32
+ key_defaults (dict[str, str] | None, optional): Default values for the keys in the prompt templates.
33
+ Applied when the corresponding keys are not provided in the runtime input.
34
+ Defaults to None, in which case no default values will be assigned to the keys.
35
+ ignore_extra_keys (bool | None, optional): Deprecated parameter. Will be removed in v0.6. Extra keys
36
+ will always raise a warning only instead of raising an error.
37
+ history_formatter (HistoryFormatter | None, optional): The history formatter to be used for formatting
38
+ the history. Defaults to None, in which case the history will be used as is.
39
+ use_jinja (bool, optional): Whether to use Jinja for rendering the prompt templates.
40
+ Defaults to False.
41
+ jinja_env (JinjaEnvType | SandboxedEnvironment, optional): The environment for Jinja rendering.
42
+ It can be one of the following:
43
+ 1. `JinjaEnvType.RESTRICTED`: Uses a minimal, restricted Jinja environment.
44
+ Safest for most cases.
45
+ 2. `JinjaEnvType.JINJA_DEFAULT`: Uses the full Jinja environment. Allows more powerful templating,
46
+ but with fewer safety restrictions.
47
+ 3. `SandboxedEnvironment` instance: A custom Jinja `SandboxedEnvironment` object provided by the
48
+ user. Offers fine-grained control over template execution.
49
+ Defaults to `JinjaEnvType.RESTRICTED`
50
+
51
+ Raises:
52
+ ValueError: If both `system_template` and `user_template` are empty.
53
+ """
54
+ def format(self, history: list[Message] | None = None, extra_contents: list[MessageContent] | None = None, **kwargs: Any) -> list[Message]:
55
+ """Formats the prompt templates into a list of messages.
56
+
57
+ This method processes each prompt template, replacing the placeholders in the template content with the
58
+ corresponding values from `kwargs`. If any required key is missing from `kwargs`, it raises a `ValueError`.
59
+ It also handles the provided history and extra contents. It formats the prompt as a list of messages.
60
+
61
+ Args:
62
+ history (list[Message] | None, optional): The history to be included in the prompt. Defaults to None.
63
+ extra_contents (list[MessageContent] | None, optional): The extra contents to be included in the user
64
+ message. Defaults to None.
65
+ **kwargs (Any): A dictionary of placeholder values to be injected into the prompt templates.
66
+ Values must be either a string or an object that can be serialized to a string.
67
+
68
+ Returns:
69
+ list[Message]: A list of formatted messages.
70
+
71
+ Raises:
72
+ ValueError: If a required key for the prompt template is missing from `kwargs`.
73
+ """
@@ -0,0 +1,7 @@
1
+ from gllm_inference.prompt_formatter.agnostic_prompt_formatter import AgnosticPromptFormatter as AgnosticPromptFormatter
2
+ from gllm_inference.prompt_formatter.huggingface_prompt_formatter import HuggingFacePromptFormatter as HuggingFacePromptFormatter
3
+ from gllm_inference.prompt_formatter.llama_prompt_formatter import LlamaPromptFormatter as LlamaPromptFormatter
4
+ from gllm_inference.prompt_formatter.mistral_prompt_formatter import MistralPromptFormatter as MistralPromptFormatter
5
+ from gllm_inference.prompt_formatter.openai_prompt_formatter import OpenAIPromptFormatter as OpenAIPromptFormatter
6
+
7
+ __all__ = ['AgnosticPromptFormatter', 'HuggingFacePromptFormatter', 'LlamaPromptFormatter', 'MistralPromptFormatter', 'OpenAIPromptFormatter']
@@ -0,0 +1,49 @@
1
+ from _typeshed import Incomplete
2
+ from gllm_inference.prompt_formatter.prompt_formatter import BasePromptFormatter as BasePromptFormatter
3
+ from gllm_inference.schema import MessageRole as MessageRole
4
+
5
+ class AgnosticPromptFormatter(BasePromptFormatter):
6
+ '''A prompt formatter that formats prompt without any specific model formatting.
7
+
8
+ The `AgnosticPromptFormatter` class formats a prompt by joining the content of the prompt templates using a
9
+ specified separator. It is designed to work independently of specific model types.
10
+
11
+ Attributes:
12
+ content_separator (str): A string used to separate each content in a message.
13
+ message_separator (str): A string used to separate each message.
14
+
15
+ Usage:
16
+ The `AgnosticPromptFormatter` can be used to format a prompt for any model.
17
+ The `content_separator` and `message_separator` can be customized to define the format of the prompt.
18
+
19
+ Usage example:
20
+ ```python
21
+ prompt = [
22
+ (MessageRole.USER, ["Hello", "how are you?"]),
23
+ (MessageRole.ASSISTANT, ["I\'m fine", "thank you!"]),
24
+ (MessageRole.USER, ["What is the capital of France?"]),
25
+ ]
26
+ prompt_formatter = AgnosticPromptFormatter(
27
+ message_separator="\\n###\\n",
28
+ content_separator="---"
29
+ )
30
+ print(prompt_formatter.format(prompt))
31
+ ```
32
+
33
+ Output example:
34
+ ```
35
+ Hello---how are you?
36
+ ###
37
+ I\'m fine---thank you!
38
+ ###
39
+ What is the capital of France?
40
+ ```
41
+ '''
42
+ message_separator: Incomplete
43
+ def __init__(self, message_separator: str = '\n', content_separator: str = '\n') -> None:
44
+ '''Initializes a new instance of the AgnosticPromptFormatter class.
45
+
46
+ Args:
47
+ message_separator (str, optional): A string used to separate each message. Defaults to "\\n".
48
+ content_separator (str, optional): A string used to separate each content in a message. Defaults to "\\n".
49
+ '''
@@ -0,0 +1,55 @@
1
+ from gllm_inference.prompt_formatter.prompt_formatter import BasePromptFormatter as BasePromptFormatter
2
+ from gllm_inference.schema import MessageRole as MessageRole
3
+
4
+ TOKENIZER_LOAD_ERROR_MESSAGE: str
5
+
6
+ class HuggingFacePromptFormatter(BasePromptFormatter):
7
+ '''A prompt formatter that formats prompt using HuggingFace model\'s specific formatting.
8
+
9
+ The `HuggingFacePromptFormatter` class is designed to format prompt using a HuggingFace model\'s specific formatting.
10
+ It does so by using the model\'s tokenizer\'s `apply_chat_template` method.
11
+
12
+ Attributes:
13
+ content_separator (str): A string used to separate each content in a message.
14
+ tokenizer (PreTrainedTokenizer): The HuggingFace model tokenizer used for chat templating.
15
+
16
+ Usage:
17
+ The `HuggingFacePromptFormatter` can be used to format a prompt using a HuggingFace model\'s specific formatting.
18
+ The `content_separator` and `model_name_or_path` can be customized to define the format of the prompt.
19
+ The `model_name_or_path` defines the name of the HuggingFace model whose tokenizer will be used to format
20
+ the prompt using the `apply_chat_template` method.
21
+
22
+ Usage example:
23
+ ```python
24
+ prompt = [
25
+ (MessageRole.USER, ["Hello", "how are you?"]),
26
+ (MessageRole.ASSISTANT, ["I\'m fine", "thank you!"]),
27
+ (MessageRole.USER, ["What is the capital of France?"]),
28
+ ]
29
+ prompt_formatter = HuggingFacePromptFormatter(
30
+ model_name_or_path="mistralai/Mistral-7B-Instruct-v0.1",
31
+ content_separator="---"
32
+ )
33
+ print(prompt_formatter.format(prompt))
34
+ ```
35
+
36
+ Output example:
37
+ ```
38
+ <s>[INST] Hello---how are you? [/INST]I\'m fine---thank you!</s> [INST] What is the capital of France? [/INST]
39
+ ```
40
+
41
+ Using a gated model:
42
+ If you\'re trying to access the prompt builder template of a gated model, you\'d need to:
43
+ 1. Request access to the gated repo using your HuggingFace account.
44
+ 2. Login to HuggingFace in your system. This can be done as follows:
45
+ 2.1. Install huggingface-hub: ```pip install huggingface-hub```
46
+ 2.2. Login to HuggingFace: ```huggingface-cli login```
47
+ 2.3. Enter your HuggingFace token.
48
+ '''
49
+ def __init__(self, model_name_or_path: str, content_separator: str = '\n') -> None:
50
+ '''Initializes a new instance of the HuggingFacePromptFormatter class.
51
+
52
+ Args:
53
+ model_name_or_path (str): The model name or path of the HuggingFace model tokenizer to be loaded.
54
+ content_separator (str, optional): A string used to separate each content in a message. Defaults to "\\n".
55
+ '''
@@ -0,0 +1,59 @@
1
+ from gllm_inference.prompt_formatter import HuggingFacePromptFormatter as HuggingFacePromptFormatter
2
+
3
+ class LlamaPromptFormatter(HuggingFacePromptFormatter):
4
+ '''A prompt formatter that formats prompt using Llama model\'s specific formatting.
5
+
6
+ The `LlamaPromptFormatter` class is designed to format prompt using a Llama model\'s specific formatting.
7
+ It does so by using the model\'s tokenizer\'s `apply_chat_template` method.
8
+
9
+ Attributes:
10
+ content_separator (str): A string used to separate each content in a message.
11
+ tokenizer (PreTrainedTokenizer): The HuggingFace model tokenizer used for chat templating.
12
+
13
+ Usage:
14
+ The `LlamaPromptFormatter` can be used to format a prompt using a Llama model\'s specific formatting.
15
+ The `content_separator` and `model_name` can be customized to define the format of the prompt.
16
+ The `model_name` defines the name of the HuggingFace model whose tokenizer will be used to format
17
+ the prompt using the `apply_chat_template` method.
18
+
19
+ Usage example:
20
+ ```python
21
+ prompt = [
22
+ (MessageRole.USER, ["Hello", "how are you?"]),
23
+ (MessageRole.ASSISTANT, ["I\'m fine", "thank you!"]),
24
+ (MessageRole.USER, ["What is the capital of France?"]),
25
+ ]
26
+ prompt_formatter = LlamaPromptFormatter(
27
+ model_name_or_path="meta-llama/Meta-Llama-3.1-8B-Instruct",
28
+ content_separator="---"
29
+ )
30
+ print(prompt_formatter.format(prompt))
31
+ ```
32
+
33
+ Output example:
34
+ ```
35
+ <|begin_of_text|><|start_header_id|>user<|end_header_id|>
36
+
37
+ Hello---how are you?<|eot_id|><|start_header_id|>assistant<|end_header_id|>
38
+
39
+ I\'m fine---thank you!<|eot_id|><|start_header_id|>user<|end_header_id|>
40
+
41
+ What is the capital of France?<|eot_id|><|start_header_id|>assistant<|end_header_id|>
42
+ ```
43
+
44
+ Using a gated model:
45
+ If you\'re trying to access the prompt builder template of a gated model, you\'d need to:
46
+ 1. Request access to the gated repo using your HuggingFace account.
47
+ 2. Login to HuggingFace in your system. This can be done as follows:
48
+ 2.1. Install huggingface-hub: ```pip install huggingface-hub```
49
+ 2.2. Login to HuggingFace: ```huggingface-cli login```
50
+ 2.3. Enter your HuggingFace token.
51
+ '''
52
+ def __init__(self, model_name: str = 'Meta-Llama-3.1-8B-Instruct', content_separator: str = '\n') -> None:
53
+ '''Initializes a new instance of the LlamaPromptFormatter class.
54
+
55
+ Args:
56
+ model_name (str, optional): The name of the Llama model tokenizer to be loaded. Defaults to
57
+ `Meta-Llama-3.1-8B-Instruct`.
58
+ content_separator (str, optional): A string used to separate each content in a message. Defaults to "\\n".
59
+ '''
@@ -0,0 +1,53 @@
1
+ from gllm_inference.prompt_formatter import HuggingFacePromptFormatter as HuggingFacePromptFormatter
2
+
3
+ class MistralPromptFormatter(HuggingFacePromptFormatter):
4
+ '''A prompt formatter that formats prompt using Mistral model\'s specific formatting.
5
+
6
+ The `MistralPromptFormatter` class is designed to format prompt using a Mistral model\'s specific formatting.
7
+ It does so by using the model\'s tokenizer\'s `apply_chat_template` method.
8
+
9
+ Attributes:
10
+ content_separator (str): A string used to separate each content in a message.
11
+ tokenizer (PreTrainedTokenizer): The HuggingFace model tokenizer used for chat templating.
12
+
13
+ Usage:
14
+ The `MistralPromptFormatter` can be used to format a prompt using a Mistral model\'s specific formatting.
15
+ The `content_separator` and `model_name` can be customized to define the format of the prompt.
16
+ The `model_name` defines the name of the HuggingFace model whose tokenizer will be used to format
17
+ the prompt using the `apply_chat_template` method.
18
+
19
+ Usage example:
20
+ ```python
21
+ prompt = [
22
+ (MessageRole.USER, ["Hello", "how are you?"]),
23
+ (MessageRole.ASSISTANT, ["I\'m fine", "thank you!"]),
24
+ (MessageRole.USER, ["What is the capital of France?"]),
25
+ ]
26
+ prompt_formatter = MistralPromptFormatter(
27
+ model_name_or_path="mistralai/Mistral-7B-Instruct-v0.1",
28
+ content_separator="---"
29
+ )
30
+ print(prompt_formatter.format(prompt))
31
+ ```
32
+
33
+ Output example:
34
+ ```
35
+ <s>[INST] Hello---how are you? [/INST]I\'m fine---thank you!</s> [INST] What is the capital of France? [/INST]
36
+ ```
37
+
38
+ Using a gated model:
39
+ If you\'re trying to access the prompt builder template of a gated model, you\'d need to:
40
+ 1. Request access to the gated repo using your HuggingFace account.
41
+ 2. Login to HuggingFace in your system. This can be done as follows:
42
+ 2.1. Install huggingface-hub: ```pip install huggingface-hub```
43
+ 2.2. Login to HuggingFace: ```huggingface-cli login```
44
+ 2.3. Enter your HuggingFace token.
45
+ '''
46
+ def __init__(self, model_name: str = 'Mistral-7B-Instruct-v0.3', content_separator: str = '\n') -> None:
47
+ '''Initializes a new instance of the MistralPromptFormatter class.
48
+
49
+ Args:
50
+ model_name (str, optional): The name of the Mistral model tokenizer to be loaded. Defaults to
51
+ `Mistral-7B-Instruct-v0.3`.
52
+ content_separator (str, optional): A string used to separate each content in a message. Defaults to "\\n".
53
+ '''
@@ -0,0 +1,35 @@
1
+ from gllm_inference.prompt_formatter.prompt_formatter import BasePromptFormatter as BasePromptFormatter
2
+ from gllm_inference.schema import MessageRole as MessageRole
3
+
4
+ class OpenAIPromptFormatter(BasePromptFormatter):
5
+ '''A prompt formatter that formats prompt with OpenAI\'s specific formatting.
6
+
7
+ The `OpenAIPromptFormatter` class formats a prompt by utilizing OpenAI\'s specific formatting.
8
+
9
+ Attributes:
10
+ content_separator (str): A string used to separate each content in a message.
11
+
12
+ Usage:
13
+ The `OpenAIPromptFormatter` can be used to format a prompt for OpenAI\'s models.
14
+ The `content_separator` can be customized to define the format of the prompt.
15
+
16
+ Usage example:
17
+ ```python
18
+ prompt = [
19
+ (MessageRole.USER, ["Hello", "how are you?"]),
20
+ (MessageRole.ASSISTANT, ["I\'m fine", "thank you!"]),
21
+ (MessageRole.USER, ["What is the capital of France?"]),
22
+ ]
23
+ prompt_formatter = OpenAIPromptFormatter(
24
+ content_separator="---"
25
+ )
26
+ print(prompt_formatter.format(prompt))
27
+ ```
28
+
29
+ Output example:
30
+ ```
31
+ User: Hello---how are you?
32
+ Assistant: I\'m fine---thank you!
33
+ User: What is the capital of France?
34
+ ```
35
+ '''
@@ -0,0 +1,30 @@
1
+ import abc
2
+ from _typeshed import Incomplete
3
+ from abc import ABC
4
+ from gllm_inference.schema import Message as Message, MessageContent as MessageContent, MessageRole as MessageRole
5
+
6
+ class BasePromptFormatter(ABC, metaclass=abc.ABCMeta):
7
+ """A base class for prompt formatters used in Gen AI applications.
8
+
9
+ The prompt formatter class is used to format a prompt into a string with specific formatting.
10
+
11
+ Attributes:
12
+ content_separator (str): The separator to be used between the string in a single message.
13
+ """
14
+ content_separator: Incomplete
15
+ def __init__(self, content_separator: str = '\n') -> None:
16
+ '''Initializes a new instance of the BasePromptFormatter class.
17
+
18
+ Args:
19
+ content_separator (str, optional): The separator to be used between the string in a single message.
20
+ Defaults to "\\n".
21
+ '''
22
+ def format(self, messages: list[Message]) -> str:
23
+ """Formats the prompt as a string.
24
+
25
+ Args:
26
+ messages (list[Message]): The messages to be formatted as a string.
27
+
28
+ Returns:
29
+ str: The formatted messages as a string.
30
+ """
@@ -0,0 +1,3 @@
1
+ from gllm_inference.realtime_chat.google_realtime_chat import GoogleRealtimeChat as GoogleRealtimeChat
2
+
3
+ __all__ = ['GoogleRealtimeChat']