gllm-inference-binary 0.5.59__cp311-cp311-macosx_13_0_x86_64.whl → 0.5.61__cp311-cp311-macosx_13_0_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of gllm-inference-binary might be problematic. Click here for more details.

@@ -1,4 +1,4 @@
1
- from gllm_inference.lm_invoker import AnthropicLMInvoker as AnthropicLMInvoker, AzureOpenAILMInvoker as AzureOpenAILMInvoker, BedrockLMInvoker as BedrockLMInvoker, DatasaurLMInvoker as DatasaurLMInvoker, GoogleLMInvoker as GoogleLMInvoker, LangChainLMInvoker as LangChainLMInvoker, LiteLLMLMInvoker as LiteLLMLMInvoker, OpenAIChatCompletionsLMInvoker as OpenAIChatCompletionsLMInvoker, OpenAICompatibleLMInvoker as OpenAICompatibleLMInvoker, OpenAILMInvoker as OpenAILMInvoker, PortkeyLMInvoker as PortkeyLMInvoker, XAILMInvoker as XAILMInvoker
1
+ from gllm_inference.lm_invoker import AnthropicLMInvoker as AnthropicLMInvoker, AzureOpenAILMInvoker as AzureOpenAILMInvoker, BedrockLMInvoker as BedrockLMInvoker, DatasaurLMInvoker as DatasaurLMInvoker, GoogleLMInvoker as GoogleLMInvoker, LangChainLMInvoker as LangChainLMInvoker, LiteLLMLMInvoker as LiteLLMLMInvoker, OpenAIChatCompletionsLMInvoker as OpenAIChatCompletionsLMInvoker, OpenAICompatibleLMInvoker as OpenAICompatibleLMInvoker, OpenAILMInvoker as OpenAILMInvoker, PortkeyLMInvoker as PortkeyLMInvoker, SeaLionLMInvoker as SeaLionLMInvoker, XAILMInvoker as XAILMInvoker
2
2
  from gllm_inference.lm_invoker.lm_invoker import BaseLMInvoker as BaseLMInvoker
3
3
  from gllm_inference.schema.model_id import ModelId as ModelId, ModelProvider as ModelProvider
4
4
  from typing import Any
@@ -119,6 +119,15 @@ def build_lm_invoker(model_id: str | ModelId, credentials: str | dict[str, Any]
119
119
  ```
120
120
  The credentials can also be provided through the `AZURE_OPENAI_API_KEY` environment variable.
121
121
 
122
+ # Using SEA-LION
123
+ ```python
124
+ lm_invoker = build_lm_invoker(
125
+ model_id="sea-lion/aisingapore/Qwen-SEA-LION-v4-32B-IT",
126
+ credentials="sk-..."
127
+ )
128
+ ```
129
+ The credentials can also be provided through the `SEA_LION_API_KEY` environment variable.
130
+
122
131
  # Using LangChain
123
132
  ```python
124
133
  lm_invoker = build_lm_invoker(
@@ -9,6 +9,7 @@ from gllm_inference.lm_invoker.openai_chat_completions_lm_invoker import OpenAIC
9
9
  from gllm_inference.lm_invoker.openai_compatible_lm_invoker import OpenAICompatibleLMInvoker as OpenAICompatibleLMInvoker
10
10
  from gllm_inference.lm_invoker.openai_lm_invoker import OpenAILMInvoker as OpenAILMInvoker
11
11
  from gllm_inference.lm_invoker.portkey_lm_invoker import PortkeyLMInvoker as PortkeyLMInvoker
12
+ from gllm_inference.lm_invoker.sea_lion_lm_invoker import SeaLionLMInvoker as SeaLionLMInvoker
12
13
  from gllm_inference.lm_invoker.xai_lm_invoker import XAILMInvoker as XAILMInvoker
13
14
 
14
- __all__ = ['AnthropicLMInvoker', 'AzureOpenAILMInvoker', 'BedrockLMInvoker', 'DatasaurLMInvoker', 'GoogleLMInvoker', 'LangChainLMInvoker', 'LiteLLMLMInvoker', 'OpenAIChatCompletionsLMInvoker', 'OpenAICompatibleLMInvoker', 'OpenAILMInvoker', 'PortkeyLMInvoker', 'XAILMInvoker']
15
+ __all__ = ['AnthropicLMInvoker', 'AzureOpenAILMInvoker', 'BedrockLMInvoker', 'DatasaurLMInvoker', 'GoogleLMInvoker', 'LangChainLMInvoker', 'LiteLLMLMInvoker', 'OpenAIChatCompletionsLMInvoker', 'OpenAICompatibleLMInvoker', 'OpenAILMInvoker', 'PortkeyLMInvoker', 'SeaLionLMInvoker', 'XAILMInvoker']
@@ -104,11 +104,12 @@ class BatchOperations:
104
104
  Returns:
105
105
  BatchStatus: The status of the batch job.
106
106
  """
107
- async def retrieve(self, batch_id: str) -> dict[str, LMOutput]:
107
+ async def retrieve(self, batch_id: str, **kwargs: Any) -> dict[str, LMOutput]:
108
108
  """Retrieves the results of a batch job.
109
109
 
110
110
  Args:
111
111
  batch_id (str): The ID of the batch job to get the results of.
112
+ **kwargs (Any): Additional keyword arguments.
112
113
 
113
114
  Returns:
114
115
  dict[str, LMOutput]: The results of the batch job.
@@ -6,8 +6,9 @@ from gllm_inference.constants import GOOGLE_SCOPES as GOOGLE_SCOPES, SECONDS_TO_
6
6
  from gllm_inference.exceptions import BaseInvokerError as BaseInvokerError, convert_http_status_to_base_invoker_error as convert_http_status_to_base_invoker_error
7
7
  from gllm_inference.exceptions.provider_error_map import GOOGLE_ERROR_MAPPING as GOOGLE_ERROR_MAPPING
8
8
  from gllm_inference.lm_invoker.lm_invoker import BaseLMInvoker as BaseLMInvoker
9
- from gllm_inference.lm_invoker.schema.google import InputType as InputType, Key as Key
10
- from gllm_inference.schema import Attachment as Attachment, AttachmentType as AttachmentType, LMOutput as LMOutput, Message as Message, MessageRole as MessageRole, ModelId as ModelId, ModelProvider as ModelProvider, Reasoning as Reasoning, ResponseSchema as ResponseSchema, ThinkingEvent as ThinkingEvent, TokenUsage as TokenUsage, ToolCall as ToolCall, ToolResult as ToolResult
9
+ from gllm_inference.lm_invoker.schema.google import InputType as InputType, JobState as JobState, Key as Key
10
+ from gllm_inference.schema import Attachment as Attachment, AttachmentType as AttachmentType, BatchStatus as BatchStatus, LMInput as LMInput, LMOutput as LMOutput, Message as Message, MessageRole as MessageRole, ModelId as ModelId, ModelProvider as ModelProvider, Reasoning as Reasoning, ResponseSchema as ResponseSchema, ThinkingEvent as ThinkingEvent, TokenUsage as TokenUsage, ToolCall as ToolCall, ToolResult as ToolResult
11
+ from google.genai.types import GenerateContentResponse as GenerateContentResponse
11
12
  from langchain_core.tools import Tool as LangChainTool
12
13
  from typing import Any
13
14
 
@@ -15,8 +16,12 @@ SUPPORTED_ATTACHMENTS: Incomplete
15
16
  DEFAULT_THINKING_BUDGET: int
16
17
  REQUIRE_THINKING_MODEL_PREFIX: Incomplete
17
18
  IMAGE_GENERATION_MODELS: Incomplete
18
- YOUTUBE_URL_PATTERN: Incomplete
19
- GOOGLE_FILE_URL_PATTERN: Incomplete
19
+ BATCH_STATUS_MAP: Incomplete
20
+
21
+ class URLPattern:
22
+ """Defines specific Google related URL patterns."""
23
+ GOOGLE_FILE: Incomplete
24
+ YOUTUBE: Incomplete
20
25
 
21
26
  class GoogleLMInvoker(BaseLMInvoker):
22
27
  '''A language model invoker to interact with Google language models.
@@ -261,6 +266,94 @@ class GoogleLMInvoker(BaseLMInvoker):
261
266
  ```python
262
267
  lm_invoker = GoogleLMInvoker(..., retry_config=retry_config)
263
268
  ```
269
+
270
+ Batch processing:
271
+ The `GoogleLMInvoker` supports batch processing, which allows the language model to process multiple
272
+ requests in a single call. Batch processing is supported through the `batch` attribute.
273
+
274
+ Due to Google SDK limitations with batch processing:
275
+ 1. Only inline requests are currently supported (not file-based or BigQuery sources).
276
+ 2. The total size of all requests must be under 20MB.
277
+ 3. Original request indices are not preserved in the results. The results are keyed by request index in the
278
+ format \'1\', \'2\', etc, in which order are preserved based on the original request order. If you want to use
279
+ custom request IDs, you can pass them as a list of strings to the `custom_request_ids` keyword argument
280
+
281
+ Usage example:
282
+ ```python
283
+ requests = {"1": "What color is the sky?", "2": "What color is the grass?"}
284
+ results = await lm_invoker.batch.invoke(requests)
285
+ ```
286
+
287
+ Output example:
288
+ ```python
289
+ {
290
+ "1": LMOutput(outputs=[LMOutputItem(type="text", output="The sky is blue.")]),
291
+ "2": LMOutput(finish_details={"type": "error", "message": "..."}),
292
+ }
293
+ ```
294
+
295
+ The `GoogleLMInvoker` also supports the following standalone batch processing operations:
296
+
297
+ 1. Create a batch job:
298
+ ```python
299
+ requests = {"1": "What color is the sky?", "2": "What color is the grass?"}
300
+ batch_id = await lm_invoker.batch.create(requests)
301
+ ```
302
+
303
+ 2. Get the status of a batch job:
304
+ ```python
305
+ status = await lm_invoker.batch.status(batch_id)
306
+ ```
307
+
308
+ 3. Retrieve the results of a batch job:
309
+
310
+ In default, the results will be keyed by request index in the format \'1\', \'2\', etc,
311
+ in which order are preserved based on the original request order.
312
+
313
+
314
+ ```python
315
+ results = await lm_invoker.batch.retrieve(batch_id)
316
+ ```
317
+
318
+ Output example:
319
+ ```python
320
+ {
321
+ "1": LMOutput(outputs=[LMOutputItem(type="text", output="The sky is blue.")]),
322
+ "2": LMOutput(finish_details={"type": "error", "error": {"message": "...", ...}, ...}),
323
+ }
324
+ ```
325
+
326
+ If you pass custom_request_ids to the create method, the results will be keyed by the custom_request_ids.
327
+ ```python
328
+ results = await lm_invoker.batch.retrieve(batch_id, custom_request_ids=["request_1", "request_2"])
329
+ ```
330
+
331
+ Output example:
332
+ ```python
333
+ {
334
+ "request_1": LMOutput(outputs=[LMOutputItem(type="text", output="The sky is blue.")]),
335
+ "request_2": LMOutput(finish_details={"type": "error", "error": {"message": "...", ...}, ...}),
336
+ }
337
+ ```
338
+
339
+ 4. List the batch jobs:
340
+ ```python
341
+ batch_jobs = await lm_invoker.batch.list()
342
+ ```
343
+
344
+ Output example:
345
+ ```python
346
+ [
347
+ {"id": "batch_123", "status": "finished"},
348
+ {"id": "batch_456", "status": "in_progress"},
349
+ {"id": "batch_789", "status": "canceling"},
350
+ ]
351
+ ```
352
+
353
+ 5. Cancel a batch job:
354
+ ```python
355
+ await lm_invoker.batch.cancel(batch_id)
356
+ ```
264
357
  '''
265
358
  client_params: Incomplete
266
359
  image_generation: Incomplete
@@ -7,8 +7,10 @@ class Key:
7
7
  FUNCTION: str
8
8
  FUNCTION_CALL: str
9
9
  HTTP_OPTIONS: str
10
+ ID: str
10
11
  NAME: str
11
12
  RETRY_OPTIONS: str
13
+ STATUS: str
12
14
  SYSTEM_INSTRUCTION: str
13
15
  THINKING_CONFIG: str
14
16
  TIMEOUT: str
@@ -16,9 +18,19 @@ class Key:
16
18
  RESPONSE_SCHEMA: str
17
19
  RESPONSE_MIME_TYPE: str
18
20
  VERTEXAI: str
21
+ CUSTOM_REQUEST_IDS: str
19
22
 
20
23
  class InputType:
21
24
  """Defines valid input types in Google."""
22
25
  APPLICATION_JSON: str
23
26
  MODEL: str
24
27
  USER: str
28
+
29
+ class JobState:
30
+ """Defines valid output types in Google."""
31
+ JOB_STATE_CANCELLED: str
32
+ JOB_STATE_EXPIRED: str
33
+ JOB_STATE_FAILED: str
34
+ JOB_STATE_PENDING: str
35
+ JOB_STATE_RUNNING: str
36
+ JOB_STATE_SUCCEEDED: str
@@ -0,0 +1,48 @@
1
+ from _typeshed import Incomplete
2
+ from gllm_core.schema.tool import Tool as Tool
3
+ from gllm_core.utils import RetryConfig as RetryConfig
4
+ from gllm_inference.constants import INVOKER_PROPAGATED_MAX_RETRIES as INVOKER_PROPAGATED_MAX_RETRIES
5
+ from gllm_inference.lm_invoker.openai_chat_completions_lm_invoker import OpenAIChatCompletionsLMInvoker as OpenAIChatCompletionsLMInvoker
6
+ from gllm_inference.lm_invoker.schema.openai_chat_completions import Key as Key
7
+ from gllm_inference.schema import ModelId as ModelId, ModelProvider as ModelProvider, ResponseSchema as ResponseSchema
8
+ from langchain_core.tools import Tool as LangChainTool
9
+ from typing import Any
10
+
11
+ SEA_LION_URL: str
12
+ SUPPORTED_ATTACHMENTS: Incomplete
13
+
14
+ class SeaLionLMInvoker(OpenAIChatCompletionsLMInvoker):
15
+ """A language model invoker to interact with SEA-LION API.
16
+
17
+ Attributes:
18
+ model_id (str): The model ID of the language model.
19
+ model_provider (str): The provider of the language model.
20
+ model_name (str): The name of the language model.
21
+ client_kwargs (dict[str, Any]): The keyword arguments for the OpenAI client.
22
+ default_hyperparameters (dict[str, Any]): Default hyperparameters for invoking the model.
23
+ tools (list[Tool]): The list of tools provided to the model to enable tool calling.
24
+ response_schema (ResponseSchema | None): The schema of the response. If provided, the model will output a
25
+ structured response as defined by the schema. Supports both Pydantic BaseModel and JSON schema dictionary.
26
+ output_analytics (bool): Whether to output the invocation analytics.
27
+ retry_config (RetryConfig | None): The retry configuration for the language model.
28
+ """
29
+ client_kwargs: Incomplete
30
+ def __init__(self, model_name: str, api_key: str | None = None, model_kwargs: dict[str, Any] | None = None, default_hyperparameters: dict[str, Any] | None = None, tools: list[Tool | LangChainTool] | None = None, response_schema: ResponseSchema | None = None, output_analytics: bool = False, retry_config: RetryConfig | None = None) -> None:
31
+ """Initializes a new instance of the SeaLionLMInvoker class.
32
+
33
+ Args:
34
+ model_name (str): The name of the SEA-LION language model.
35
+ api_key (str | None, optional): The API key for authenticating with the SEA-LION API.
36
+ Defaults to None, in which case the `SEA_LION_API_KEY` environment variable will be used.
37
+ model_kwargs (dict[str, Any] | None, optional): Additional model parameters. Defaults to None.
38
+ default_hyperparameters (dict[str, Any] | None, optional): Default hyperparameters for invoking the model.
39
+ Defaults to None.
40
+ tools (list[Tool | LangChainTool] | None, optional): Tools provided to the model to enable tool calling.
41
+ Defaults to None.
42
+ response_schema (ResponseSchema | None, optional): The schema of the response. If provided, the model will
43
+ output a structured response as defined by the schema. Supports both Pydantic BaseModel and JSON schema
44
+ dictionary. Defaults to None.
45
+ output_analytics (bool, optional): Whether to output the invocation analytics. Defaults to False.
46
+ retry_config (RetryConfig | None, optional): The retry configuration for the language model.
47
+ Defaults to None, in which case a default config with no retry and 30.0 seconds timeout will be used.
48
+ """
@@ -7,6 +7,7 @@ from gllm_inference.model.em.voyage_em import VoyageEM as VoyageEM
7
7
  from gllm_inference.model.lm.anthropic_lm import AnthropicLM as AnthropicLM
8
8
  from gllm_inference.model.lm.google_lm import GoogleLM as GoogleLM
9
9
  from gllm_inference.model.lm.openai_lm import OpenAILM as OpenAILM
10
+ from gllm_inference.model.lm.sea_lion_lm import SeaLionLM as SeaLionLM
10
11
  from gllm_inference.model.lm.xai_lm import XAILM as XAILM
11
12
 
12
- __all__ = ['AnthropicLM', 'CohereEM', 'GoogleEM', 'GoogleLM', 'JinaEM', 'OpenAIEM', 'OpenAILM', 'TwelveLabsEM', 'VoyageEM', 'XAILM']
13
+ __all__ = ['AnthropicLM', 'CohereEM', 'GoogleEM', 'GoogleLM', 'JinaEM', 'OpenAIEM', 'OpenAILM', 'SeaLionLM', 'TwelveLabsEM', 'VoyageEM', 'XAILM']
@@ -0,0 +1,16 @@
1
+ class SeaLionLM:
2
+ '''Defines SEA-LION language model names constants.
3
+
4
+ Usage example:
5
+ ```python
6
+ from gllm_inference.model import SeaLionLM
7
+ from gllm_inference.lm_invoker import SeaLionLMInvoker
8
+
9
+ lm_invoker = SeaLionLMInvoker(SeaLionLM.GEMMA_SEA_LION_V4_27B_IT)
10
+ response = await lm_invoker.invoke("Hello, world!")
11
+ ```
12
+ '''
13
+ GEMMA_SEA_LION_V4_27B_IT: str
14
+ LLAMA_SEA_LION_V3_5_70B_R: str
15
+ LLAMA_SEA_LION_V3_70B_IT: str
16
+ QWEN_SEA_LION_V4_32B_IT: str
@@ -9,9 +9,11 @@ class AttachmentType(StrEnum):
9
9
 
10
10
  class BatchStatus(StrEnum):
11
11
  """Defines the status of a batch job."""
12
- CANCELING = 'canceling'
13
12
  IN_PROGRESS = 'in_progress'
14
13
  FINISHED = 'finished'
14
+ FAILED = 'failed'
15
+ CANCELING = 'canceling'
16
+ EXPIRED = 'expired'
15
17
  UNKNOWN = 'unknown'
16
18
 
17
19
  class LMEventType(StrEnum):
@@ -21,6 +21,7 @@ class ModelProvider(StrEnum):
21
21
  PORTKEY = 'portkey'
22
22
  OPENAI_CHAT_COMPLETIONS = 'openai-chat-completions'
23
23
  OPENAI_COMPATIBLE = 'openai-compatible'
24
+ SEA_LION = 'sea-lion'
24
25
  TWELVELABS = 'twelvelabs'
25
26
  VOYAGE = 'voyage'
26
27
  XAI = 'xai'
Binary file
gllm_inference.pyi CHANGED
@@ -33,6 +33,7 @@ import gllm_inference.lm_invoker.OpenAIChatCompletionsLMInvoker
33
33
  import gllm_inference.lm_invoker.OpenAICompatibleLMInvoker
34
34
  import gllm_inference.lm_invoker.OpenAILMInvoker
35
35
  import gllm_inference.lm_invoker.PortkeyLMInvoker
36
+ import gllm_inference.lm_invoker.SeaLionLMInvoker
36
37
  import gllm_inference.lm_invoker.XAILMInvoker
37
38
  import gllm_inference.prompt_builder.PromptBuilder
38
39
  import gllm_inference.output_parser.JSONOutputParser
@@ -103,6 +104,7 @@ import anthropic.types
103
104
  import anthropic.types.message_create_params
104
105
  import anthropic.types.messages
105
106
  import anthropic.types.messages.batch_create_params
107
+ import __future__
106
108
  import gllm_inference.schema.MessageRole
107
109
  import langchain_core.language_models
108
110
  import langchain_core.messages
@@ -113,7 +115,6 @@ import time
113
115
  import jsonschema
114
116
  import gllm_inference.lm_invoker.batch.BatchOperations
115
117
  import gllm_inference.schema.MessageContent
116
- import __future__
117
118
  import gllm_inference.schema.ActivityEvent
118
119
  import gllm_inference.schema.CodeEvent
119
120
  import gllm_inference.schema.CodeExecResult
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: gllm-inference-binary
3
- Version: 0.5.59
3
+ Version: 0.5.61
4
4
  Summary: A library containing components related to model inferences in Gen AI applications.
5
5
  Author-email: Henry Wicaksono <henry.wicaksono@gdplabs.id>, Resti Febrina <resti.febrina@gdplabs.id>
6
6
  Requires-Python: <3.14,>=3.11
@@ -1,11 +1,11 @@
1
- gllm_inference.cpython-311-darwin.so,sha256=0LbBq8jIrpxp3kBm8wf1_-y0WUMvOtutwsqG6ZsyKBE,5777016
2
- gllm_inference.pyi,sha256=t6lCcDjutByvoSK439LdRhQ9i7dq9tmp0Vwr5aAuv4Y,5077
1
+ gllm_inference.cpython-311-darwin.so,sha256=3S1sD8NawN1tkrL-NXVpeReGzyeZtAh_7yFvf0k30uY,5866464
2
+ gllm_inference.pyi,sha256=t-852Hj5WqsNd8WMMtGUwBjFToF28danltNDGQigmNo,5127
3
3
  gllm_inference/__init__.pyi,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
4
4
  gllm_inference/constants.pyi,sha256=tBFhwE1at2gXMJ1bBM32eVIRgCJlB1uzg7ItXGx3RQE,316
5
5
  gllm_inference/builder/__init__.pyi,sha256=usz2lvfwO4Yk-ZGKXbCWG1cEr3nlQXxMNDNC-2yc1NM,500
6
6
  gllm_inference/builder/_build_invoker.pyi,sha256=v__-YT0jGmLqEsgl7Abk9we-wYWcyVFvlRN_Uu4vVak,848
7
7
  gllm_inference/builder/build_em_invoker.pyi,sha256=0IVcRGaciPBAFcgvGRC4-Kje_PPXOSug77LqxRc-x_U,5749
8
- gllm_inference/builder/build_lm_invoker.pyi,sha256=TBAr7Sk9Jgckdlfj69pYOzZFMsooL-FpfbPYt_kCcXU,8852
8
+ gllm_inference/builder/build_lm_invoker.pyi,sha256=o4dIL90wDu94y_fIeUs2ei5Qkk1zZo5_nYBqL2EiHAE,9195
9
9
  gllm_inference/builder/build_lm_request_processor.pyi,sha256=KbQkcPa8C-yzyelht4mWLP8kDmh17itAT3tn8ZJB6pg,4144
10
10
  gllm_inference/builder/build_output_parser.pyi,sha256=_Lrq-bh1oPsb_Nwkkr_zyEUwIOMysRFZkvEtEM29LZM,936
11
11
  gllm_inference/catalog/__init__.pyi,sha256=JBkPGTyiiZ30GECzJBW-mW8LekWyY2qyzal3eW7ynaM,287
@@ -40,12 +40,12 @@ gllm_inference/exceptions/__init__.pyi,sha256=Upcuj7od2lkbdueQ0iMT2ktFYYi-KKTynT
40
40
  gllm_inference/exceptions/error_parser.pyi,sha256=IOfa--NpLUW5E9Qq0mwWi6ZpTAbUyyNe6iAqunBNGLI,1999
41
41
  gllm_inference/exceptions/exceptions.pyi,sha256=Bv996qLa_vju0Qjf4GewMxdkq8CV9LRZb0S6289DldA,5725
42
42
  gllm_inference/exceptions/provider_error_map.pyi,sha256=XPLWU42-r8MHZgg5ZkE80Gdqg3p8Z_JHvq_Na03iTqY,1243
43
- gllm_inference/lm_invoker/__init__.pyi,sha256=Ze9CxgGYguyz8BAU87_2JM-D4OZjlYAqktLI_B2tj_s,1488
43
+ gllm_inference/lm_invoker/__init__.pyi,sha256=dvwZQhO-7bHDOouXBXxujux9QQbu10ux-0vAsJI1DeI,1603
44
44
  gllm_inference/lm_invoker/anthropic_lm_invoker.pyi,sha256=oU0dzg87OHTVPGhKBT8WdcdR0AzeJJNSSVvGKtY0UQU,15178
45
45
  gllm_inference/lm_invoker/azure_openai_lm_invoker.pyi,sha256=drtMgbDzBQJrWXLiI2t5PNy7HtcW5Kuj0XR2b6rltjc,12936
46
46
  gllm_inference/lm_invoker/bedrock_lm_invoker.pyi,sha256=9Gz0U2c94UM9SOt-_e89_NqT_bDQ6wECRiJ9VTwsqfw,10739
47
47
  gllm_inference/lm_invoker/datasaur_lm_invoker.pyi,sha256=IqvDxBzwEf2z34FZcLKIH404y386Rnk5gsj2TcAm424,7878
48
- gllm_inference/lm_invoker/google_lm_invoker.pyi,sha256=si4Kva_6OQ3vEGlXOsXMs9vpH6GlwtJUgtaAbW9HvPg,16399
48
+ gllm_inference/lm_invoker/google_lm_invoker.pyi,sha256=DrMIhGhWolSBH26jTkx9zaXTVcRBqxBwNWgzI3InODE,20063
49
49
  gllm_inference/lm_invoker/langchain_lm_invoker.pyi,sha256=OzISl89C2s-qB6VxNlMgf5dFRC-ooj30YCFfsZzcX4s,11887
50
50
  gllm_inference/lm_invoker/litellm_lm_invoker.pyi,sha256=0PZYitAljAjzyympqqNyN5fMyoakmqr1XIz1PE6NNc4,11176
51
51
  gllm_inference/lm_invoker/lm_invoker.pyi,sha256=pJ0-s37NqTHdFD7IijvNzJnQ7JXgrGxsEaXuS8cxz3s,8487
@@ -53,20 +53,21 @@ gllm_inference/lm_invoker/openai_chat_completions_lm_invoker.pyi,sha256=47lMyuzW
53
53
  gllm_inference/lm_invoker/openai_compatible_lm_invoker.pyi,sha256=i5pMpZf4-r_7FQ1qfsqcjpc98sI-cPiqheuTfTEKxJs,4192
54
54
  gllm_inference/lm_invoker/openai_lm_invoker.pyi,sha256=OytpncpkOLdaSyFQ41GLh4_MioEbpsX0WiA8zc70Q6s,22313
55
55
  gllm_inference/lm_invoker/portkey_lm_invoker.pyi,sha256=ewxzRT-ekmvCFeb7ij840s4p18AO_LAKA-UP0ot12hs,14940
56
+ gllm_inference/lm_invoker/sea_lion_lm_invoker.pyi,sha256=ElV7iKYWnI3J1CUYuHtvOTsJByMY_l2WF4Rc7IJsBjw,3485
56
57
  gllm_inference/lm_invoker/xai_lm_invoker.pyi,sha256=SVIsRGcqbRnR9sqoLYWwigoEumDib5m4cTaTJT98Uz4,12765
57
58
  gllm_inference/lm_invoker/batch/__init__.pyi,sha256=W4W-_yfk7lL20alREJai6GnwuQvdlKRfwQCX4mQK4XI,127
58
- gllm_inference/lm_invoker/batch/batch_operations.pyi,sha256=Oo7hoyPSfPZdy1mXvSdvtRndvq-XTIbPIjEoGvJj5C0,5372
59
+ gllm_inference/lm_invoker/batch/batch_operations.pyi,sha256=cEdRVHAb5uiIPnlQudtaNzQ9kszI7cH6nD9mpMYQLco,5445
59
60
  gllm_inference/lm_invoker/schema/__init__.pyi,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
60
61
  gllm_inference/lm_invoker/schema/anthropic.pyi,sha256=6lreMyHKRfZzX5NBYKnQf1Z6RzXBjTvqZj2VbMeaTLQ,1098
61
62
  gllm_inference/lm_invoker/schema/bedrock.pyi,sha256=FJLY-ZkkLUYDV48pfsLatnot4ev_xxz9xAayLK28CpU,1027
62
63
  gllm_inference/lm_invoker/schema/datasaur.pyi,sha256=WSuwOqL1j2ZioCZFC-gbB7vTRIZHQ3sU40c3ool5L6c,265
63
- gllm_inference/lm_invoker/schema/google.pyi,sha256=AIsNgq0ZZuicHmx4bL7z6q-946T05nWts3HUeA8hhHQ,505
64
+ gllm_inference/lm_invoker/schema/google.pyi,sha256=MYjznjkKfNdh9XwTIrrK29tS4pkGPEU7WebVfCvFLGw,791
64
65
  gllm_inference/lm_invoker/schema/langchain.pyi,sha256=rZcIxuvABI4pKfyVvkRBRqfJJogZ67EFPydpubHt49c,429
65
66
  gllm_inference/lm_invoker/schema/openai.pyi,sha256=PS4QrNYa1NPq0s-3r8FI22a2Td0n70UONLxPn8rP_s4,2279
66
67
  gllm_inference/lm_invoker/schema/openai_chat_completions.pyi,sha256=8byBRZ4xyTidIQJsZqiSjp5t1X875Obe-aEbT0yYfuA,1199
67
68
  gllm_inference/lm_invoker/schema/portkey.pyi,sha256=NeRjHNd84HgE_ur2F3Cv6Jx30v6V7eQvI_iJiq4kuME,631
68
69
  gllm_inference/lm_invoker/schema/xai.pyi,sha256=cWnbJmDtllqRH3NXpQbiXgkNBcUXr8ksDSDywcgJebE,632
69
- gllm_inference/model/__init__.pyi,sha256=LTeBCSJJwCSd5Qrg7RZCXcp9fURNVNXFR5akk1ZZrTk,810
70
+ gllm_inference/model/__init__.pyi,sha256=1gesoNUUHutpN2-DYmVrG5LZhpeSW96ciON3SjVEqqM,894
70
71
  gllm_inference/model/em/__init__.pyi,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
71
72
  gllm_inference/model/em/cohere_em.pyi,sha256=fArRlV08NwbsJ_h6vpWr94XxUVBtbqW1Jh8s42LRXCo,488
72
73
  gllm_inference/model/em/google_em.pyi,sha256=ZPN5LmReO0bcTfnZixFooUTzgD-daNFPzfxzZ-5WzQQ,471
@@ -78,6 +79,7 @@ gllm_inference/model/lm/__init__.pyi,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZ
78
79
  gllm_inference/model/lm/anthropic_lm.pyi,sha256=dWfG-M_gD644yJ-LK_T8HnAT649j3Vx7TVof03XQimE,611
79
80
  gllm_inference/model/lm/google_lm.pyi,sha256=cMV5zYX8uwUF7pErv4pXnXD2G52umo3sxKwbSx7nFhQ,511
80
81
  gllm_inference/model/lm/openai_lm.pyi,sha256=u11zvvIS7-XaHKZ33cZxGQmT6cZ4DqK9Do8l7gFOUTc,618
82
+ gllm_inference/model/lm/sea_lion_lm.pyi,sha256=k0xG5JGrecBDlNKWwNZb4BG0Ath_tGfy4fudr51-10w,492
81
83
  gllm_inference/model/lm/xai_lm.pyi,sha256=2ZEQ_--e_zsb23zZQ8bKdQShU7zChx5TrDKF8EpwEpU,506
82
84
  gllm_inference/output_parser/__init__.pyi,sha256=WQOOgsYnPk8vd-SOhFMMaVTzy4gkYrOAyT5gnAxv0A0,129
83
85
  gllm_inference/output_parser/json_output_parser.pyi,sha256=uulh91uQLMSb4ZXZhHYi9W9w7zGnmrOweEkL6wdDJN8,2933
@@ -114,13 +116,13 @@ gllm_inference/schema/activity.pyi,sha256=JnO2hqj91P5Tc6qb4pbkEMrHer2u5owiCvhl-i
114
116
  gllm_inference/schema/attachment.pyi,sha256=oCopoxiPgGSkCRdPsqmjcMofTawfbdCDxaPdo6mits0,4509
115
117
  gllm_inference/schema/code_exec_result.pyi,sha256=ZTHh6JtRrPIdQ059P1UAiD2L-tAO1_S5YcMsAXfJ5A0,559
116
118
  gllm_inference/schema/config.pyi,sha256=rAL_UeXyQeXVk1P2kqd8vFWOMwmKenfpQLtvMP74t9s,674
117
- gllm_inference/schema/enums.pyi,sha256=jByrR0Y84-WZ3KDPUjuOyfecouUATyO-A8rdehKPjgs,2065
119
+ gllm_inference/schema/enums.pyi,sha256=rLTlnhtdTIKT_Q8p-ukKpCMhRk9NbqcR_ylZ0-8UivA,2111
118
120
  gllm_inference/schema/events.pyi,sha256=XQEy5SqYoutq2DguwCCTGi5DHrlnDai6nJElAYsj1gk,4638
119
121
  gllm_inference/schema/lm_input.pyi,sha256=A5pjz1id6tP9XRNhzQrbmzd66C_q3gzo0UP8rCemz6Q,193
120
122
  gllm_inference/schema/lm_output.pyi,sha256=ec5ErE68PVthNHhHlaVHsiAN3nn03yBqRR7HVabsf68,11401
121
123
  gllm_inference/schema/mcp.pyi,sha256=Vwu8E2BDl6FvvnI42gIyY3Oki1BdwRE3Uh3aV0rmhQU,1014
122
124
  gllm_inference/schema/message.pyi,sha256=VP9YppKj2mo1esl9cy6qQO9m2mMHUjTmfGDdyUor880,2220
123
- gllm_inference/schema/model_id.pyi,sha256=w_HA48gQ-TztufTCKS6RNlGLWGWJ9HaUyeloNdKW8sU,5816
125
+ gllm_inference/schema/model_id.pyi,sha256=MuH0KyFjI1uC9v7PoIU6Uuk6wPdpmczVrHZj0r5EcZk,5842
124
126
  gllm_inference/schema/reasoning.pyi,sha256=SlTuiDw87GdnAn-I6YOPIJRhEBiwQljM46JohG05guQ,562
125
127
  gllm_inference/schema/token_usage.pyi,sha256=1GTQVORV0dBNmD_jix8aVaUqxMKFF04KpLP7y2urqbk,2950
126
128
  gllm_inference/schema/tool_call.pyi,sha256=zQaVxCnkVxOfOEhBidqohU85gb4PRwnwBiygKaunamk,389
@@ -131,7 +133,7 @@ gllm_inference/utils/io_utils.pyi,sha256=7kUTacHAVRYoemFUOjCH7-Qmw-YsQGd6rGYxjf_
131
133
  gllm_inference/utils/langchain.pyi,sha256=VluQiHkGigDdqLUbhB6vnXiISCP5hHqV0qokYY6dC1A,1164
132
134
  gllm_inference/utils/validation.pyi,sha256=W9RQddN90F8SJMu_HXEQyQTDMBaRL-bo7fOosZWK7oY,438
133
135
  gllm_inference.build/.gitignore,sha256=aEiIwOuxfzdCmLZe4oB1JsBmCUxwG8x-u-HBCV9JT8E,1
134
- gllm_inference_binary-0.5.59.dist-info/METADATA,sha256=1o-bxVrt66rDhIwoIFG2bFN0yBDdV0ETR4u1o5Sf_qs,5807
135
- gllm_inference_binary-0.5.59.dist-info/WHEEL,sha256=s8TBzVnsSJujxqbMe-G5Vh0IPlslLTnVva4BiQ75Hjo,105
136
- gllm_inference_binary-0.5.59.dist-info/top_level.txt,sha256=FpOjtN80F-qVNgbScXSEyqa0w09FYn6301iq6qt69IQ,15
137
- gllm_inference_binary-0.5.59.dist-info/RECORD,,
136
+ gllm_inference_binary-0.5.61.dist-info/METADATA,sha256=x3htnS0AmSlgVpPcbj3ha1nljyRwHg9U8HsxpAsHBcA,5807
137
+ gllm_inference_binary-0.5.61.dist-info/WHEEL,sha256=s8TBzVnsSJujxqbMe-G5Vh0IPlslLTnVva4BiQ75Hjo,105
138
+ gllm_inference_binary-0.5.61.dist-info/top_level.txt,sha256=FpOjtN80F-qVNgbScXSEyqa0w09FYn6301iq6qt69IQ,15
139
+ gllm_inference_binary-0.5.61.dist-info/RECORD,,