gllm-inference-binary 0.5.60__cp313-cp313-manylinux_2_31_x86_64.whl → 0.5.63__cp313-cp313-manylinux_2_31_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of gllm-inference-binary might be problematic. Click here for more details.

@@ -1,4 +1,4 @@
1
- from gllm_inference.lm_invoker import AnthropicLMInvoker as AnthropicLMInvoker, AzureOpenAILMInvoker as AzureOpenAILMInvoker, BedrockLMInvoker as BedrockLMInvoker, DatasaurLMInvoker as DatasaurLMInvoker, GoogleLMInvoker as GoogleLMInvoker, LangChainLMInvoker as LangChainLMInvoker, LiteLLMLMInvoker as LiteLLMLMInvoker, OpenAIChatCompletionsLMInvoker as OpenAIChatCompletionsLMInvoker, OpenAICompatibleLMInvoker as OpenAICompatibleLMInvoker, OpenAILMInvoker as OpenAILMInvoker, PortkeyLMInvoker as PortkeyLMInvoker, XAILMInvoker as XAILMInvoker
1
+ from gllm_inference.lm_invoker import AnthropicLMInvoker as AnthropicLMInvoker, AzureOpenAILMInvoker as AzureOpenAILMInvoker, BedrockLMInvoker as BedrockLMInvoker, DatasaurLMInvoker as DatasaurLMInvoker, GoogleLMInvoker as GoogleLMInvoker, LangChainLMInvoker as LangChainLMInvoker, LiteLLMLMInvoker as LiteLLMLMInvoker, OpenAIChatCompletionsLMInvoker as OpenAIChatCompletionsLMInvoker, OpenAICompatibleLMInvoker as OpenAICompatibleLMInvoker, OpenAILMInvoker as OpenAILMInvoker, PortkeyLMInvoker as PortkeyLMInvoker, SeaLionLMInvoker as SeaLionLMInvoker, XAILMInvoker as XAILMInvoker
2
2
  from gllm_inference.lm_invoker.lm_invoker import BaseLMInvoker as BaseLMInvoker
3
3
  from gllm_inference.schema.model_id import ModelId as ModelId, ModelProvider as ModelProvider
4
4
  from typing import Any
@@ -119,6 +119,15 @@ def build_lm_invoker(model_id: str | ModelId, credentials: str | dict[str, Any]
119
119
  ```
120
120
  The credentials can also be provided through the `AZURE_OPENAI_API_KEY` environment variable.
121
121
 
122
+ # Using SEA-LION
123
+ ```python
124
+ lm_invoker = build_lm_invoker(
125
+ model_id="sea-lion/aisingapore/Qwen-SEA-LION-v4-32B-IT",
126
+ credentials="sk-..."
127
+ )
128
+ ```
129
+ The credentials can also be provided through the `SEA_LION_API_KEY` environment variable.
130
+
122
131
  # Using LangChain
123
132
  ```python
124
133
  lm_invoker = build_lm_invoker(
@@ -9,6 +9,7 @@ from gllm_inference.lm_invoker.openai_chat_completions_lm_invoker import OpenAIC
9
9
  from gllm_inference.lm_invoker.openai_compatible_lm_invoker import OpenAICompatibleLMInvoker as OpenAICompatibleLMInvoker
10
10
  from gllm_inference.lm_invoker.openai_lm_invoker import OpenAILMInvoker as OpenAILMInvoker
11
11
  from gllm_inference.lm_invoker.portkey_lm_invoker import PortkeyLMInvoker as PortkeyLMInvoker
12
+ from gllm_inference.lm_invoker.sea_lion_lm_invoker import SeaLionLMInvoker as SeaLionLMInvoker
12
13
  from gllm_inference.lm_invoker.xai_lm_invoker import XAILMInvoker as XAILMInvoker
13
14
 
14
- __all__ = ['AnthropicLMInvoker', 'AzureOpenAILMInvoker', 'BedrockLMInvoker', 'DatasaurLMInvoker', 'GoogleLMInvoker', 'LangChainLMInvoker', 'LiteLLMLMInvoker', 'OpenAIChatCompletionsLMInvoker', 'OpenAICompatibleLMInvoker', 'OpenAILMInvoker', 'PortkeyLMInvoker', 'XAILMInvoker']
15
+ __all__ = ['AnthropicLMInvoker', 'AzureOpenAILMInvoker', 'BedrockLMInvoker', 'DatasaurLMInvoker', 'GoogleLMInvoker', 'LangChainLMInvoker', 'LiteLLMLMInvoker', 'OpenAIChatCompletionsLMInvoker', 'OpenAICompatibleLMInvoker', 'OpenAILMInvoker', 'PortkeyLMInvoker', 'SeaLionLMInvoker', 'XAILMInvoker']
@@ -1,12 +1,14 @@
1
1
  from _typeshed import Incomplete
2
+ from anthropic.types import ContentBlockStopEvent as ContentBlockStopEvent, Message as Message, RawContentBlockDeltaEvent as RawContentBlockDeltaEvent, RawContentBlockStartEvent as RawContentBlockStartEvent
2
3
  from gllm_core.event import EventEmitter as EventEmitter
3
4
  from gllm_core.schema.tool import Tool as Tool
4
5
  from gllm_core.utils.retry import RetryConfig as RetryConfig
5
6
  from gllm_inference.constants import INVOKER_PROPAGATED_MAX_RETRIES as INVOKER_PROPAGATED_MAX_RETRIES
6
7
  from gllm_inference.lm_invoker.lm_invoker import BaseLMInvoker as BaseLMInvoker
7
8
  from gllm_inference.lm_invoker.schema.anthropic import InputType as InputType, Key as Key, OutputType as OutputType
8
- from gllm_inference.schema import Attachment as Attachment, AttachmentType as AttachmentType, BatchStatus as BatchStatus, LMInput as LMInput, LMOutput as LMOutput, Message as Message, ModelId as ModelId, ModelProvider as ModelProvider, Reasoning as Reasoning, ResponseSchema as ResponseSchema, ThinkingEvent as ThinkingEvent, TokenUsage as TokenUsage, ToolCall as ToolCall, ToolResult as ToolResult
9
+ from gllm_inference.schema import Attachment as Attachment, AttachmentType as AttachmentType, BatchStatus as BatchStatus, LMInput as LMInput, LMOutput as LMOutput, ModelId as ModelId, ModelProvider as ModelProvider, Reasoning as Reasoning, ResponseSchema as ResponseSchema, ThinkingEvent as ThinkingEvent, TokenUsage as TokenUsage, ToolCall as ToolCall, ToolResult as ToolResult
9
10
  from langchain_core.tools import Tool as LangChainTool
11
+ from pydantic import BaseModel as BaseModel
10
12
  from typing import Any
11
13
 
12
14
  SUPPORTED_ATTACHMENTS: Incomplete
@@ -8,6 +8,7 @@ from gllm_inference.exceptions.provider_error_map import GOOGLE_ERROR_MAPPING as
8
8
  from gllm_inference.lm_invoker.lm_invoker import BaseLMInvoker as BaseLMInvoker
9
9
  from gllm_inference.lm_invoker.schema.google import InputType as InputType, JobState as JobState, Key as Key
10
10
  from gllm_inference.schema import Attachment as Attachment, AttachmentType as AttachmentType, BatchStatus as BatchStatus, LMInput as LMInput, LMOutput as LMOutput, Message as Message, MessageRole as MessageRole, ModelId as ModelId, ModelProvider as ModelProvider, Reasoning as Reasoning, ResponseSchema as ResponseSchema, ThinkingEvent as ThinkingEvent, TokenUsage as TokenUsage, ToolCall as ToolCall, ToolResult as ToolResult
11
+ from google.genai.types import GenerateContentResponse as GenerateContentResponse
11
12
  from langchain_core.tools import Tool as LangChainTool
12
13
  from typing import Any
13
14
 
@@ -15,9 +16,12 @@ SUPPORTED_ATTACHMENTS: Incomplete
15
16
  DEFAULT_THINKING_BUDGET: int
16
17
  REQUIRE_THINKING_MODEL_PREFIX: Incomplete
17
18
  IMAGE_GENERATION_MODELS: Incomplete
18
- YOUTUBE_URL_PATTERN: Incomplete
19
19
  BATCH_STATUS_MAP: Incomplete
20
- GOOGLE_FILE_URL_PATTERN: Incomplete
20
+
21
+ class URLPattern:
22
+ """Defines specific Google related URL patterns."""
23
+ GOOGLE_FILE: Incomplete
24
+ YOUTUBE: Incomplete
21
25
 
22
26
  class GoogleLMInvoker(BaseLMInvoker):
23
27
  '''A language model invoker to interact with Google language models.
@@ -0,0 +1,48 @@
1
+ from _typeshed import Incomplete
2
+ from gllm_core.schema.tool import Tool as Tool
3
+ from gllm_core.utils import RetryConfig as RetryConfig
4
+ from gllm_inference.constants import INVOKER_PROPAGATED_MAX_RETRIES as INVOKER_PROPAGATED_MAX_RETRIES
5
+ from gllm_inference.lm_invoker.openai_chat_completions_lm_invoker import OpenAIChatCompletionsLMInvoker as OpenAIChatCompletionsLMInvoker
6
+ from gllm_inference.lm_invoker.schema.openai_chat_completions import Key as Key
7
+ from gllm_inference.schema import ModelId as ModelId, ModelProvider as ModelProvider, ResponseSchema as ResponseSchema
8
+ from langchain_core.tools import Tool as LangChainTool
9
+ from typing import Any
10
+
11
+ SEA_LION_URL: str
12
+ SUPPORTED_ATTACHMENTS: Incomplete
13
+
14
+ class SeaLionLMInvoker(OpenAIChatCompletionsLMInvoker):
15
+ """A language model invoker to interact with SEA-LION API.
16
+
17
+ Attributes:
18
+ model_id (str): The model ID of the language model.
19
+ model_provider (str): The provider of the language model.
20
+ model_name (str): The name of the language model.
21
+ client_kwargs (dict[str, Any]): The keyword arguments for the OpenAI client.
22
+ default_hyperparameters (dict[str, Any]): Default hyperparameters for invoking the model.
23
+ tools (list[Tool]): The list of tools provided to the model to enable tool calling.
24
+ response_schema (ResponseSchema | None): The schema of the response. If provided, the model will output a
25
+ structured response as defined by the schema. Supports both Pydantic BaseModel and JSON schema dictionary.
26
+ output_analytics (bool): Whether to output the invocation analytics.
27
+ retry_config (RetryConfig | None): The retry configuration for the language model.
28
+ """
29
+ client_kwargs: Incomplete
30
+ def __init__(self, model_name: str, api_key: str | None = None, model_kwargs: dict[str, Any] | None = None, default_hyperparameters: dict[str, Any] | None = None, tools: list[Tool | LangChainTool] | None = None, response_schema: ResponseSchema | None = None, output_analytics: bool = False, retry_config: RetryConfig | None = None) -> None:
31
+ """Initializes a new instance of the SeaLionLMInvoker class.
32
+
33
+ Args:
34
+ model_name (str): The name of the SEA-LION language model.
35
+ api_key (str | None, optional): The API key for authenticating with the SEA-LION API.
36
+ Defaults to None, in which case the `SEA_LION_API_KEY` environment variable will be used.
37
+ model_kwargs (dict[str, Any] | None, optional): Additional model parameters. Defaults to None.
38
+ default_hyperparameters (dict[str, Any] | None, optional): Default hyperparameters for invoking the model.
39
+ Defaults to None.
40
+ tools (list[Tool | LangChainTool] | None, optional): Tools provided to the model to enable tool calling.
41
+ Defaults to None.
42
+ response_schema (ResponseSchema | None, optional): The schema of the response. If provided, the model will
43
+ output a structured response as defined by the schema. Supports both Pydantic BaseModel and JSON schema
44
+ dictionary. Defaults to None.
45
+ output_analytics (bool, optional): Whether to output the invocation analytics. Defaults to False.
46
+ retry_config (RetryConfig | None, optional): The retry configuration for the language model.
47
+ Defaults to None, in which case a default config with no retry and 30.0 seconds timeout will be used.
48
+ """
@@ -7,6 +7,7 @@ from gllm_inference.model.em.voyage_em import VoyageEM as VoyageEM
7
7
  from gllm_inference.model.lm.anthropic_lm import AnthropicLM as AnthropicLM
8
8
  from gllm_inference.model.lm.google_lm import GoogleLM as GoogleLM
9
9
  from gllm_inference.model.lm.openai_lm import OpenAILM as OpenAILM
10
+ from gllm_inference.model.lm.sea_lion_lm import SeaLionLM as SeaLionLM
10
11
  from gllm_inference.model.lm.xai_lm import XAILM as XAILM
11
12
 
12
- __all__ = ['AnthropicLM', 'CohereEM', 'GoogleEM', 'GoogleLM', 'JinaEM', 'OpenAIEM', 'OpenAILM', 'TwelveLabsEM', 'VoyageEM', 'XAILM']
13
+ __all__ = ['AnthropicLM', 'CohereEM', 'GoogleEM', 'GoogleLM', 'JinaEM', 'OpenAIEM', 'OpenAILM', 'SeaLionLM', 'TwelveLabsEM', 'VoyageEM', 'XAILM']
@@ -0,0 +1,16 @@
1
+ class SeaLionLM:
2
+ '''Defines SEA-LION language model names constants.
3
+
4
+ Usage example:
5
+ ```python
6
+ from gllm_inference.model import SeaLionLM
7
+ from gllm_inference.lm_invoker import SeaLionLMInvoker
8
+
9
+ lm_invoker = SeaLionLMInvoker(SeaLionLM.GEMMA_SEA_LION_V4_27B_IT)
10
+ response = await lm_invoker.invoke("Hello, world!")
11
+ ```
12
+ '''
13
+ GEMMA_SEA_LION_V4_27B_IT: str
14
+ LLAMA_SEA_LION_V3_5_70B_R: str
15
+ LLAMA_SEA_LION_V3_70B_IT: str
16
+ QWEN_SEA_LION_V4_32B_IT: str
@@ -1,6 +1,6 @@
1
1
  from _typeshed import Incomplete
2
2
  from gllm_inference.prompt_builder.format_strategy import JinjaFormatStrategy as JinjaFormatStrategy, StringFormatStrategy as StringFormatStrategy
3
- from gllm_inference.schema import JinjaEnvType as JinjaEnvType, Message as Message, MessageContent as MessageContent, MessageRole as MessageRole
3
+ from gllm_inference.schema import HistoryFormatter as HistoryFormatter, JinjaEnvType as JinjaEnvType, Message as Message, MessageContent as MessageContent, MessageRole as MessageRole
4
4
  from jinja2.sandbox import SandboxedEnvironment as SandboxedEnvironment
5
5
  from typing import Any
6
6
 
@@ -13,13 +13,15 @@ class PromptBuilder:
13
13
  prompt_key_set (set[str]): A set of expected keys that must be present in the prompt templates.
14
14
  key_defaults (dict[str, str]): Default values for the keys in the prompt templates.
15
15
  strategy (BasePromptFormattingStrategy): The format strategy to be used for formatting the prompt.
16
+ history_formatter (HistoryFormatter): The history formatter to be used for formatting the history.
16
17
  """
17
18
  key_defaults: Incomplete
18
19
  system_template: Incomplete
19
20
  user_template: Incomplete
21
+ history_formatter: Incomplete
20
22
  strategy: Incomplete
21
23
  prompt_key_set: Incomplete
22
- def __init__(self, system_template: str = '', user_template: str = '', key_defaults: dict[str, str] | None = None, ignore_extra_keys: bool | None = None, use_jinja: bool = False, jinja_env: JinjaEnvType | SandboxedEnvironment = ...) -> None:
24
+ def __init__(self, system_template: str = '', user_template: str = '', key_defaults: dict[str, str] | None = None, ignore_extra_keys: bool | None = None, history_formatter: HistoryFormatter | None = None, use_jinja: bool | None = False, jinja_env: JinjaEnvType | SandboxedEnvironment | None = None) -> None:
23
25
  """Initializes a new instance of the PromptBuilder class.
24
26
 
25
27
  Args:
@@ -32,6 +34,8 @@ class PromptBuilder:
32
34
  Defaults to None, in which case no default values will be assigned to the keys.
33
35
  ignore_extra_keys (bool | None, optional): Deprecated parameter. Will be removed in v0.6. Extra keys
34
36
  will always raise a warning only instead of raising an error.
37
+ history_formatter (HistoryFormatter | None, optional): The history formatter to be used for formatting
38
+ the history. Defaults to None, in which case the history will be used as is.
35
39
  use_jinja (bool, optional): Whether to use Jinja for rendering the prompt templates.
36
40
  Defaults to False.
37
41
  jinja_env (JinjaEnvType | SandboxedEnvironment, optional): The environment for Jinja rendering.
@@ -4,6 +4,7 @@ from gllm_inference.schema.code_exec_result import CodeExecResult as CodeExecRes
4
4
  from gllm_inference.schema.config import TruncationConfig as TruncationConfig
5
5
  from gllm_inference.schema.enums import AttachmentType as AttachmentType, BatchStatus as BatchStatus, EmitDataType as EmitDataType, JinjaEnvType as JinjaEnvType, LMEventType as LMEventType, LMEventTypeSuffix as LMEventTypeSuffix, LMOutputType as LMOutputType, MessageRole as MessageRole, TruncateSide as TruncateSide
6
6
  from gllm_inference.schema.events import ActivityEvent as ActivityEvent, CodeEvent as CodeEvent, ThinkingEvent as ThinkingEvent
7
+ from gllm_inference.schema.formatter import HistoryFormatter as HistoryFormatter
7
8
  from gllm_inference.schema.lm_input import LMInput as LMInput
8
9
  from gllm_inference.schema.lm_output import LMOutput as LMOutput, LMOutputData as LMOutputData, LMOutputItem as LMOutputItem
9
10
  from gllm_inference.schema.mcp import MCPCall as MCPCall, MCPServer as MCPServer
@@ -15,4 +16,4 @@ from gllm_inference.schema.tool_call import ToolCall as ToolCall
15
16
  from gllm_inference.schema.tool_result import ToolResult as ToolResult
16
17
  from gllm_inference.schema.type_alias import EMContent as EMContent, MessageContent as MessageContent, ResponseSchema as ResponseSchema, Vector as Vector
17
18
 
18
- __all__ = ['Activity', 'ActivityEvent', 'Attachment', 'AttachmentType', 'BatchStatus', 'CodeEvent', 'CodeExecResult', 'EMContent', 'EmitDataType', 'InputTokenDetails', 'JinjaEnvType', 'LMEventType', 'LMEventTypeSuffix', 'LMInput', 'LMOutput', 'LMOutputItem', 'LMOutputData', 'LMOutputType', 'MCPCall', 'MCPCallActivity', 'MCPListToolsActivity', 'MCPServer', 'Message', 'MessageContent', 'MessageRole', 'ModelId', 'ModelProvider', 'OutputTokenDetails', 'Reasoning', 'ResponseSchema', 'ThinkingEvent', 'TokenUsage', 'ToolCall', 'ToolResult', 'TruncateSide', 'TruncationConfig', 'Vector', 'WebSearchActivity']
19
+ __all__ = ['Activity', 'ActivityEvent', 'Attachment', 'AttachmentType', 'BatchStatus', 'CodeEvent', 'CodeExecResult', 'EMContent', 'EmitDataType', 'HistoryFormatter', 'InputTokenDetails', 'JinjaEnvType', 'LMEventType', 'LMEventTypeSuffix', 'LMInput', 'LMOutput', 'LMOutputItem', 'LMOutputData', 'LMOutputType', 'MCPCall', 'MCPCallActivity', 'MCPListToolsActivity', 'MCPServer', 'Message', 'MessageContent', 'MessageRole', 'ModelId', 'ModelProvider', 'OutputTokenDetails', 'Reasoning', 'ResponseSchema', 'ThinkingEvent', 'TokenUsage', 'ToolCall', 'ToolResult', 'TruncateSide', 'TruncationConfig', 'Vector', 'WebSearchActivity']
@@ -0,0 +1,31 @@
1
+ from gllm_inference.schema.enums import MessageRole as MessageRole
2
+ from gllm_inference.schema.message import Message as Message
3
+ from gllm_inference.schema.type_alias import MessageContent as MessageContent
4
+ from pydantic import BaseModel
5
+
6
+ class HistoryFormatter(BaseModel):
7
+ """Configuration for history formatting.
8
+
9
+ Attributes:
10
+ prefix_user_message (str): Prefix for user messages.
11
+ suffix_user_message (str): Suffix for user messages.
12
+ prefix_assistant_message (str): Prefix for assistant messages.
13
+ suffix_assistant_message (str): Suffix for assistant messages.
14
+ """
15
+ prefix_user_message: str
16
+ suffix_user_message: str
17
+ prefix_assistant_message: str
18
+ suffix_assistant_message: str
19
+ def format_history(self, history: list[Message]) -> list[Message]:
20
+ """Formats a list of messages based on their roles.
21
+
22
+ This method formats each message in the history list by applying the appropriate
23
+ formatting based on the message role (user or assistant). Other message types
24
+ are added to the result without modification.
25
+
26
+ Args:
27
+ history (list[Message]): The list of messages to format.
28
+
29
+ Returns:
30
+ list[Message]: A new list containing the formatted messages.
31
+ """
@@ -21,6 +21,7 @@ class ModelProvider(StrEnum):
21
21
  PORTKEY = 'portkey'
22
22
  OPENAI_CHAT_COMPLETIONS = 'openai-chat-completions'
23
23
  OPENAI_COMPATIBLE = 'openai-compatible'
24
+ SEA_LION = 'sea-lion'
24
25
  TWELVELABS = 'twelvelabs'
25
26
  VOYAGE = 'voyage'
26
27
  XAI = 'xai'
gllm_inference.pyi CHANGED
@@ -33,6 +33,7 @@ import gllm_inference.lm_invoker.OpenAIChatCompletionsLMInvoker
33
33
  import gllm_inference.lm_invoker.OpenAICompatibleLMInvoker
34
34
  import gllm_inference.lm_invoker.OpenAILMInvoker
35
35
  import gllm_inference.lm_invoker.PortkeyLMInvoker
36
+ import gllm_inference.lm_invoker.SeaLionLMInvoker
36
37
  import gllm_inference.lm_invoker.XAILMInvoker
37
38
  import gllm_inference.prompt_builder.PromptBuilder
38
39
  import gllm_inference.output_parser.JSONOutputParser
@@ -82,6 +83,7 @@ import voyageai
82
83
  import voyageai.client_async
83
84
  import http
84
85
  import http.HTTPStatus
86
+ import __future__
85
87
  import uuid
86
88
  import gllm_core.constants
87
89
  import gllm_core.event
@@ -113,7 +115,6 @@ import time
113
115
  import jsonschema
114
116
  import gllm_inference.lm_invoker.batch.BatchOperations
115
117
  import gllm_inference.schema.MessageContent
116
- import __future__
117
118
  import gllm_inference.schema.ActivityEvent
118
119
  import gllm_inference.schema.CodeEvent
119
120
  import gllm_inference.schema.CodeExecResult
@@ -135,6 +136,7 @@ import jinja2.sandbox
135
136
  import gllm_inference.schema.JinjaEnvType
136
137
  import gllm_inference.prompt_builder.format_strategy.JinjaFormatStrategy
137
138
  import gllm_inference.prompt_builder.format_strategy.StringFormatStrategy
139
+ import gllm_inference.schema.HistoryFormatter
138
140
  import transformers
139
141
  import gllm_inference.prompt_formatter.HuggingFacePromptFormatter
140
142
  import traceback
@@ -1,8 +1,8 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: gllm-inference-binary
3
- Version: 0.5.60
3
+ Version: 0.5.63
4
4
  Summary: A library containing components related to model inferences in Gen AI applications.
5
- Author-email: Henry Wicaksono <henry.wicaksono@gdplabs.id>, Resti Febrina <resti.febrina@gdplabs.id>
5
+ Author-email: Henry Wicaksono <henry.wicaksono@gdplabs.id>, "Delfia N. A. Putri" <delfia.n.a.putri@gdplabs.id>
6
6
  Requires-Python: <3.14,>=3.11
7
7
  Description-Content-Type: text/markdown
8
8
  Requires-Dist: poetry<3.0.0,>=2.1.3
@@ -1,11 +1,11 @@
1
- gllm_inference.cpython-313-x86_64-linux-gnu.so,sha256=AtpSh3HURF8FOx3jMg-naxxEI16vVsj1Vf60hQ2s6DI,5799032
2
- gllm_inference.pyi,sha256=9Q306Q-5LNldZnCgffJF11yHsCsqaHQwd3jpHw2tH48,5097
1
+ gllm_inference.cpython-313-x86_64-linux-gnu.so,sha256=yr0-I4o1HQbG04RaX1F5KyvEUsScst9iMcCasNPYmIM,5803224
2
+ gllm_inference.pyi,sha256=3UoxsyZnC_6PhNzIKIp37rL6CNEw-Ve0RJHiG9jLOBY,5193
3
3
  gllm_inference/__init__.pyi,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
4
4
  gllm_inference/constants.pyi,sha256=tBFhwE1at2gXMJ1bBM32eVIRgCJlB1uzg7ItXGx3RQE,316
5
5
  gllm_inference/builder/__init__.pyi,sha256=usz2lvfwO4Yk-ZGKXbCWG1cEr3nlQXxMNDNC-2yc1NM,500
6
6
  gllm_inference/builder/_build_invoker.pyi,sha256=v__-YT0jGmLqEsgl7Abk9we-wYWcyVFvlRN_Uu4vVak,848
7
7
  gllm_inference/builder/build_em_invoker.pyi,sha256=0IVcRGaciPBAFcgvGRC4-Kje_PPXOSug77LqxRc-x_U,5749
8
- gllm_inference/builder/build_lm_invoker.pyi,sha256=TBAr7Sk9Jgckdlfj69pYOzZFMsooL-FpfbPYt_kCcXU,8852
8
+ gllm_inference/builder/build_lm_invoker.pyi,sha256=o4dIL90wDu94y_fIeUs2ei5Qkk1zZo5_nYBqL2EiHAE,9195
9
9
  gllm_inference/builder/build_lm_request_processor.pyi,sha256=KbQkcPa8C-yzyelht4mWLP8kDmh17itAT3tn8ZJB6pg,4144
10
10
  gllm_inference/builder/build_output_parser.pyi,sha256=_Lrq-bh1oPsb_Nwkkr_zyEUwIOMysRFZkvEtEM29LZM,936
11
11
  gllm_inference/catalog/__init__.pyi,sha256=JBkPGTyiiZ30GECzJBW-mW8LekWyY2qyzal3eW7ynaM,287
@@ -40,12 +40,12 @@ gllm_inference/exceptions/__init__.pyi,sha256=Upcuj7od2lkbdueQ0iMT2ktFYYi-KKTynT
40
40
  gllm_inference/exceptions/error_parser.pyi,sha256=IOfa--NpLUW5E9Qq0mwWi6ZpTAbUyyNe6iAqunBNGLI,1999
41
41
  gllm_inference/exceptions/exceptions.pyi,sha256=Bv996qLa_vju0Qjf4GewMxdkq8CV9LRZb0S6289DldA,5725
42
42
  gllm_inference/exceptions/provider_error_map.pyi,sha256=XPLWU42-r8MHZgg5ZkE80Gdqg3p8Z_JHvq_Na03iTqY,1243
43
- gllm_inference/lm_invoker/__init__.pyi,sha256=Ze9CxgGYguyz8BAU87_2JM-D4OZjlYAqktLI_B2tj_s,1488
44
- gllm_inference/lm_invoker/anthropic_lm_invoker.pyi,sha256=oU0dzg87OHTVPGhKBT8WdcdR0AzeJJNSSVvGKtY0UQU,15178
43
+ gllm_inference/lm_invoker/__init__.pyi,sha256=dvwZQhO-7bHDOouXBXxujux9QQbu10ux-0vAsJI1DeI,1603
44
+ gllm_inference/lm_invoker/anthropic_lm_invoker.pyi,sha256=_by_rLLdBpnpIyniBVCOEhjur5HzdBJ1UYoXdpxb8Lw,15409
45
45
  gllm_inference/lm_invoker/azure_openai_lm_invoker.pyi,sha256=drtMgbDzBQJrWXLiI2t5PNy7HtcW5Kuj0XR2b6rltjc,12936
46
46
  gllm_inference/lm_invoker/bedrock_lm_invoker.pyi,sha256=9Gz0U2c94UM9SOt-_e89_NqT_bDQ6wECRiJ9VTwsqfw,10739
47
47
  gllm_inference/lm_invoker/datasaur_lm_invoker.pyi,sha256=IqvDxBzwEf2z34FZcLKIH404y386Rnk5gsj2TcAm424,7878
48
- gllm_inference/lm_invoker/google_lm_invoker.pyi,sha256=pT7TwwUhHoY02EReK7Yg2GWWUIAA-2El5OsiBKsPm0Y,19922
48
+ gllm_inference/lm_invoker/google_lm_invoker.pyi,sha256=DrMIhGhWolSBH26jTkx9zaXTVcRBqxBwNWgzI3InODE,20063
49
49
  gllm_inference/lm_invoker/langchain_lm_invoker.pyi,sha256=OzISl89C2s-qB6VxNlMgf5dFRC-ooj30YCFfsZzcX4s,11887
50
50
  gllm_inference/lm_invoker/litellm_lm_invoker.pyi,sha256=0PZYitAljAjzyympqqNyN5fMyoakmqr1XIz1PE6NNc4,11176
51
51
  gllm_inference/lm_invoker/lm_invoker.pyi,sha256=pJ0-s37NqTHdFD7IijvNzJnQ7JXgrGxsEaXuS8cxz3s,8487
@@ -53,6 +53,7 @@ gllm_inference/lm_invoker/openai_chat_completions_lm_invoker.pyi,sha256=47lMyuzW
53
53
  gllm_inference/lm_invoker/openai_compatible_lm_invoker.pyi,sha256=i5pMpZf4-r_7FQ1qfsqcjpc98sI-cPiqheuTfTEKxJs,4192
54
54
  gllm_inference/lm_invoker/openai_lm_invoker.pyi,sha256=OytpncpkOLdaSyFQ41GLh4_MioEbpsX0WiA8zc70Q6s,22313
55
55
  gllm_inference/lm_invoker/portkey_lm_invoker.pyi,sha256=ewxzRT-ekmvCFeb7ij840s4p18AO_LAKA-UP0ot12hs,14940
56
+ gllm_inference/lm_invoker/sea_lion_lm_invoker.pyi,sha256=ElV7iKYWnI3J1CUYuHtvOTsJByMY_l2WF4Rc7IJsBjw,3485
56
57
  gllm_inference/lm_invoker/xai_lm_invoker.pyi,sha256=SVIsRGcqbRnR9sqoLYWwigoEumDib5m4cTaTJT98Uz4,12765
57
58
  gllm_inference/lm_invoker/batch/__init__.pyi,sha256=W4W-_yfk7lL20alREJai6GnwuQvdlKRfwQCX4mQK4XI,127
58
59
  gllm_inference/lm_invoker/batch/batch_operations.pyi,sha256=cEdRVHAb5uiIPnlQudtaNzQ9kszI7cH6nD9mpMYQLco,5445
@@ -66,7 +67,7 @@ gllm_inference/lm_invoker/schema/openai.pyi,sha256=PS4QrNYa1NPq0s-3r8FI22a2Td0n7
66
67
  gllm_inference/lm_invoker/schema/openai_chat_completions.pyi,sha256=8byBRZ4xyTidIQJsZqiSjp5t1X875Obe-aEbT0yYfuA,1199
67
68
  gllm_inference/lm_invoker/schema/portkey.pyi,sha256=NeRjHNd84HgE_ur2F3Cv6Jx30v6V7eQvI_iJiq4kuME,631
68
69
  gllm_inference/lm_invoker/schema/xai.pyi,sha256=cWnbJmDtllqRH3NXpQbiXgkNBcUXr8ksDSDywcgJebE,632
69
- gllm_inference/model/__init__.pyi,sha256=LTeBCSJJwCSd5Qrg7RZCXcp9fURNVNXFR5akk1ZZrTk,810
70
+ gllm_inference/model/__init__.pyi,sha256=1gesoNUUHutpN2-DYmVrG5LZhpeSW96ciON3SjVEqqM,894
70
71
  gllm_inference/model/em/__init__.pyi,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
71
72
  gllm_inference/model/em/cohere_em.pyi,sha256=fArRlV08NwbsJ_h6vpWr94XxUVBtbqW1Jh8s42LRXCo,488
72
73
  gllm_inference/model/em/google_em.pyi,sha256=ZPN5LmReO0bcTfnZixFooUTzgD-daNFPzfxzZ-5WzQQ,471
@@ -78,12 +79,13 @@ gllm_inference/model/lm/__init__.pyi,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZ
78
79
  gllm_inference/model/lm/anthropic_lm.pyi,sha256=dWfG-M_gD644yJ-LK_T8HnAT649j3Vx7TVof03XQimE,611
79
80
  gllm_inference/model/lm/google_lm.pyi,sha256=cMV5zYX8uwUF7pErv4pXnXD2G52umo3sxKwbSx7nFhQ,511
80
81
  gllm_inference/model/lm/openai_lm.pyi,sha256=u11zvvIS7-XaHKZ33cZxGQmT6cZ4DqK9Do8l7gFOUTc,618
82
+ gllm_inference/model/lm/sea_lion_lm.pyi,sha256=k0xG5JGrecBDlNKWwNZb4BG0Ath_tGfy4fudr51-10w,492
81
83
  gllm_inference/model/lm/xai_lm.pyi,sha256=2ZEQ_--e_zsb23zZQ8bKdQShU7zChx5TrDKF8EpwEpU,506
82
84
  gllm_inference/output_parser/__init__.pyi,sha256=WQOOgsYnPk8vd-SOhFMMaVTzy4gkYrOAyT5gnAxv0A0,129
83
85
  gllm_inference/output_parser/json_output_parser.pyi,sha256=uulh91uQLMSb4ZXZhHYi9W9w7zGnmrOweEkL6wdDJN8,2933
84
86
  gllm_inference/output_parser/output_parser.pyi,sha256=Yzk7F26pH8Uc7FQZo4G6l67YkfppefUvaV9cNK-HyDs,948
85
87
  gllm_inference/prompt_builder/__init__.pyi,sha256=kshfBMvwIwiIvjxiGG5BrJZNvpPa8rhtkbHo5FPifBg,117
86
- gllm_inference/prompt_builder/prompt_builder.pyi,sha256=VQaw8nE8SPK1nvVVB4YjeqZSazigNPuWvOEcgGji0W8,4557
88
+ gllm_inference/prompt_builder/prompt_builder.pyi,sha256=qJ6L81KMLdZvS2MmOGGjrJ9btmWwVPoRVl3NQxHq3fw,5010
87
89
  gllm_inference/prompt_builder/format_strategy/__init__.pyi,sha256=QhORHac3ySOPmL9k9kmCKL70vtaUtwkZEtGoRNWNuA8,308
88
90
  gllm_inference/prompt_builder/format_strategy/format_strategy.pyi,sha256=JSUl_7Ka08oDZPpslymkUa8pDzqNGIK2TlcVANspqrY,2273
89
91
  gllm_inference/prompt_builder/format_strategy/jinja_format_strategy.pyi,sha256=IAezLUiKSJMaoDyleo8pFnFqq8rBM_Q-lNXuAGvwXhI,2225
@@ -109,18 +111,19 @@ gllm_inference/realtime_chat/output_streamer/output_streamer.pyi,sha256=GPAw1wPS
109
111
  gllm_inference/request_processor/__init__.pyi,sha256=hVnfdNZnkTBJHnmLtN3Na4ANP0yK6AstWdIizVr2Apo,227
110
112
  gllm_inference/request_processor/lm_request_processor.pyi,sha256=VnYc8E3Iayyhw-rPnGPfTKuO3ohgFsS8HPrZJeyES5I,5889
111
113
  gllm_inference/request_processor/uses_lm_mixin.pyi,sha256=Yu0XPNuHxq1tWBviHTPw1oThojneFwGHepvGjBXxKQA,6382
112
- gllm_inference/schema/__init__.pyi,sha256=hgRrwTocQ8b5MDDosSQN8zEuarGckpVply1OwEbrd28,2404
114
+ gllm_inference/schema/__init__.pyi,sha256=OOZE9H4DgUqOsk5_01hXb5opkAwBmp1TvhqcV2SrqJY,2505
113
115
  gllm_inference/schema/activity.pyi,sha256=JnO2hqj91P5Tc6qb4pbkEMrHer2u5owiCvhl-igcQKQ,2303
114
116
  gllm_inference/schema/attachment.pyi,sha256=oCopoxiPgGSkCRdPsqmjcMofTawfbdCDxaPdo6mits0,4509
115
117
  gllm_inference/schema/code_exec_result.pyi,sha256=ZTHh6JtRrPIdQ059P1UAiD2L-tAO1_S5YcMsAXfJ5A0,559
116
118
  gllm_inference/schema/config.pyi,sha256=rAL_UeXyQeXVk1P2kqd8vFWOMwmKenfpQLtvMP74t9s,674
117
119
  gllm_inference/schema/enums.pyi,sha256=rLTlnhtdTIKT_Q8p-ukKpCMhRk9NbqcR_ylZ0-8UivA,2111
118
120
  gllm_inference/schema/events.pyi,sha256=XQEy5SqYoutq2DguwCCTGi5DHrlnDai6nJElAYsj1gk,4638
121
+ gllm_inference/schema/formatter.pyi,sha256=qPQ1oSnmSgr7yBsBBMe-aehLLk9lKI9OPZ8Og-EbzdI,1281
119
122
  gllm_inference/schema/lm_input.pyi,sha256=A5pjz1id6tP9XRNhzQrbmzd66C_q3gzo0UP8rCemz6Q,193
120
123
  gllm_inference/schema/lm_output.pyi,sha256=ec5ErE68PVthNHhHlaVHsiAN3nn03yBqRR7HVabsf68,11401
121
124
  gllm_inference/schema/mcp.pyi,sha256=Vwu8E2BDl6FvvnI42gIyY3Oki1BdwRE3Uh3aV0rmhQU,1014
122
125
  gllm_inference/schema/message.pyi,sha256=VP9YppKj2mo1esl9cy6qQO9m2mMHUjTmfGDdyUor880,2220
123
- gllm_inference/schema/model_id.pyi,sha256=w_HA48gQ-TztufTCKS6RNlGLWGWJ9HaUyeloNdKW8sU,5816
126
+ gllm_inference/schema/model_id.pyi,sha256=MuH0KyFjI1uC9v7PoIU6Uuk6wPdpmczVrHZj0r5EcZk,5842
124
127
  gllm_inference/schema/reasoning.pyi,sha256=SlTuiDw87GdnAn-I6YOPIJRhEBiwQljM46JohG05guQ,562
125
128
  gllm_inference/schema/token_usage.pyi,sha256=1GTQVORV0dBNmD_jix8aVaUqxMKFF04KpLP7y2urqbk,2950
126
129
  gllm_inference/schema/tool_call.pyi,sha256=zQaVxCnkVxOfOEhBidqohU85gb4PRwnwBiygKaunamk,389
@@ -131,7 +134,7 @@ gllm_inference/utils/io_utils.pyi,sha256=7kUTacHAVRYoemFUOjCH7-Qmw-YsQGd6rGYxjf_
131
134
  gllm_inference/utils/langchain.pyi,sha256=VluQiHkGigDdqLUbhB6vnXiISCP5hHqV0qokYY6dC1A,1164
132
135
  gllm_inference/utils/validation.pyi,sha256=W9RQddN90F8SJMu_HXEQyQTDMBaRL-bo7fOosZWK7oY,438
133
136
  gllm_inference.build/.gitignore,sha256=aEiIwOuxfzdCmLZe4oB1JsBmCUxwG8x-u-HBCV9JT8E,1
134
- gllm_inference_binary-0.5.60.dist-info/METADATA,sha256=iihjq9P1gAsFWROCvSOEO-eNogLJn2aK4GM3Xllf3cA,5807
135
- gllm_inference_binary-0.5.60.dist-info/WHEEL,sha256=GrvfTP3j0ebqecWD3AHlLRzmSrTVGeL6T8Btq6Eg9eI,108
136
- gllm_inference_binary-0.5.60.dist-info/top_level.txt,sha256=FpOjtN80F-qVNgbScXSEyqa0w09FYn6301iq6qt69IQ,15
137
- gllm_inference_binary-0.5.60.dist-info/RECORD,,
137
+ gllm_inference_binary-0.5.63.dist-info/METADATA,sha256=Y3KOF-WUqiTMIOhmAywrGG13jUcxCQDpvAbuYjahFYE,5817
138
+ gllm_inference_binary-0.5.63.dist-info/WHEEL,sha256=GrvfTP3j0ebqecWD3AHlLRzmSrTVGeL6T8Btq6Eg9eI,108
139
+ gllm_inference_binary-0.5.63.dist-info/top_level.txt,sha256=FpOjtN80F-qVNgbScXSEyqa0w09FYn6301iq6qt69IQ,15
140
+ gllm_inference_binary-0.5.63.dist-info/RECORD,,