gllm-inference-binary 0.5.59__cp313-cp313-win_amd64.whl → 0.5.61__cp313-cp313-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of gllm-inference-binary might be problematic. Click here for more details.
- gllm_inference/builder/build_lm_invoker.pyi +10 -1
- gllm_inference/lm_invoker/__init__.pyi +2 -1
- gllm_inference/lm_invoker/batch/batch_operations.pyi +2 -1
- gllm_inference/lm_invoker/google_lm_invoker.pyi +97 -4
- gllm_inference/lm_invoker/schema/google.pyi +12 -0
- gllm_inference/lm_invoker/sea_lion_lm_invoker.pyi +48 -0
- gllm_inference/model/__init__.pyi +2 -1
- gllm_inference/model/lm/sea_lion_lm.pyi +16 -0
- gllm_inference/schema/enums.pyi +3 -1
- gllm_inference/schema/model_id.pyi +1 -0
- gllm_inference.cp313-win_amd64.pyd +0 -0
- gllm_inference.pyi +2 -1
- {gllm_inference_binary-0.5.59.dist-info → gllm_inference_binary-0.5.61.dist-info}/METADATA +1 -1
- {gllm_inference_binary-0.5.59.dist-info → gllm_inference_binary-0.5.61.dist-info}/RECORD +16 -14
- {gllm_inference_binary-0.5.59.dist-info → gllm_inference_binary-0.5.61.dist-info}/WHEEL +0 -0
- {gllm_inference_binary-0.5.59.dist-info → gllm_inference_binary-0.5.61.dist-info}/top_level.txt +0 -0
|
@@ -1,4 +1,4 @@
|
|
|
1
|
-
from gllm_inference.lm_invoker import AnthropicLMInvoker as AnthropicLMInvoker, AzureOpenAILMInvoker as AzureOpenAILMInvoker, BedrockLMInvoker as BedrockLMInvoker, DatasaurLMInvoker as DatasaurLMInvoker, GoogleLMInvoker as GoogleLMInvoker, LangChainLMInvoker as LangChainLMInvoker, LiteLLMLMInvoker as LiteLLMLMInvoker, OpenAIChatCompletionsLMInvoker as OpenAIChatCompletionsLMInvoker, OpenAICompatibleLMInvoker as OpenAICompatibleLMInvoker, OpenAILMInvoker as OpenAILMInvoker, PortkeyLMInvoker as PortkeyLMInvoker, XAILMInvoker as XAILMInvoker
|
|
1
|
+
from gllm_inference.lm_invoker import AnthropicLMInvoker as AnthropicLMInvoker, AzureOpenAILMInvoker as AzureOpenAILMInvoker, BedrockLMInvoker as BedrockLMInvoker, DatasaurLMInvoker as DatasaurLMInvoker, GoogleLMInvoker as GoogleLMInvoker, LangChainLMInvoker as LangChainLMInvoker, LiteLLMLMInvoker as LiteLLMLMInvoker, OpenAIChatCompletionsLMInvoker as OpenAIChatCompletionsLMInvoker, OpenAICompatibleLMInvoker as OpenAICompatibleLMInvoker, OpenAILMInvoker as OpenAILMInvoker, PortkeyLMInvoker as PortkeyLMInvoker, SeaLionLMInvoker as SeaLionLMInvoker, XAILMInvoker as XAILMInvoker
|
|
2
2
|
from gllm_inference.lm_invoker.lm_invoker import BaseLMInvoker as BaseLMInvoker
|
|
3
3
|
from gllm_inference.schema.model_id import ModelId as ModelId, ModelProvider as ModelProvider
|
|
4
4
|
from typing import Any
|
|
@@ -119,6 +119,15 @@ def build_lm_invoker(model_id: str | ModelId, credentials: str | dict[str, Any]
|
|
|
119
119
|
```
|
|
120
120
|
The credentials can also be provided through the `AZURE_OPENAI_API_KEY` environment variable.
|
|
121
121
|
|
|
122
|
+
# Using SEA-LION
|
|
123
|
+
```python
|
|
124
|
+
lm_invoker = build_lm_invoker(
|
|
125
|
+
model_id="sea-lion/aisingapore/Qwen-SEA-LION-v4-32B-IT",
|
|
126
|
+
credentials="sk-..."
|
|
127
|
+
)
|
|
128
|
+
```
|
|
129
|
+
The credentials can also be provided through the `SEA_LION_API_KEY` environment variable.
|
|
130
|
+
|
|
122
131
|
# Using LangChain
|
|
123
132
|
```python
|
|
124
133
|
lm_invoker = build_lm_invoker(
|
|
@@ -9,6 +9,7 @@ from gllm_inference.lm_invoker.openai_chat_completions_lm_invoker import OpenAIC
|
|
|
9
9
|
from gllm_inference.lm_invoker.openai_compatible_lm_invoker import OpenAICompatibleLMInvoker as OpenAICompatibleLMInvoker
|
|
10
10
|
from gllm_inference.lm_invoker.openai_lm_invoker import OpenAILMInvoker as OpenAILMInvoker
|
|
11
11
|
from gllm_inference.lm_invoker.portkey_lm_invoker import PortkeyLMInvoker as PortkeyLMInvoker
|
|
12
|
+
from gllm_inference.lm_invoker.sea_lion_lm_invoker import SeaLionLMInvoker as SeaLionLMInvoker
|
|
12
13
|
from gllm_inference.lm_invoker.xai_lm_invoker import XAILMInvoker as XAILMInvoker
|
|
13
14
|
|
|
14
|
-
__all__ = ['AnthropicLMInvoker', 'AzureOpenAILMInvoker', 'BedrockLMInvoker', 'DatasaurLMInvoker', 'GoogleLMInvoker', 'LangChainLMInvoker', 'LiteLLMLMInvoker', 'OpenAIChatCompletionsLMInvoker', 'OpenAICompatibleLMInvoker', 'OpenAILMInvoker', 'PortkeyLMInvoker', 'XAILMInvoker']
|
|
15
|
+
__all__ = ['AnthropicLMInvoker', 'AzureOpenAILMInvoker', 'BedrockLMInvoker', 'DatasaurLMInvoker', 'GoogleLMInvoker', 'LangChainLMInvoker', 'LiteLLMLMInvoker', 'OpenAIChatCompletionsLMInvoker', 'OpenAICompatibleLMInvoker', 'OpenAILMInvoker', 'PortkeyLMInvoker', 'SeaLionLMInvoker', 'XAILMInvoker']
|
|
@@ -104,11 +104,12 @@ class BatchOperations:
|
|
|
104
104
|
Returns:
|
|
105
105
|
BatchStatus: The status of the batch job.
|
|
106
106
|
"""
|
|
107
|
-
async def retrieve(self, batch_id: str) -> dict[str, LMOutput]:
|
|
107
|
+
async def retrieve(self, batch_id: str, **kwargs: Any) -> dict[str, LMOutput]:
|
|
108
108
|
"""Retrieves the results of a batch job.
|
|
109
109
|
|
|
110
110
|
Args:
|
|
111
111
|
batch_id (str): The ID of the batch job to get the results of.
|
|
112
|
+
**kwargs (Any): Additional keyword arguments.
|
|
112
113
|
|
|
113
114
|
Returns:
|
|
114
115
|
dict[str, LMOutput]: The results of the batch job.
|
|
@@ -6,8 +6,9 @@ from gllm_inference.constants import GOOGLE_SCOPES as GOOGLE_SCOPES, SECONDS_TO_
|
|
|
6
6
|
from gllm_inference.exceptions import BaseInvokerError as BaseInvokerError, convert_http_status_to_base_invoker_error as convert_http_status_to_base_invoker_error
|
|
7
7
|
from gllm_inference.exceptions.provider_error_map import GOOGLE_ERROR_MAPPING as GOOGLE_ERROR_MAPPING
|
|
8
8
|
from gllm_inference.lm_invoker.lm_invoker import BaseLMInvoker as BaseLMInvoker
|
|
9
|
-
from gllm_inference.lm_invoker.schema.google import InputType as InputType, Key as Key
|
|
10
|
-
from gllm_inference.schema import Attachment as Attachment, AttachmentType as AttachmentType, LMOutput as LMOutput, Message as Message, MessageRole as MessageRole, ModelId as ModelId, ModelProvider as ModelProvider, Reasoning as Reasoning, ResponseSchema as ResponseSchema, ThinkingEvent as ThinkingEvent, TokenUsage as TokenUsage, ToolCall as ToolCall, ToolResult as ToolResult
|
|
9
|
+
from gllm_inference.lm_invoker.schema.google import InputType as InputType, JobState as JobState, Key as Key
|
|
10
|
+
from gllm_inference.schema import Attachment as Attachment, AttachmentType as AttachmentType, BatchStatus as BatchStatus, LMInput as LMInput, LMOutput as LMOutput, Message as Message, MessageRole as MessageRole, ModelId as ModelId, ModelProvider as ModelProvider, Reasoning as Reasoning, ResponseSchema as ResponseSchema, ThinkingEvent as ThinkingEvent, TokenUsage as TokenUsage, ToolCall as ToolCall, ToolResult as ToolResult
|
|
11
|
+
from google.genai.types import GenerateContentResponse as GenerateContentResponse
|
|
11
12
|
from langchain_core.tools import Tool as LangChainTool
|
|
12
13
|
from typing import Any
|
|
13
14
|
|
|
@@ -15,8 +16,12 @@ SUPPORTED_ATTACHMENTS: Incomplete
|
|
|
15
16
|
DEFAULT_THINKING_BUDGET: int
|
|
16
17
|
REQUIRE_THINKING_MODEL_PREFIX: Incomplete
|
|
17
18
|
IMAGE_GENERATION_MODELS: Incomplete
|
|
18
|
-
|
|
19
|
-
|
|
19
|
+
BATCH_STATUS_MAP: Incomplete
|
|
20
|
+
|
|
21
|
+
class URLPattern:
|
|
22
|
+
"""Defines specific Google related URL patterns."""
|
|
23
|
+
GOOGLE_FILE: Incomplete
|
|
24
|
+
YOUTUBE: Incomplete
|
|
20
25
|
|
|
21
26
|
class GoogleLMInvoker(BaseLMInvoker):
|
|
22
27
|
'''A language model invoker to interact with Google language models.
|
|
@@ -261,6 +266,94 @@ class GoogleLMInvoker(BaseLMInvoker):
|
|
|
261
266
|
```python
|
|
262
267
|
lm_invoker = GoogleLMInvoker(..., retry_config=retry_config)
|
|
263
268
|
```
|
|
269
|
+
|
|
270
|
+
Batch processing:
|
|
271
|
+
The `GoogleLMInvoker` supports batch processing, which allows the language model to process multiple
|
|
272
|
+
requests in a single call. Batch processing is supported through the `batch` attribute.
|
|
273
|
+
|
|
274
|
+
Due to Google SDK limitations with batch processing:
|
|
275
|
+
1. Only inline requests are currently supported (not file-based or BigQuery sources).
|
|
276
|
+
2. The total size of all requests must be under 20MB.
|
|
277
|
+
3. Original request indices are not preserved in the results. The results are keyed by request index in the
|
|
278
|
+
format \'1\', \'2\', etc, in which order are preserved based on the original request order. If you want to use
|
|
279
|
+
custom request IDs, you can pass them as a list of strings to the `custom_request_ids` keyword argument
|
|
280
|
+
|
|
281
|
+
Usage example:
|
|
282
|
+
```python
|
|
283
|
+
requests = {"1": "What color is the sky?", "2": "What color is the grass?"}
|
|
284
|
+
results = await lm_invoker.batch.invoke(requests)
|
|
285
|
+
```
|
|
286
|
+
|
|
287
|
+
Output example:
|
|
288
|
+
```python
|
|
289
|
+
{
|
|
290
|
+
"1": LMOutput(outputs=[LMOutputItem(type="text", output="The sky is blue.")]),
|
|
291
|
+
"2": LMOutput(finish_details={"type": "error", "message": "..."}),
|
|
292
|
+
}
|
|
293
|
+
```
|
|
294
|
+
|
|
295
|
+
The `GoogleLMInvoker` also supports the following standalone batch processing operations:
|
|
296
|
+
|
|
297
|
+
1. Create a batch job:
|
|
298
|
+
```python
|
|
299
|
+
requests = {"1": "What color is the sky?", "2": "What color is the grass?"}
|
|
300
|
+
batch_id = await lm_invoker.batch.create(requests)
|
|
301
|
+
```
|
|
302
|
+
|
|
303
|
+
2. Get the status of a batch job:
|
|
304
|
+
```python
|
|
305
|
+
status = await lm_invoker.batch.status(batch_id)
|
|
306
|
+
```
|
|
307
|
+
|
|
308
|
+
3. Retrieve the results of a batch job:
|
|
309
|
+
|
|
310
|
+
In default, the results will be keyed by request index in the format \'1\', \'2\', etc,
|
|
311
|
+
in which order are preserved based on the original request order.
|
|
312
|
+
|
|
313
|
+
|
|
314
|
+
```python
|
|
315
|
+
results = await lm_invoker.batch.retrieve(batch_id)
|
|
316
|
+
```
|
|
317
|
+
|
|
318
|
+
Output example:
|
|
319
|
+
```python
|
|
320
|
+
{
|
|
321
|
+
"1": LMOutput(outputs=[LMOutputItem(type="text", output="The sky is blue.")]),
|
|
322
|
+
"2": LMOutput(finish_details={"type": "error", "error": {"message": "...", ...}, ...}),
|
|
323
|
+
}
|
|
324
|
+
```
|
|
325
|
+
|
|
326
|
+
If you pass custom_request_ids to the create method, the results will be keyed by the custom_request_ids.
|
|
327
|
+
```python
|
|
328
|
+
results = await lm_invoker.batch.retrieve(batch_id, custom_request_ids=["request_1", "request_2"])
|
|
329
|
+
```
|
|
330
|
+
|
|
331
|
+
Output example:
|
|
332
|
+
```python
|
|
333
|
+
{
|
|
334
|
+
"request_1": LMOutput(outputs=[LMOutputItem(type="text", output="The sky is blue.")]),
|
|
335
|
+
"request_2": LMOutput(finish_details={"type": "error", "error": {"message": "...", ...}, ...}),
|
|
336
|
+
}
|
|
337
|
+
```
|
|
338
|
+
|
|
339
|
+
4. List the batch jobs:
|
|
340
|
+
```python
|
|
341
|
+
batch_jobs = await lm_invoker.batch.list()
|
|
342
|
+
```
|
|
343
|
+
|
|
344
|
+
Output example:
|
|
345
|
+
```python
|
|
346
|
+
[
|
|
347
|
+
{"id": "batch_123", "status": "finished"},
|
|
348
|
+
{"id": "batch_456", "status": "in_progress"},
|
|
349
|
+
{"id": "batch_789", "status": "canceling"},
|
|
350
|
+
]
|
|
351
|
+
```
|
|
352
|
+
|
|
353
|
+
5. Cancel a batch job:
|
|
354
|
+
```python
|
|
355
|
+
await lm_invoker.batch.cancel(batch_id)
|
|
356
|
+
```
|
|
264
357
|
'''
|
|
265
358
|
client_params: Incomplete
|
|
266
359
|
image_generation: Incomplete
|
|
@@ -7,8 +7,10 @@ class Key:
|
|
|
7
7
|
FUNCTION: str
|
|
8
8
|
FUNCTION_CALL: str
|
|
9
9
|
HTTP_OPTIONS: str
|
|
10
|
+
ID: str
|
|
10
11
|
NAME: str
|
|
11
12
|
RETRY_OPTIONS: str
|
|
13
|
+
STATUS: str
|
|
12
14
|
SYSTEM_INSTRUCTION: str
|
|
13
15
|
THINKING_CONFIG: str
|
|
14
16
|
TIMEOUT: str
|
|
@@ -16,9 +18,19 @@ class Key:
|
|
|
16
18
|
RESPONSE_SCHEMA: str
|
|
17
19
|
RESPONSE_MIME_TYPE: str
|
|
18
20
|
VERTEXAI: str
|
|
21
|
+
CUSTOM_REQUEST_IDS: str
|
|
19
22
|
|
|
20
23
|
class InputType:
|
|
21
24
|
"""Defines valid input types in Google."""
|
|
22
25
|
APPLICATION_JSON: str
|
|
23
26
|
MODEL: str
|
|
24
27
|
USER: str
|
|
28
|
+
|
|
29
|
+
class JobState:
|
|
30
|
+
"""Defines valid output types in Google."""
|
|
31
|
+
JOB_STATE_CANCELLED: str
|
|
32
|
+
JOB_STATE_EXPIRED: str
|
|
33
|
+
JOB_STATE_FAILED: str
|
|
34
|
+
JOB_STATE_PENDING: str
|
|
35
|
+
JOB_STATE_RUNNING: str
|
|
36
|
+
JOB_STATE_SUCCEEDED: str
|
|
@@ -0,0 +1,48 @@
|
|
|
1
|
+
from _typeshed import Incomplete
|
|
2
|
+
from gllm_core.schema.tool import Tool as Tool
|
|
3
|
+
from gllm_core.utils import RetryConfig as RetryConfig
|
|
4
|
+
from gllm_inference.constants import INVOKER_PROPAGATED_MAX_RETRIES as INVOKER_PROPAGATED_MAX_RETRIES
|
|
5
|
+
from gllm_inference.lm_invoker.openai_chat_completions_lm_invoker import OpenAIChatCompletionsLMInvoker as OpenAIChatCompletionsLMInvoker
|
|
6
|
+
from gllm_inference.lm_invoker.schema.openai_chat_completions import Key as Key
|
|
7
|
+
from gllm_inference.schema import ModelId as ModelId, ModelProvider as ModelProvider, ResponseSchema as ResponseSchema
|
|
8
|
+
from langchain_core.tools import Tool as LangChainTool
|
|
9
|
+
from typing import Any
|
|
10
|
+
|
|
11
|
+
SEA_LION_URL: str
|
|
12
|
+
SUPPORTED_ATTACHMENTS: Incomplete
|
|
13
|
+
|
|
14
|
+
class SeaLionLMInvoker(OpenAIChatCompletionsLMInvoker):
|
|
15
|
+
"""A language model invoker to interact with SEA-LION API.
|
|
16
|
+
|
|
17
|
+
Attributes:
|
|
18
|
+
model_id (str): The model ID of the language model.
|
|
19
|
+
model_provider (str): The provider of the language model.
|
|
20
|
+
model_name (str): The name of the language model.
|
|
21
|
+
client_kwargs (dict[str, Any]): The keyword arguments for the OpenAI client.
|
|
22
|
+
default_hyperparameters (dict[str, Any]): Default hyperparameters for invoking the model.
|
|
23
|
+
tools (list[Tool]): The list of tools provided to the model to enable tool calling.
|
|
24
|
+
response_schema (ResponseSchema | None): The schema of the response. If provided, the model will output a
|
|
25
|
+
structured response as defined by the schema. Supports both Pydantic BaseModel and JSON schema dictionary.
|
|
26
|
+
output_analytics (bool): Whether to output the invocation analytics.
|
|
27
|
+
retry_config (RetryConfig | None): The retry configuration for the language model.
|
|
28
|
+
"""
|
|
29
|
+
client_kwargs: Incomplete
|
|
30
|
+
def __init__(self, model_name: str, api_key: str | None = None, model_kwargs: dict[str, Any] | None = None, default_hyperparameters: dict[str, Any] | None = None, tools: list[Tool | LangChainTool] | None = None, response_schema: ResponseSchema | None = None, output_analytics: bool = False, retry_config: RetryConfig | None = None) -> None:
|
|
31
|
+
"""Initializes a new instance of the SeaLionLMInvoker class.
|
|
32
|
+
|
|
33
|
+
Args:
|
|
34
|
+
model_name (str): The name of the SEA-LION language model.
|
|
35
|
+
api_key (str | None, optional): The API key for authenticating with the SEA-LION API.
|
|
36
|
+
Defaults to None, in which case the `SEA_LION_API_KEY` environment variable will be used.
|
|
37
|
+
model_kwargs (dict[str, Any] | None, optional): Additional model parameters. Defaults to None.
|
|
38
|
+
default_hyperparameters (dict[str, Any] | None, optional): Default hyperparameters for invoking the model.
|
|
39
|
+
Defaults to None.
|
|
40
|
+
tools (list[Tool | LangChainTool] | None, optional): Tools provided to the model to enable tool calling.
|
|
41
|
+
Defaults to None.
|
|
42
|
+
response_schema (ResponseSchema | None, optional): The schema of the response. If provided, the model will
|
|
43
|
+
output a structured response as defined by the schema. Supports both Pydantic BaseModel and JSON schema
|
|
44
|
+
dictionary. Defaults to None.
|
|
45
|
+
output_analytics (bool, optional): Whether to output the invocation analytics. Defaults to False.
|
|
46
|
+
retry_config (RetryConfig | None, optional): The retry configuration for the language model.
|
|
47
|
+
Defaults to None, in which case a default config with no retry and 30.0 seconds timeout will be used.
|
|
48
|
+
"""
|
|
@@ -7,6 +7,7 @@ from gllm_inference.model.em.voyage_em import VoyageEM as VoyageEM
|
|
|
7
7
|
from gllm_inference.model.lm.anthropic_lm import AnthropicLM as AnthropicLM
|
|
8
8
|
from gllm_inference.model.lm.google_lm import GoogleLM as GoogleLM
|
|
9
9
|
from gllm_inference.model.lm.openai_lm import OpenAILM as OpenAILM
|
|
10
|
+
from gllm_inference.model.lm.sea_lion_lm import SeaLionLM as SeaLionLM
|
|
10
11
|
from gllm_inference.model.lm.xai_lm import XAILM as XAILM
|
|
11
12
|
|
|
12
|
-
__all__ = ['AnthropicLM', 'CohereEM', 'GoogleEM', 'GoogleLM', 'JinaEM', 'OpenAIEM', 'OpenAILM', 'TwelveLabsEM', 'VoyageEM', 'XAILM']
|
|
13
|
+
__all__ = ['AnthropicLM', 'CohereEM', 'GoogleEM', 'GoogleLM', 'JinaEM', 'OpenAIEM', 'OpenAILM', 'SeaLionLM', 'TwelveLabsEM', 'VoyageEM', 'XAILM']
|
|
@@ -0,0 +1,16 @@
|
|
|
1
|
+
class SeaLionLM:
|
|
2
|
+
'''Defines SEA-LION language model names constants.
|
|
3
|
+
|
|
4
|
+
Usage example:
|
|
5
|
+
```python
|
|
6
|
+
from gllm_inference.model import SeaLionLM
|
|
7
|
+
from gllm_inference.lm_invoker import SeaLionLMInvoker
|
|
8
|
+
|
|
9
|
+
lm_invoker = SeaLionLMInvoker(SeaLionLM.GEMMA_SEA_LION_V4_27B_IT)
|
|
10
|
+
response = await lm_invoker.invoke("Hello, world!")
|
|
11
|
+
```
|
|
12
|
+
'''
|
|
13
|
+
GEMMA_SEA_LION_V4_27B_IT: str
|
|
14
|
+
LLAMA_SEA_LION_V3_5_70B_R: str
|
|
15
|
+
LLAMA_SEA_LION_V3_70B_IT: str
|
|
16
|
+
QWEN_SEA_LION_V4_32B_IT: str
|
gllm_inference/schema/enums.pyi
CHANGED
|
@@ -9,9 +9,11 @@ class AttachmentType(StrEnum):
|
|
|
9
9
|
|
|
10
10
|
class BatchStatus(StrEnum):
|
|
11
11
|
"""Defines the status of a batch job."""
|
|
12
|
-
CANCELING = 'canceling'
|
|
13
12
|
IN_PROGRESS = 'in_progress'
|
|
14
13
|
FINISHED = 'finished'
|
|
14
|
+
FAILED = 'failed'
|
|
15
|
+
CANCELING = 'canceling'
|
|
16
|
+
EXPIRED = 'expired'
|
|
15
17
|
UNKNOWN = 'unknown'
|
|
16
18
|
|
|
17
19
|
class LMEventType(StrEnum):
|
|
Binary file
|
gllm_inference.pyi
CHANGED
|
@@ -33,6 +33,7 @@ import gllm_inference.lm_invoker.OpenAIChatCompletionsLMInvoker
|
|
|
33
33
|
import gllm_inference.lm_invoker.OpenAICompatibleLMInvoker
|
|
34
34
|
import gllm_inference.lm_invoker.OpenAILMInvoker
|
|
35
35
|
import gllm_inference.lm_invoker.PortkeyLMInvoker
|
|
36
|
+
import gllm_inference.lm_invoker.SeaLionLMInvoker
|
|
36
37
|
import gllm_inference.lm_invoker.XAILMInvoker
|
|
37
38
|
import gllm_inference.prompt_builder.PromptBuilder
|
|
38
39
|
import gllm_inference.output_parser.JSONOutputParser
|
|
@@ -103,6 +104,7 @@ import anthropic.types
|
|
|
103
104
|
import anthropic.types.message_create_params
|
|
104
105
|
import anthropic.types.messages
|
|
105
106
|
import anthropic.types.messages.batch_create_params
|
|
107
|
+
import __future__
|
|
106
108
|
import gllm_inference.schema.MessageRole
|
|
107
109
|
import langchain_core.language_models
|
|
108
110
|
import langchain_core.messages
|
|
@@ -113,7 +115,6 @@ import time
|
|
|
113
115
|
import jsonschema
|
|
114
116
|
import gllm_inference.lm_invoker.batch.BatchOperations
|
|
115
117
|
import gllm_inference.schema.MessageContent
|
|
116
|
-
import __future__
|
|
117
118
|
import gllm_inference.schema.ActivityEvent
|
|
118
119
|
import gllm_inference.schema.CodeEvent
|
|
119
120
|
import gllm_inference.schema.CodeExecResult
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.2
|
|
2
2
|
Name: gllm-inference-binary
|
|
3
|
-
Version: 0.5.
|
|
3
|
+
Version: 0.5.61
|
|
4
4
|
Summary: A library containing components related to model inferences in Gen AI applications.
|
|
5
5
|
Author-email: Henry Wicaksono <henry.wicaksono@gdplabs.id>, Resti Febrina <resti.febrina@gdplabs.id>
|
|
6
6
|
Requires-Python: <3.14,>=3.11
|
|
@@ -1,11 +1,11 @@
|
|
|
1
|
-
gllm_inference.cp313-win_amd64.pyd,sha256=
|
|
2
|
-
gllm_inference.pyi,sha256=
|
|
1
|
+
gllm_inference.cp313-win_amd64.pyd,sha256=13CRfpE1CzZ5hKxwcmRtkXIQpHZFAzwETEBd-cg8x98,4043776
|
|
2
|
+
gllm_inference.pyi,sha256=XsPnJJ9ahwWe5Z_dlq7Pxs00CcwZ3n9l12HUOk0t3I4,5147
|
|
3
3
|
gllm_inference/__init__.pyi,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
4
4
|
gllm_inference/constants.pyi,sha256=8jIYOyxJYVWUYXSXF3vag9HhHwjq1iU9tzPiosRHkWk,328
|
|
5
5
|
gllm_inference/builder/__init__.pyi,sha256=-bw1uDx7CAM7pkvjvb1ZXku9zXlQ7aEAyC83KIn3bz8,506
|
|
6
6
|
gllm_inference/builder/_build_invoker.pyi,sha256=SZst1ocnRntcA7lWKp44lMJ3yRA5GP_jsUZkcsxwTjw,876
|
|
7
7
|
gllm_inference/builder/build_em_invoker.pyi,sha256=Z09hP6_ziumI2XB-7HCdyIE4AyoV1oL9DBdoU2G8izo,5879
|
|
8
|
-
gllm_inference/builder/build_lm_invoker.pyi,sha256=
|
|
8
|
+
gllm_inference/builder/build_lm_invoker.pyi,sha256=ZKNVOOQAi1DaChrPBdWGUuzPShhmkGx89oZnALhR9w0,9417
|
|
9
9
|
gllm_inference/builder/build_lm_request_processor.pyi,sha256=H7Rg88e7PTTCtuyY64r333moTmh4-ypOwgnG10gkEdY,4232
|
|
10
10
|
gllm_inference/builder/build_output_parser.pyi,sha256=sgSTrzUmSRxPzUUum0fDU7A3NXYoYhpi6bEx4Q2XMnA,965
|
|
11
11
|
gllm_inference/catalog/__init__.pyi,sha256=HWgPKWIzprpMHRKe_qN9BZSIQhVhrqiyjLjIXwvj1ho,291
|
|
@@ -40,12 +40,12 @@ gllm_inference/exceptions/__init__.pyi,sha256=nXOqwsuwUgsnBcJEANVuxbZ1nDfcJ6-pKU
|
|
|
40
40
|
gllm_inference/exceptions/error_parser.pyi,sha256=4aiJZhBzBOqlhdmpvaCvildGy7_XxlJzQpe3PzGt8eE,2040
|
|
41
41
|
gllm_inference/exceptions/exceptions.pyi,sha256=6y3ECgHAStqMGgQv8Dv-Ui-5PDD07mSj6qaRZeSWea4,5857
|
|
42
42
|
gllm_inference/exceptions/provider_error_map.pyi,sha256=vWa4ZIHn7qIghECGvO-dS2KzOmf3c10GRWKZ4YDPnSQ,1267
|
|
43
|
-
gllm_inference/lm_invoker/__init__.pyi,sha256=
|
|
43
|
+
gllm_inference/lm_invoker/__init__.pyi,sha256=Y0laMHRdUwGgfIXo278qe1dwj7ZMSCeO-wMToYim47c,1618
|
|
44
44
|
gllm_inference/lm_invoker/anthropic_lm_invoker.pyi,sha256=_Dst_88LOpC-FN01hApihxUxuripiCGSOax5R_-bQEE,15496
|
|
45
45
|
gllm_inference/lm_invoker/azure_openai_lm_invoker.pyi,sha256=uV98H2nJsElCTsxAuInZ9KSk1jOTq6SROAGQRPR-_r0,13173
|
|
46
46
|
gllm_inference/lm_invoker/bedrock_lm_invoker.pyi,sha256=qXmFK6zsOM3nPfueEhY5pAfG24bZytA1jqemPa63vLY,10951
|
|
47
47
|
gllm_inference/lm_invoker/datasaur_lm_invoker.pyi,sha256=FnpayOW_Zi0pWFSawLX8XahEnknbnpsRWrkhKZe8Y3U,8035
|
|
48
|
-
gllm_inference/lm_invoker/google_lm_invoker.pyi,sha256=
|
|
48
|
+
gllm_inference/lm_invoker/google_lm_invoker.pyi,sha256=2ZqQl9WhehtxcnAXzUi7vFDaHV0lO-0SwHoAT7m8Lf0,20484
|
|
49
49
|
gllm_inference/lm_invoker/langchain_lm_invoker.pyi,sha256=ull3cX-iUT4hYMbixcxqfrNUxR8ZoR4Vt9ACVILQWSM,12126
|
|
50
50
|
gllm_inference/lm_invoker/litellm_lm_invoker.pyi,sha256=qG8pPTiDJZR2e7wr5Q2VyceC227tz3QybX3UPihT5ng,11400
|
|
51
51
|
gllm_inference/lm_invoker/lm_invoker.pyi,sha256=L_PHRCeHo0dNs6BjnB8H29irGib-qhxKYf7F7pZlU0E,8652
|
|
@@ -53,20 +53,21 @@ gllm_inference/lm_invoker/openai_chat_completions_lm_invoker.pyi,sha256=qt9DAdJM
|
|
|
53
53
|
gllm_inference/lm_invoker/openai_compatible_lm_invoker.pyi,sha256=T9sShA_9fgEuaaAuT2gJZq_EYNbEhf3IkWwMCwfszY8,4244
|
|
54
54
|
gllm_inference/lm_invoker/openai_lm_invoker.pyi,sha256=ReU37hrmYZFbLfCD_c14ryRgnfpPC2YyDx2S5Ft_tXQ,22747
|
|
55
55
|
gllm_inference/lm_invoker/portkey_lm_invoker.pyi,sha256=FYOp4BaDfOtompWIRhDqzMVVSK-TiFyw7JA4TznANQE,15236
|
|
56
|
+
gllm_inference/lm_invoker/sea_lion_lm_invoker.pyi,sha256=Qqplj79JsnLGY6xjhbXYbz6Ramxur4sXfvv4svk19os,3533
|
|
56
57
|
gllm_inference/lm_invoker/xai_lm_invoker.pyi,sha256=6beZsQjGUTo7TdzWBWksRzVGT58XyipErpGfiRq6NH0,13017
|
|
57
58
|
gllm_inference/lm_invoker/batch/__init__.pyi,sha256=vJOTHRJ83oq8Bq0UsMdID9_HW5JAxr06gUs4aPRZfEE,130
|
|
58
|
-
gllm_inference/lm_invoker/batch/batch_operations.pyi,sha256=
|
|
59
|
+
gllm_inference/lm_invoker/batch/batch_operations.pyi,sha256=EKwINY8DQFOXquGGrUTr_Yg24ZrSyiiAo2hX8If9vyQ,5573
|
|
59
60
|
gllm_inference/lm_invoker/schema/__init__.pyi,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
60
61
|
gllm_inference/lm_invoker/schema/anthropic.pyi,sha256=Ol_IqeBPgrmG5iaY3NV6AD-alC2HmUvljp0vI8GApWo,1154
|
|
61
62
|
gllm_inference/lm_invoker/schema/bedrock.pyi,sha256=rB1AWfER2BBKZ5I219211YE2EUFPF25bhzysqjdPgiY,1080
|
|
62
63
|
gllm_inference/lm_invoker/schema/datasaur.pyi,sha256=8lmb1PRbkqBsF_l7iOffxW0K5Xxpi69GW9Z7KxyxHTE,279
|
|
63
|
-
gllm_inference/lm_invoker/schema/google.pyi,sha256=
|
|
64
|
+
gllm_inference/lm_invoker/schema/google.pyi,sha256=LQ14PJyDOe3K5TYvE-gzE1fjpZCSAy-0Sy9Lmw6fICY,827
|
|
64
65
|
gllm_inference/lm_invoker/schema/langchain.pyi,sha256=2OJOUQPlGdlUbIOTDOyiWDBOMm3MoVX-kU2nK0zQsF0,452
|
|
65
66
|
gllm_inference/lm_invoker/schema/openai.pyi,sha256=GIrqEtUPinn8VD-w-38gOw0qiIYuVzM9cj5dRYuGIoQ,2387
|
|
66
67
|
gllm_inference/lm_invoker/schema/openai_chat_completions.pyi,sha256=nNPb7ETC9IrJwkV5wfbGf6Co3-qdq4lhcXz0l_qYCE4,1261
|
|
67
68
|
gllm_inference/lm_invoker/schema/portkey.pyi,sha256=V2q4JIwDAR7BidqfmO01u1_1mLOMtm5OCon6sN2zNt0,662
|
|
68
69
|
gllm_inference/lm_invoker/schema/xai.pyi,sha256=jpC6ZSBDUltzm9GjD6zvSFIPwqizn_ywLnjvwSa7KuU,663
|
|
69
|
-
gllm_inference/model/__init__.pyi,sha256=
|
|
70
|
+
gllm_inference/model/__init__.pyi,sha256=J3z0Rc6PI_aC0XuA_dWB2tCBQ4pSZdS5NzQ8vPhs5c4,907
|
|
70
71
|
gllm_inference/model/em/__init__.pyi,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
71
72
|
gllm_inference/model/em/cohere_em.pyi,sha256=uF1AmDO-skQteYqzxJ3DK10SqgfdW0oW9L8Ym34eU04,505
|
|
72
73
|
gllm_inference/model/em/google_em.pyi,sha256=c53H-KNdNOK9ppPLyOSkmCA890eF5FsMd05upkPIzF0,487
|
|
@@ -78,6 +79,7 @@ gllm_inference/model/lm/__init__.pyi,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZ
|
|
|
78
79
|
gllm_inference/model/lm/anthropic_lm.pyi,sha256=ccUpxddakurLFHivl5UzJxgODLhcFgx8XC7CKa-99NE,633
|
|
79
80
|
gllm_inference/model/lm/google_lm.pyi,sha256=OLuoqT0FnJOLsNalulBMEXuCYAXoF8Y7vjfSBgjaJxA,529
|
|
80
81
|
gllm_inference/model/lm/openai_lm.pyi,sha256=yj3AJj1xDYRkNIPHX2enw46AJ9wArPZruKsxg1ME9Rg,645
|
|
82
|
+
gllm_inference/model/lm/sea_lion_lm.pyi,sha256=Gz42ym_KJA7if3sDCFmdrb1uv9b9__n2RWOfPvOxm0Y,508
|
|
81
83
|
gllm_inference/model/lm/xai_lm.pyi,sha256=O3G9Lj1Ii31CyCDrwYVkPPJN6X8V-WBF9xILUPUE-qY,525
|
|
82
84
|
gllm_inference/output_parser/__init__.pyi,sha256=dhAeRTBxc6CfS8bhnHjbtrnyqJ1iyffvUZkGp4UrJNM,132
|
|
83
85
|
gllm_inference/output_parser/json_output_parser.pyi,sha256=YtgQh8Uzy8W_Tgh8DfuR7VFFS7qvLEasiTwRfaGZZEU,2993
|
|
@@ -114,13 +116,13 @@ gllm_inference/schema/activity.pyi,sha256=atrU4OwLesA9FEt1H7K3gsUWYNdOqpI5i2VdWk
|
|
|
114
116
|
gllm_inference/schema/attachment.pyi,sha256=myJ_cI_h5mwUdvmMrWpSQIwj3nIxe8SD7HxO37o_3D4,4611
|
|
115
117
|
gllm_inference/schema/code_exec_result.pyi,sha256=WQ-ARoGM9r6nyRX-A0Ro1XKiqrc9R3jRYXZpu_xo5S4,573
|
|
116
118
|
gllm_inference/schema/config.pyi,sha256=NVmjQK6HipIE0dKSfx12hgIC0O-S1HEcAc-TWlXAF5A,689
|
|
117
|
-
gllm_inference/schema/enums.pyi,sha256=
|
|
119
|
+
gllm_inference/schema/enums.pyi,sha256=U-lADk7xNjA5rByem0fo0xDAy9T3GsekY8B5szTlWPQ,2193
|
|
118
120
|
gllm_inference/schema/events.pyi,sha256=_CKuGNzb3j2Y1dOB2yssFkT_9FQz1AY4J_ApCwKNizU,4743
|
|
119
121
|
gllm_inference/schema/lm_input.pyi,sha256=HxQiZgY7zcXh_Dw8nK8LSeBTZEHMPZVwmPmnfgSsAbs,197
|
|
120
122
|
gllm_inference/schema/lm_output.pyi,sha256=N75CIF_2kZRdXKy2jvu9hhqzk5DrCbsHXTrhKqQ-7vo,11667
|
|
121
123
|
gllm_inference/schema/mcp.pyi,sha256=4SgQ83pEowfWm2p-w9lupV4NayqqVBOy7SuYxIFeWRs,1045
|
|
122
124
|
gllm_inference/schema/message.pyi,sha256=jJV6A0ihEcun2OhzyMtNkiHnf7d6v5R-GdpTBGfJ0AQ,2272
|
|
123
|
-
gllm_inference/schema/model_id.pyi,sha256=
|
|
125
|
+
gllm_inference/schema/model_id.pyi,sha256=JhTzjCsOzHGds_UF8PlPON3xtqmSjUEfvjpmYyf3CJ0,6018
|
|
124
126
|
gllm_inference/schema/reasoning.pyi,sha256=jbPxkDRHt0Vt-zdcc8lTT1l2hIE1Jm3HIHeNd0hfXGo,577
|
|
125
127
|
gllm_inference/schema/token_usage.pyi,sha256=WJiGQyz5qatzBK2b-sABLCyTRLCBbAvxCRcqSJOzu-8,3025
|
|
126
128
|
gllm_inference/schema/tool_call.pyi,sha256=OWT9LUqs_xfUcOkPG0aokAAqzLYYDkfnjTa0zOWvugk,403
|
|
@@ -131,7 +133,7 @@ gllm_inference/utils/io_utils.pyi,sha256=Eg7dvHWdXslTKdjh1j3dG50i7r35XG2zTmJ9XXv
|
|
|
131
133
|
gllm_inference/utils/langchain.pyi,sha256=4AwFiVAO0ZpdgmqeC4Pb5NJwBt8vVr0MSUqLeCdTscc,1194
|
|
132
134
|
gllm_inference/utils/validation.pyi,sha256=OWRZxeVGIuuvNU0LqLGB-9gNmypvbH-LcSJx91rnH1k,453
|
|
133
135
|
gllm_inference.build/.gitignore,sha256=aEiIwOuxfzdCmLZe4oB1JsBmCUxwG8x-u-HBCV9JT8E,1
|
|
134
|
-
gllm_inference_binary-0.5.
|
|
135
|
-
gllm_inference_binary-0.5.
|
|
136
|
-
gllm_inference_binary-0.5.
|
|
137
|
-
gllm_inference_binary-0.5.
|
|
136
|
+
gllm_inference_binary-0.5.61.dist-info/METADATA,sha256=-O8Yp7c_kt-yz3ePX23pH1Mtz9cxPkxtGPwyIC5qcU8,5945
|
|
137
|
+
gllm_inference_binary-0.5.61.dist-info/WHEEL,sha256=O_u6PJIQ2pIcyIInxVQ9r-yArMuUZbBIaF1kpYVkYxA,96
|
|
138
|
+
gllm_inference_binary-0.5.61.dist-info/top_level.txt,sha256=FpOjtN80F-qVNgbScXSEyqa0w09FYn6301iq6qt69IQ,15
|
|
139
|
+
gllm_inference_binary-0.5.61.dist-info/RECORD,,
|
|
File without changes
|
{gllm_inference_binary-0.5.59.dist-info → gllm_inference_binary-0.5.61.dist-info}/top_level.txt
RENAMED
|
File without changes
|