gllm-inference-binary 0.5.60__cp313-cp313-win_amd64.whl → 0.5.62__cp313-cp313-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of gllm-inference-binary might be problematic. Click here for more details.

@@ -1,4 +1,4 @@
1
- from gllm_inference.lm_invoker import AnthropicLMInvoker as AnthropicLMInvoker, AzureOpenAILMInvoker as AzureOpenAILMInvoker, BedrockLMInvoker as BedrockLMInvoker, DatasaurLMInvoker as DatasaurLMInvoker, GoogleLMInvoker as GoogleLMInvoker, LangChainLMInvoker as LangChainLMInvoker, LiteLLMLMInvoker as LiteLLMLMInvoker, OpenAIChatCompletionsLMInvoker as OpenAIChatCompletionsLMInvoker, OpenAICompatibleLMInvoker as OpenAICompatibleLMInvoker, OpenAILMInvoker as OpenAILMInvoker, PortkeyLMInvoker as PortkeyLMInvoker, XAILMInvoker as XAILMInvoker
1
+ from gllm_inference.lm_invoker import AnthropicLMInvoker as AnthropicLMInvoker, AzureOpenAILMInvoker as AzureOpenAILMInvoker, BedrockLMInvoker as BedrockLMInvoker, DatasaurLMInvoker as DatasaurLMInvoker, GoogleLMInvoker as GoogleLMInvoker, LangChainLMInvoker as LangChainLMInvoker, LiteLLMLMInvoker as LiteLLMLMInvoker, OpenAIChatCompletionsLMInvoker as OpenAIChatCompletionsLMInvoker, OpenAICompatibleLMInvoker as OpenAICompatibleLMInvoker, OpenAILMInvoker as OpenAILMInvoker, PortkeyLMInvoker as PortkeyLMInvoker, SeaLionLMInvoker as SeaLionLMInvoker, XAILMInvoker as XAILMInvoker
2
2
  from gllm_inference.lm_invoker.lm_invoker import BaseLMInvoker as BaseLMInvoker
3
3
  from gllm_inference.schema.model_id import ModelId as ModelId, ModelProvider as ModelProvider
4
4
  from typing import Any
@@ -119,6 +119,15 @@ def build_lm_invoker(model_id: str | ModelId, credentials: str | dict[str, Any]
119
119
  ```
120
120
  The credentials can also be provided through the `AZURE_OPENAI_API_KEY` environment variable.
121
121
 
122
+ # Using SEA-LION
123
+ ```python
124
+ lm_invoker = build_lm_invoker(
125
+ model_id="sea-lion/aisingapore/Qwen-SEA-LION-v4-32B-IT",
126
+ credentials="sk-..."
127
+ )
128
+ ```
129
+ The credentials can also be provided through the `SEA_LION_API_KEY` environment variable.
130
+
122
131
  # Using LangChain
123
132
  ```python
124
133
  lm_invoker = build_lm_invoker(
@@ -9,6 +9,7 @@ from gllm_inference.lm_invoker.openai_chat_completions_lm_invoker import OpenAIC
9
9
  from gllm_inference.lm_invoker.openai_compatible_lm_invoker import OpenAICompatibleLMInvoker as OpenAICompatibleLMInvoker
10
10
  from gllm_inference.lm_invoker.openai_lm_invoker import OpenAILMInvoker as OpenAILMInvoker
11
11
  from gllm_inference.lm_invoker.portkey_lm_invoker import PortkeyLMInvoker as PortkeyLMInvoker
12
+ from gllm_inference.lm_invoker.sea_lion_lm_invoker import SeaLionLMInvoker as SeaLionLMInvoker
12
13
  from gllm_inference.lm_invoker.xai_lm_invoker import XAILMInvoker as XAILMInvoker
13
14
 
14
- __all__ = ['AnthropicLMInvoker', 'AzureOpenAILMInvoker', 'BedrockLMInvoker', 'DatasaurLMInvoker', 'GoogleLMInvoker', 'LangChainLMInvoker', 'LiteLLMLMInvoker', 'OpenAIChatCompletionsLMInvoker', 'OpenAICompatibleLMInvoker', 'OpenAILMInvoker', 'PortkeyLMInvoker', 'XAILMInvoker']
15
+ __all__ = ['AnthropicLMInvoker', 'AzureOpenAILMInvoker', 'BedrockLMInvoker', 'DatasaurLMInvoker', 'GoogleLMInvoker', 'LangChainLMInvoker', 'LiteLLMLMInvoker', 'OpenAIChatCompletionsLMInvoker', 'OpenAICompatibleLMInvoker', 'OpenAILMInvoker', 'PortkeyLMInvoker', 'SeaLionLMInvoker', 'XAILMInvoker']
@@ -1,12 +1,14 @@
1
1
  from _typeshed import Incomplete
2
+ from anthropic.types import ContentBlockStopEvent as ContentBlockStopEvent, Message as Message, RawContentBlockDeltaEvent as RawContentBlockDeltaEvent, RawContentBlockStartEvent as RawContentBlockStartEvent
2
3
  from gllm_core.event import EventEmitter as EventEmitter
3
4
  from gllm_core.schema.tool import Tool as Tool
4
5
  from gllm_core.utils.retry import RetryConfig as RetryConfig
5
6
  from gllm_inference.constants import INVOKER_PROPAGATED_MAX_RETRIES as INVOKER_PROPAGATED_MAX_RETRIES
6
7
  from gllm_inference.lm_invoker.lm_invoker import BaseLMInvoker as BaseLMInvoker
7
8
  from gllm_inference.lm_invoker.schema.anthropic import InputType as InputType, Key as Key, OutputType as OutputType
8
- from gllm_inference.schema import Attachment as Attachment, AttachmentType as AttachmentType, BatchStatus as BatchStatus, LMInput as LMInput, LMOutput as LMOutput, Message as Message, ModelId as ModelId, ModelProvider as ModelProvider, Reasoning as Reasoning, ResponseSchema as ResponseSchema, ThinkingEvent as ThinkingEvent, TokenUsage as TokenUsage, ToolCall as ToolCall, ToolResult as ToolResult
9
+ from gllm_inference.schema import Attachment as Attachment, AttachmentType as AttachmentType, BatchStatus as BatchStatus, LMInput as LMInput, LMOutput as LMOutput, ModelId as ModelId, ModelProvider as ModelProvider, Reasoning as Reasoning, ResponseSchema as ResponseSchema, ThinkingEvent as ThinkingEvent, TokenUsage as TokenUsage, ToolCall as ToolCall, ToolResult as ToolResult
9
10
  from langchain_core.tools import Tool as LangChainTool
11
+ from pydantic import BaseModel as BaseModel
10
12
  from typing import Any
11
13
 
12
14
  SUPPORTED_ATTACHMENTS: Incomplete
@@ -8,6 +8,7 @@ from gllm_inference.exceptions.provider_error_map import GOOGLE_ERROR_MAPPING as
8
8
  from gllm_inference.lm_invoker.lm_invoker import BaseLMInvoker as BaseLMInvoker
9
9
  from gllm_inference.lm_invoker.schema.google import InputType as InputType, JobState as JobState, Key as Key
10
10
  from gllm_inference.schema import Attachment as Attachment, AttachmentType as AttachmentType, BatchStatus as BatchStatus, LMInput as LMInput, LMOutput as LMOutput, Message as Message, MessageRole as MessageRole, ModelId as ModelId, ModelProvider as ModelProvider, Reasoning as Reasoning, ResponseSchema as ResponseSchema, ThinkingEvent as ThinkingEvent, TokenUsage as TokenUsage, ToolCall as ToolCall, ToolResult as ToolResult
11
+ from google.genai.types import GenerateContentResponse as GenerateContentResponse
11
12
  from langchain_core.tools import Tool as LangChainTool
12
13
  from typing import Any
13
14
 
@@ -15,9 +16,12 @@ SUPPORTED_ATTACHMENTS: Incomplete
15
16
  DEFAULT_THINKING_BUDGET: int
16
17
  REQUIRE_THINKING_MODEL_PREFIX: Incomplete
17
18
  IMAGE_GENERATION_MODELS: Incomplete
18
- YOUTUBE_URL_PATTERN: Incomplete
19
19
  BATCH_STATUS_MAP: Incomplete
20
- GOOGLE_FILE_URL_PATTERN: Incomplete
20
+
21
+ class URLPattern:
22
+ """Defines specific Google related URL patterns."""
23
+ GOOGLE_FILE: Incomplete
24
+ YOUTUBE: Incomplete
21
25
 
22
26
  class GoogleLMInvoker(BaseLMInvoker):
23
27
  '''A language model invoker to interact with Google language models.
@@ -0,0 +1,48 @@
1
+ from _typeshed import Incomplete
2
+ from gllm_core.schema.tool import Tool as Tool
3
+ from gllm_core.utils import RetryConfig as RetryConfig
4
+ from gllm_inference.constants import INVOKER_PROPAGATED_MAX_RETRIES as INVOKER_PROPAGATED_MAX_RETRIES
5
+ from gllm_inference.lm_invoker.openai_chat_completions_lm_invoker import OpenAIChatCompletionsLMInvoker as OpenAIChatCompletionsLMInvoker
6
+ from gllm_inference.lm_invoker.schema.openai_chat_completions import Key as Key
7
+ from gllm_inference.schema import ModelId as ModelId, ModelProvider as ModelProvider, ResponseSchema as ResponseSchema
8
+ from langchain_core.tools import Tool as LangChainTool
9
+ from typing import Any
10
+
11
+ SEA_LION_URL: str
12
+ SUPPORTED_ATTACHMENTS: Incomplete
13
+
14
+ class SeaLionLMInvoker(OpenAIChatCompletionsLMInvoker):
15
+ """A language model invoker to interact with SEA-LION API.
16
+
17
+ Attributes:
18
+ model_id (str): The model ID of the language model.
19
+ model_provider (str): The provider of the language model.
20
+ model_name (str): The name of the language model.
21
+ client_kwargs (dict[str, Any]): The keyword arguments for the OpenAI client.
22
+ default_hyperparameters (dict[str, Any]): Default hyperparameters for invoking the model.
23
+ tools (list[Tool]): The list of tools provided to the model to enable tool calling.
24
+ response_schema (ResponseSchema | None): The schema of the response. If provided, the model will output a
25
+ structured response as defined by the schema. Supports both Pydantic BaseModel and JSON schema dictionary.
26
+ output_analytics (bool): Whether to output the invocation analytics.
27
+ retry_config (RetryConfig | None): The retry configuration for the language model.
28
+ """
29
+ client_kwargs: Incomplete
30
+ def __init__(self, model_name: str, api_key: str | None = None, model_kwargs: dict[str, Any] | None = None, default_hyperparameters: dict[str, Any] | None = None, tools: list[Tool | LangChainTool] | None = None, response_schema: ResponseSchema | None = None, output_analytics: bool = False, retry_config: RetryConfig | None = None) -> None:
31
+ """Initializes a new instance of the SeaLionLMInvoker class.
32
+
33
+ Args:
34
+ model_name (str): The name of the SEA-LION language model.
35
+ api_key (str | None, optional): The API key for authenticating with the SEA-LION API.
36
+ Defaults to None, in which case the `SEA_LION_API_KEY` environment variable will be used.
37
+ model_kwargs (dict[str, Any] | None, optional): Additional model parameters. Defaults to None.
38
+ default_hyperparameters (dict[str, Any] | None, optional): Default hyperparameters for invoking the model.
39
+ Defaults to None.
40
+ tools (list[Tool | LangChainTool] | None, optional): Tools provided to the model to enable tool calling.
41
+ Defaults to None.
42
+ response_schema (ResponseSchema | None, optional): The schema of the response. If provided, the model will
43
+ output a structured response as defined by the schema. Supports both Pydantic BaseModel and JSON schema
44
+ dictionary. Defaults to None.
45
+ output_analytics (bool, optional): Whether to output the invocation analytics. Defaults to False.
46
+ retry_config (RetryConfig | None, optional): The retry configuration for the language model.
47
+ Defaults to None, in which case a default config with no retry and 30.0 seconds timeout will be used.
48
+ """
@@ -7,6 +7,7 @@ from gllm_inference.model.em.voyage_em import VoyageEM as VoyageEM
7
7
  from gllm_inference.model.lm.anthropic_lm import AnthropicLM as AnthropicLM
8
8
  from gllm_inference.model.lm.google_lm import GoogleLM as GoogleLM
9
9
  from gllm_inference.model.lm.openai_lm import OpenAILM as OpenAILM
10
+ from gllm_inference.model.lm.sea_lion_lm import SeaLionLM as SeaLionLM
10
11
  from gllm_inference.model.lm.xai_lm import XAILM as XAILM
11
12
 
12
- __all__ = ['AnthropicLM', 'CohereEM', 'GoogleEM', 'GoogleLM', 'JinaEM', 'OpenAIEM', 'OpenAILM', 'TwelveLabsEM', 'VoyageEM', 'XAILM']
13
+ __all__ = ['AnthropicLM', 'CohereEM', 'GoogleEM', 'GoogleLM', 'JinaEM', 'OpenAIEM', 'OpenAILM', 'SeaLionLM', 'TwelveLabsEM', 'VoyageEM', 'XAILM']
@@ -0,0 +1,16 @@
1
+ class SeaLionLM:
2
+ '''Defines SEA-LION language model names constants.
3
+
4
+ Usage example:
5
+ ```python
6
+ from gllm_inference.model import SeaLionLM
7
+ from gllm_inference.lm_invoker import SeaLionLMInvoker
8
+
9
+ lm_invoker = SeaLionLMInvoker(SeaLionLM.GEMMA_SEA_LION_V4_27B_IT)
10
+ response = await lm_invoker.invoke("Hello, world!")
11
+ ```
12
+ '''
13
+ GEMMA_SEA_LION_V4_27B_IT: str
14
+ LLAMA_SEA_LION_V3_5_70B_R: str
15
+ LLAMA_SEA_LION_V3_70B_IT: str
16
+ QWEN_SEA_LION_V4_32B_IT: str
@@ -21,6 +21,7 @@ class ModelProvider(StrEnum):
21
21
  PORTKEY = 'portkey'
22
22
  OPENAI_CHAT_COMPLETIONS = 'openai-chat-completions'
23
23
  OPENAI_COMPATIBLE = 'openai-compatible'
24
+ SEA_LION = 'sea-lion'
24
25
  TWELVELABS = 'twelvelabs'
25
26
  VOYAGE = 'voyage'
26
27
  XAI = 'xai'
Binary file
gllm_inference.pyi CHANGED
@@ -33,6 +33,7 @@ import gllm_inference.lm_invoker.OpenAIChatCompletionsLMInvoker
33
33
  import gllm_inference.lm_invoker.OpenAICompatibleLMInvoker
34
34
  import gllm_inference.lm_invoker.OpenAILMInvoker
35
35
  import gllm_inference.lm_invoker.PortkeyLMInvoker
36
+ import gllm_inference.lm_invoker.SeaLionLMInvoker
36
37
  import gllm_inference.lm_invoker.XAILMInvoker
37
38
  import gllm_inference.prompt_builder.PromptBuilder
38
39
  import gllm_inference.output_parser.JSONOutputParser
@@ -82,6 +83,7 @@ import voyageai
82
83
  import voyageai.client_async
83
84
  import http
84
85
  import http.HTTPStatus
86
+ import __future__
85
87
  import uuid
86
88
  import gllm_core.constants
87
89
  import gllm_core.event
@@ -113,7 +115,6 @@ import time
113
115
  import jsonschema
114
116
  import gllm_inference.lm_invoker.batch.BatchOperations
115
117
  import gllm_inference.schema.MessageContent
116
- import __future__
117
118
  import gllm_inference.schema.ActivityEvent
118
119
  import gllm_inference.schema.CodeEvent
119
120
  import gllm_inference.schema.CodeExecResult
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: gllm-inference-binary
3
- Version: 0.5.60
3
+ Version: 0.5.62
4
4
  Summary: A library containing components related to model inferences in Gen AI applications.
5
5
  Author-email: Henry Wicaksono <henry.wicaksono@gdplabs.id>, Resti Febrina <resti.febrina@gdplabs.id>
6
6
  Requires-Python: <3.14,>=3.11
@@ -1,11 +1,11 @@
1
- gllm_inference.cp313-win_amd64.pyd,sha256=p7hOATa7HW8nLtMe3j8T87D4cCyLsmdj1xWgdE94-VM,4035072
2
- gllm_inference.pyi,sha256=9Q306Q-5LNldZnCgffJF11yHsCsqaHQwd3jpHw2tH48,5097
1
+ gllm_inference.cp313-win_amd64.pyd,sha256=a8pnMNYmesZ6SgSG09bgFTzy17VS0WnUP8AV1cJQwqY,4013056
2
+ gllm_inference.pyi,sha256=kqoM8wZ2DtFx8sbbAOaKn6iolfDpeGHOWoDZbSV7LRo,5147
3
3
  gllm_inference/__init__.pyi,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
4
4
  gllm_inference/constants.pyi,sha256=8jIYOyxJYVWUYXSXF3vag9HhHwjq1iU9tzPiosRHkWk,328
5
5
  gllm_inference/builder/__init__.pyi,sha256=-bw1uDx7CAM7pkvjvb1ZXku9zXlQ7aEAyC83KIn3bz8,506
6
6
  gllm_inference/builder/_build_invoker.pyi,sha256=SZst1ocnRntcA7lWKp44lMJ3yRA5GP_jsUZkcsxwTjw,876
7
7
  gllm_inference/builder/build_em_invoker.pyi,sha256=Z09hP6_ziumI2XB-7HCdyIE4AyoV1oL9DBdoU2G8izo,5879
8
- gllm_inference/builder/build_lm_invoker.pyi,sha256=1Qgb0bD8tqobDh9kR_Kce7Vwu_Oljc2xv-HBIrC3HUY,9065
8
+ gllm_inference/builder/build_lm_invoker.pyi,sha256=ZKNVOOQAi1DaChrPBdWGUuzPShhmkGx89oZnALhR9w0,9417
9
9
  gllm_inference/builder/build_lm_request_processor.pyi,sha256=H7Rg88e7PTTCtuyY64r333moTmh4-ypOwgnG10gkEdY,4232
10
10
  gllm_inference/builder/build_output_parser.pyi,sha256=sgSTrzUmSRxPzUUum0fDU7A3NXYoYhpi6bEx4Q2XMnA,965
11
11
  gllm_inference/catalog/__init__.pyi,sha256=HWgPKWIzprpMHRKe_qN9BZSIQhVhrqiyjLjIXwvj1ho,291
@@ -40,12 +40,12 @@ gllm_inference/exceptions/__init__.pyi,sha256=nXOqwsuwUgsnBcJEANVuxbZ1nDfcJ6-pKU
40
40
  gllm_inference/exceptions/error_parser.pyi,sha256=4aiJZhBzBOqlhdmpvaCvildGy7_XxlJzQpe3PzGt8eE,2040
41
41
  gllm_inference/exceptions/exceptions.pyi,sha256=6y3ECgHAStqMGgQv8Dv-Ui-5PDD07mSj6qaRZeSWea4,5857
42
42
  gllm_inference/exceptions/provider_error_map.pyi,sha256=vWa4ZIHn7qIghECGvO-dS2KzOmf3c10GRWKZ4YDPnSQ,1267
43
- gllm_inference/lm_invoker/__init__.pyi,sha256=L2nlkj13WwWbDYEBtM0mlAj0-UbSilMjVLpCJ_0Eock,1502
44
- gllm_inference/lm_invoker/anthropic_lm_invoker.pyi,sha256=_Dst_88LOpC-FN01hApihxUxuripiCGSOax5R_-bQEE,15496
43
+ gllm_inference/lm_invoker/__init__.pyi,sha256=Y0laMHRdUwGgfIXo278qe1dwj7ZMSCeO-wMToYim47c,1618
44
+ gllm_inference/lm_invoker/anthropic_lm_invoker.pyi,sha256=b3VM_mcK20y4Fyo_vWDx95HA001l9h53ACo0caP1sTY,15729
45
45
  gllm_inference/lm_invoker/azure_openai_lm_invoker.pyi,sha256=uV98H2nJsElCTsxAuInZ9KSk1jOTq6SROAGQRPR-_r0,13173
46
46
  gllm_inference/lm_invoker/bedrock_lm_invoker.pyi,sha256=qXmFK6zsOM3nPfueEhY5pAfG24bZytA1jqemPa63vLY,10951
47
47
  gllm_inference/lm_invoker/datasaur_lm_invoker.pyi,sha256=FnpayOW_Zi0pWFSawLX8XahEnknbnpsRWrkhKZe8Y3U,8035
48
- gllm_inference/lm_invoker/google_lm_invoker.pyi,sha256=XFQigZlicGnpm9_p8Hso-CB8xoi5ENbJwJvE8TubKus,20339
48
+ gllm_inference/lm_invoker/google_lm_invoker.pyi,sha256=2ZqQl9WhehtxcnAXzUi7vFDaHV0lO-0SwHoAT7m8Lf0,20484
49
49
  gllm_inference/lm_invoker/langchain_lm_invoker.pyi,sha256=ull3cX-iUT4hYMbixcxqfrNUxR8ZoR4Vt9ACVILQWSM,12126
50
50
  gllm_inference/lm_invoker/litellm_lm_invoker.pyi,sha256=qG8pPTiDJZR2e7wr5Q2VyceC227tz3QybX3UPihT5ng,11400
51
51
  gllm_inference/lm_invoker/lm_invoker.pyi,sha256=L_PHRCeHo0dNs6BjnB8H29irGib-qhxKYf7F7pZlU0E,8652
@@ -53,6 +53,7 @@ gllm_inference/lm_invoker/openai_chat_completions_lm_invoker.pyi,sha256=qt9DAdJM
53
53
  gllm_inference/lm_invoker/openai_compatible_lm_invoker.pyi,sha256=T9sShA_9fgEuaaAuT2gJZq_EYNbEhf3IkWwMCwfszY8,4244
54
54
  gllm_inference/lm_invoker/openai_lm_invoker.pyi,sha256=ReU37hrmYZFbLfCD_c14ryRgnfpPC2YyDx2S5Ft_tXQ,22747
55
55
  gllm_inference/lm_invoker/portkey_lm_invoker.pyi,sha256=FYOp4BaDfOtompWIRhDqzMVVSK-TiFyw7JA4TznANQE,15236
56
+ gllm_inference/lm_invoker/sea_lion_lm_invoker.pyi,sha256=Qqplj79JsnLGY6xjhbXYbz6Ramxur4sXfvv4svk19os,3533
56
57
  gllm_inference/lm_invoker/xai_lm_invoker.pyi,sha256=6beZsQjGUTo7TdzWBWksRzVGT58XyipErpGfiRq6NH0,13017
57
58
  gllm_inference/lm_invoker/batch/__init__.pyi,sha256=vJOTHRJ83oq8Bq0UsMdID9_HW5JAxr06gUs4aPRZfEE,130
58
59
  gllm_inference/lm_invoker/batch/batch_operations.pyi,sha256=EKwINY8DQFOXquGGrUTr_Yg24ZrSyiiAo2hX8If9vyQ,5573
@@ -66,7 +67,7 @@ gllm_inference/lm_invoker/schema/openai.pyi,sha256=GIrqEtUPinn8VD-w-38gOw0qiIYuV
66
67
  gllm_inference/lm_invoker/schema/openai_chat_completions.pyi,sha256=nNPb7ETC9IrJwkV5wfbGf6Co3-qdq4lhcXz0l_qYCE4,1261
67
68
  gllm_inference/lm_invoker/schema/portkey.pyi,sha256=V2q4JIwDAR7BidqfmO01u1_1mLOMtm5OCon6sN2zNt0,662
68
69
  gllm_inference/lm_invoker/schema/xai.pyi,sha256=jpC6ZSBDUltzm9GjD6zvSFIPwqizn_ywLnjvwSa7KuU,663
69
- gllm_inference/model/__init__.pyi,sha256=e9Jq5V2iVPpjBh_bOEBoXdsU2LleAxKfJ0r-1rZJ5R0,822
70
+ gllm_inference/model/__init__.pyi,sha256=J3z0Rc6PI_aC0XuA_dWB2tCBQ4pSZdS5NzQ8vPhs5c4,907
70
71
  gllm_inference/model/em/__init__.pyi,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
71
72
  gllm_inference/model/em/cohere_em.pyi,sha256=uF1AmDO-skQteYqzxJ3DK10SqgfdW0oW9L8Ym34eU04,505
72
73
  gllm_inference/model/em/google_em.pyi,sha256=c53H-KNdNOK9ppPLyOSkmCA890eF5FsMd05upkPIzF0,487
@@ -78,6 +79,7 @@ gllm_inference/model/lm/__init__.pyi,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZ
78
79
  gllm_inference/model/lm/anthropic_lm.pyi,sha256=ccUpxddakurLFHivl5UzJxgODLhcFgx8XC7CKa-99NE,633
79
80
  gllm_inference/model/lm/google_lm.pyi,sha256=OLuoqT0FnJOLsNalulBMEXuCYAXoF8Y7vjfSBgjaJxA,529
80
81
  gllm_inference/model/lm/openai_lm.pyi,sha256=yj3AJj1xDYRkNIPHX2enw46AJ9wArPZruKsxg1ME9Rg,645
82
+ gllm_inference/model/lm/sea_lion_lm.pyi,sha256=Gz42ym_KJA7if3sDCFmdrb1uv9b9__n2RWOfPvOxm0Y,508
81
83
  gllm_inference/model/lm/xai_lm.pyi,sha256=O3G9Lj1Ii31CyCDrwYVkPPJN6X8V-WBF9xILUPUE-qY,525
82
84
  gllm_inference/output_parser/__init__.pyi,sha256=dhAeRTBxc6CfS8bhnHjbtrnyqJ1iyffvUZkGp4UrJNM,132
83
85
  gllm_inference/output_parser/json_output_parser.pyi,sha256=YtgQh8Uzy8W_Tgh8DfuR7VFFS7qvLEasiTwRfaGZZEU,2993
@@ -120,7 +122,7 @@ gllm_inference/schema/lm_input.pyi,sha256=HxQiZgY7zcXh_Dw8nK8LSeBTZEHMPZVwmPmnfg
120
122
  gllm_inference/schema/lm_output.pyi,sha256=N75CIF_2kZRdXKy2jvu9hhqzk5DrCbsHXTrhKqQ-7vo,11667
121
123
  gllm_inference/schema/mcp.pyi,sha256=4SgQ83pEowfWm2p-w9lupV4NayqqVBOy7SuYxIFeWRs,1045
122
124
  gllm_inference/schema/message.pyi,sha256=jJV6A0ihEcun2OhzyMtNkiHnf7d6v5R-GdpTBGfJ0AQ,2272
123
- gllm_inference/schema/model_id.pyi,sha256=VQfwxkXjprsHG9FwS6XPQKZxy6eKAT1ygRqcK6gapNM,5991
125
+ gllm_inference/schema/model_id.pyi,sha256=JhTzjCsOzHGds_UF8PlPON3xtqmSjUEfvjpmYyf3CJ0,6018
124
126
  gllm_inference/schema/reasoning.pyi,sha256=jbPxkDRHt0Vt-zdcc8lTT1l2hIE1Jm3HIHeNd0hfXGo,577
125
127
  gllm_inference/schema/token_usage.pyi,sha256=WJiGQyz5qatzBK2b-sABLCyTRLCBbAvxCRcqSJOzu-8,3025
126
128
  gllm_inference/schema/tool_call.pyi,sha256=OWT9LUqs_xfUcOkPG0aokAAqzLYYDkfnjTa0zOWvugk,403
@@ -131,7 +133,7 @@ gllm_inference/utils/io_utils.pyi,sha256=Eg7dvHWdXslTKdjh1j3dG50i7r35XG2zTmJ9XXv
131
133
  gllm_inference/utils/langchain.pyi,sha256=4AwFiVAO0ZpdgmqeC4Pb5NJwBt8vVr0MSUqLeCdTscc,1194
132
134
  gllm_inference/utils/validation.pyi,sha256=OWRZxeVGIuuvNU0LqLGB-9gNmypvbH-LcSJx91rnH1k,453
133
135
  gllm_inference.build/.gitignore,sha256=aEiIwOuxfzdCmLZe4oB1JsBmCUxwG8x-u-HBCV9JT8E,1
134
- gllm_inference_binary-0.5.60.dist-info/METADATA,sha256=jFQ1DplA4e1zYc2YKbuvcnha_DNN3seGwOAm8YZG2u8,5945
135
- gllm_inference_binary-0.5.60.dist-info/WHEEL,sha256=O_u6PJIQ2pIcyIInxVQ9r-yArMuUZbBIaF1kpYVkYxA,96
136
- gllm_inference_binary-0.5.60.dist-info/top_level.txt,sha256=FpOjtN80F-qVNgbScXSEyqa0w09FYn6301iq6qt69IQ,15
137
- gllm_inference_binary-0.5.60.dist-info/RECORD,,
136
+ gllm_inference_binary-0.5.62.dist-info/METADATA,sha256=opW0bJ-huAATZSyiNRtx4SictbAKXH4ZLOqskzyWrJU,5945
137
+ gllm_inference_binary-0.5.62.dist-info/WHEEL,sha256=O_u6PJIQ2pIcyIInxVQ9r-yArMuUZbBIaF1kpYVkYxA,96
138
+ gllm_inference_binary-0.5.62.dist-info/top_level.txt,sha256=FpOjtN80F-qVNgbScXSEyqa0w09FYn6301iq6qt69IQ,15
139
+ gllm_inference_binary-0.5.62.dist-info/RECORD,,