gllm-inference-binary 0.5.51__cp311-cp311-win_amd64.whl → 0.5.66__cp311-cp311-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (37) hide show
  1. gllm_inference/builder/build_lm_invoker.pyi +10 -1
  2. gllm_inference/constants.pyi +0 -1
  3. gllm_inference/em_invoker/cohere_em_invoker.pyi +1 -2
  4. gllm_inference/lm_invoker/__init__.pyi +2 -1
  5. gllm_inference/lm_invoker/anthropic_lm_invoker.pyi +95 -109
  6. gllm_inference/lm_invoker/azure_openai_lm_invoker.pyi +92 -109
  7. gllm_inference/lm_invoker/batch/batch_operations.pyi +2 -1
  8. gllm_inference/lm_invoker/bedrock_lm_invoker.pyi +51 -65
  9. gllm_inference/lm_invoker/datasaur_lm_invoker.pyi +36 -36
  10. gllm_inference/lm_invoker/google_lm_invoker.pyi +195 -110
  11. gllm_inference/lm_invoker/langchain_lm_invoker.pyi +52 -64
  12. gllm_inference/lm_invoker/litellm_lm_invoker.pyi +86 -106
  13. gllm_inference/lm_invoker/lm_invoker.pyi +20 -1
  14. gllm_inference/lm_invoker/openai_chat_completions_lm_invoker.pyi +87 -107
  15. gllm_inference/lm_invoker/openai_lm_invoker.pyi +235 -185
  16. gllm_inference/lm_invoker/portkey_lm_invoker.pyi +104 -68
  17. gllm_inference/lm_invoker/schema/google.pyi +12 -0
  18. gllm_inference/lm_invoker/schema/openai.pyi +22 -0
  19. gllm_inference/lm_invoker/sea_lion_lm_invoker.pyi +48 -0
  20. gllm_inference/lm_invoker/xai_lm_invoker.pyi +94 -131
  21. gllm_inference/model/__init__.pyi +2 -1
  22. gllm_inference/model/lm/sea_lion_lm.pyi +16 -0
  23. gllm_inference/prompt_builder/prompt_builder.pyi +6 -2
  24. gllm_inference/schema/__init__.pyi +4 -3
  25. gllm_inference/schema/attachment.pyi +20 -6
  26. gllm_inference/schema/enums.pyi +14 -1
  27. gllm_inference/schema/events.pyi +2 -2
  28. gllm_inference/schema/formatter.pyi +31 -0
  29. gllm_inference/schema/lm_output.pyi +245 -23
  30. gllm_inference/schema/model_id.pyi +1 -1
  31. gllm_inference/utils/validation.pyi +3 -0
  32. gllm_inference.cp311-win_amd64.pyd +0 -0
  33. gllm_inference.pyi +5 -6
  34. {gllm_inference_binary-0.5.51.dist-info → gllm_inference_binary-0.5.66.dist-info}/METADATA +5 -5
  35. {gllm_inference_binary-0.5.51.dist-info → gllm_inference_binary-0.5.66.dist-info}/RECORD +37 -34
  36. {gllm_inference_binary-0.5.51.dist-info → gllm_inference_binary-0.5.66.dist-info}/WHEEL +0 -0
  37. {gllm_inference_binary-0.5.51.dist-info → gllm_inference_binary-0.5.66.dist-info}/top_level.txt +0 -0
@@ -1,15 +1,20 @@
1
1
  from _typeshed import Incomplete
2
2
  from gllm_core.event import EventEmitter as EventEmitter
3
3
  from gllm_core.schema.tool import Tool as Tool
4
- from gllm_core.utils.retry import RetryConfig as RetryConfig
4
+ from gllm_core.utils import RetryConfig as RetryConfig
5
5
  from gllm_inference.constants import INVOKER_PROPAGATED_MAX_RETRIES as INVOKER_PROPAGATED_MAX_RETRIES, OPENAI_DEFAULT_URL as OPENAI_DEFAULT_URL
6
6
  from gllm_inference.lm_invoker.lm_invoker import BaseLMInvoker as BaseLMInvoker
7
7
  from gllm_inference.lm_invoker.schema.openai import InputType as InputType, Key as Key, OutputType as OutputType, ReasoningEffort as ReasoningEffort, ReasoningSummary as ReasoningSummary
8
- from gllm_inference.schema import ActivityEvent as ActivityEvent, Attachment as Attachment, AttachmentType as AttachmentType, CodeEvent as CodeEvent, CodeExecResult as CodeExecResult, LMOutput as LMOutput, MCPCall as MCPCall, MCPCallActivity as MCPCallActivity, MCPListToolsActivity as MCPListToolsActivity, MCPServer as MCPServer, Message as Message, MessageRole as MessageRole, ModelId as ModelId, ModelProvider as ModelProvider, Reasoning as Reasoning, ResponseSchema as ResponseSchema, ThinkingEvent as ThinkingEvent, TokenUsage as TokenUsage, ToolCall as ToolCall, ToolResult as ToolResult, WebSearchActivity as WebSearchActivity
9
- from gllm_inference.utils import validate_string_enum as validate_string_enum
8
+ from gllm_inference.schema import ActivityEvent as ActivityEvent, Attachment as Attachment, AttachmentType as AttachmentType, BatchStatus as BatchStatus, CodeEvent as CodeEvent, CodeExecResult as CodeExecResult, LMOutput as LMOutput, MCPCall as MCPCall, MCPCallActivity as MCPCallActivity, MCPListToolsActivity as MCPListToolsActivity, MCPServer as MCPServer, Message as Message, MessageContent as MessageContent, MessageRole as MessageRole, ModelId as ModelId, ModelProvider as ModelProvider, Reasoning as Reasoning, ResponseSchema as ResponseSchema, ThinkingEvent as ThinkingEvent, TokenUsage as TokenUsage, ToolCall as ToolCall, ToolResult as ToolResult, WebSearchActivity as WebSearchActivity
10
9
  from langchain_core.tools import Tool as LangChainTool
10
+ from openai import AsyncStream as AsyncStream
11
+ from openai.types.responses import Response as Response, ResponseFunctionWebSearch as ResponseFunctionWebSearch, ResponseOutputItem as ResponseOutputItem
12
+ from openai.types.responses.response_output_item import McpCall as McpCall, McpListTools as McpListTools
11
13
  from typing import Any
12
14
 
15
+ BATCH_STATUS_MAP: Incomplete
16
+ OPENAI_RESPONSES_API_ENDPOINT: str
17
+ DEFAULT_BATCH_COMPLETION_WINDOW: str
13
18
  SUPPORTED_ATTACHMENTS: Incomplete
14
19
  STREAM_DATA_START_TYPE_MAP: Incomplete
15
20
  STREAM_DATA_END_TYPE_MAP: Incomplete
@@ -37,6 +42,7 @@ class OpenAILMInvoker(BaseLMInvoker):
37
42
  for non-reasoning models. If None, the model will perform medium reasoning effort.
38
43
  reasoning_summary (ReasoningSummary | None): The reasoning summary level for reasoning models. Not allowed
39
44
  for non-reasoning models. If None, no summary will be generated.
45
+ image_generation (bool): Whether to enable image generation.
40
46
  mcp_servers (list[MCPServer]): The list of MCP servers to enable MCP tool calling.
41
47
  code_interpreter (bool): Whether to enable the code interpreter.
42
48
  web_search (bool): Whether to enable the web search.
@@ -76,188 +82,135 @@ class OpenAILMInvoker(BaseLMInvoker):
76
82
  result = await lm_invoker.invoke([text, image])
77
83
  ```
78
84
 
79
- Tool calling:
80
- Tool calling is a feature that allows the language model to call tools to perform tasks.
81
- Tools can be passed to the via the `tools` parameter as a list of `Tool` objects.
82
- When tools are provided and the model decides to call a tool, the tool calls are stored in the
83
- `tool_calls` attribute in the output.
84
-
85
- Usage example:
86
- ```python
87
- lm_invoker = OpenAILMInvoker(..., tools=[tool_1, tool_2])
88
- ```
85
+ Text output:
86
+ The `OpenAILMInvoker` generates text outputs by default.
87
+ Text outputs are stored in the `outputs` attribute of the `LMOutput` object and can be accessed
88
+ via the `texts` (all text outputs) or `text` (first text output) properties.
89
89
 
90
90
  Output example:
91
91
  ```python
92
- LMOutput(
93
- response="Let me call the tools...",
94
- tool_calls=[
95
- ToolCall(id="123", name="tool_1", args={"key": "value"}),
96
- ToolCall(id="456", name="tool_2", args={"key": "value"}),
97
- ]
98
- )
92
+ LMOutput(outputs=[LMOutputItem(type="text", output="Hello, there!")])
99
93
  ```
100
94
 
101
95
  Structured output:
102
- Structured output is a feature that allows the language model to output a structured response.
96
+ The `OpenAILMInvoker` can be configured to generate structured outputs.
103
97
  This feature can be enabled by providing a schema to the `response_schema` parameter.
104
98
 
105
- The schema must be either a JSON schema dictionary or a Pydantic BaseModel class.
106
- If JSON schema is used, it must be compatible with Pydantic\'s JSON schema, especially for complex schemas.
107
- For this reason, it is recommended to create the JSON schema using Pydantic\'s `model_json_schema` method.
99
+ Structured outputs are stored in the `outputs` attribute of the `LMOutput` object and can be accessed
100
+ via the `structureds` (all structured outputs) or `structured` (first structured output) properties.
108
101
 
109
- The language model also doesn\'t need to stream anything when structured output is enabled. Thus, standard
110
- invocation will be performed regardless of whether the `event_emitter` parameter is provided or not.
111
-
112
- When enabled, the structured output is stored in the `structured_output` attribute in the output.
113
- 1. If the schema is a JSON schema dictionary, the structured output is a dictionary.
114
- 2. If the schema is a Pydantic BaseModel class, the structured output is a Pydantic model.
115
-
116
- # Example 1: Using a JSON schema dictionary
117
- Usage example:
118
- ```python
119
- schema = {
120
- "title": "Animal",
121
- "description": "A description of an animal.",
122
- "properties": {
123
- "color": {"title": "Color", "type": "string"},
124
- "name": {"title": "Name", "type": "string"},
125
- },
126
- "required": ["name", "color"],
127
- "type": "object",
128
- }
129
- lm_invoker = OpenAILMInvoker(..., response_schema=schema)
130
- ```
131
- Output example:
132
- ```python
133
- LMOutput(structured_output={"name": "Golden retriever", "color": "Golden"})
134
- ```
102
+ The schema must either be one of the following:
103
+ 1. A Pydantic BaseModel class
104
+ The structured output will be a Pydantic model.
105
+ 2. A JSON schema dictionary
106
+ JSON dictionary schema must be compatible with Pydantic\'s JSON schema, especially for complex schemas.
107
+ Thus, it is recommended to create the JSON schema using Pydantic\'s `model_json_schema` method.
108
+ The structured output will be a dictionary.
135
109
 
136
- # Example 2: Using a Pydantic BaseModel class
137
110
  Usage example:
138
111
  ```python
139
112
  class Animal(BaseModel):
140
113
  name: str
141
114
  color: str
142
115
 
143
- lm_invoker = OpenAILMInvoker(..., response_schema=Animal)
116
+ json_schema = Animal.model_json_schema()
117
+
118
+ lm_invoker = OpenAILMInvoker(..., response_schema=Animal) # Using Pydantic BaseModel class
119
+ lm_invoker = OpenAILMInvoker(..., response_schema=json_schema) # Using JSON schema dictionary
144
120
  ```
121
+
145
122
  Output example:
146
123
  ```python
147
- LMOutput(structured_output=Animal(name="Golden retriever", color="Golden"))
124
+ # Using Pydantic BaseModel class outputs a Pydantic model
125
+ LMOutput(outputs=[LMOutputItem(type="structured", output=Animal(name="dog", color="white"))])
126
+
127
+ # Using JSON schema dictionary outputs a dictionary
128
+ LMOutput(outputs=[LMOutputItem(type="structured", output={"name": "dog", "color": "white"})])
148
129
  ```
149
130
 
150
- Analytics tracking:
151
- Analytics tracking is a feature that allows the module to output additional information about the invocation.
152
- This feature can be enabled by setting the `output_analytics` parameter to `True`.
153
- When enabled, the following attributes will be stored in the output:
154
- 1. `token_usage`: The token usage.
155
- 2. `duration`: The duration in seconds.
156
- 3. `finish_details`: The details about how the generation finished.
131
+ When structured output is enabled, streaming is disabled.
132
+
133
+ Image generation:
134
+ The `OpenAILMInvoker` can be configured to generate images.
135
+ This feature can be enabled by setting the `image_generation` parameter to `True`.
136
+
137
+ Image outputs are stored in the `outputs` attribute of the `LMOutput` object and can be accessed
138
+ via the `attachments` property.
139
+
140
+ Usage example:
141
+ ```python
142
+ lm_invoker = OpenAILMInvoker(..., image_generation=True)
143
+ result = await lm_invoker.invoke("Create a picture...")
144
+ result.attachments[0].write_to_file("path/to/local/image.png")
145
+ ```
157
146
 
158
147
  Output example:
159
148
  ```python
160
149
  LMOutput(
161
- response="Golden retriever is a good dog breed.",
162
- token_usage=TokenUsage(
163
- input_tokens=1500,
164
- output_tokens=200,
165
- input_token_details=InputTokenDetails(cached_tokens=1200, uncached_tokens=300),
166
- output_token_details=OutputTokenDetails(reasoning_tokens=180, response_tokens=20),
167
- ),
168
- duration=0.729,
169
- finish_details={"status": "completed", "incomplete_details": {"reason": None}},
150
+ outputs=[
151
+ LMOutputItem(
152
+ type="attachment",
153
+ output=Attachment(filename="image.png", mime_type="image/png", data=b"..."),
154
+ ),
155
+ ],
170
156
  )
171
157
  ```
172
158
 
173
- Retry and timeout:
174
- The `OpenAILMInvoker` supports retry and timeout configuration.
175
- By default, the max retries is set to 0 and the timeout is set to 30.0 seconds.
176
- They can be customized by providing a custom `RetryConfig` object to the `retry_config` parameter.
159
+ When image generation is enabled, streaming is disabled.
160
+ Image generation is only available for certain models.
177
161
 
178
- Retry config examples:
179
- ```python
180
- retry_config = RetryConfig(max_retries=0, timeout=None) # No retry, no timeout
181
- retry_config = RetryConfig(max_retries=0, timeout=10.0) # No retry, 10.0 seconds timeout
182
- retry_config = RetryConfig(max_retries=5, timeout=None) # 5 max retries, no timeout
183
- retry_config = RetryConfig(max_retries=5, timeout=10.0) # 5 max retries, 10.0 seconds timeout
184
- ```
162
+ Tool calling:
163
+ The `OpenAILMInvoker` can be configured to call tools to perform certain tasks.
164
+ This feature can be enabled by providing a list of `Tool` objects to the `tools` parameter.
165
+
166
+ Tool calls outputs are stored in the `outputs` attribute of the `LMOutput` object and
167
+ can be accessed via the `tool_calls` property.
185
168
 
186
169
  Usage example:
187
170
  ```python
188
- lm_invoker = OpenAILMInvoker(..., retry_config=retry_config)
171
+ lm_invoker = OpenAILMInvoker(..., tools=[tool_1, tool_2])
189
172
  ```
190
173
 
191
- Reasoning:
192
- OpenAI\'s GPT-5 models and o-series models are classified as reasoning models. Reasoning models think before
193
- they answer, producing a long internal chain of thought before responding to the user. Reasoning models
194
- excel in complex problem solving, coding, scientific reasoning, and multi-step planning for agentic workflows.
195
-
196
- The reasoning effort of reasoning models can be set via the `reasoning_effort` parameter. This parameter
197
- will guide the models on how many reasoning tokens it should generate before creating a response.
198
- Available options include:
199
- 1. "minimal": Favors the least amount of reasoning, only supported for GPT-5 models onwards.
200
- 2. "low": Favors speed and economical token usage.
201
- 3. "medium": Favors a balance between speed and reasoning accuracy.
202
- 4. "high": Favors more complete reasoning at the cost of more tokens generated and slower responses.
203
- When not set, the reasoning effort will be equivalent to `medium` by default.
204
-
205
- OpenAI doesn\'t expose the raw reasoning tokens. However, the summary of the reasoning tokens can still be
206
- generated. The summary level can be set via the `reasoning_summary` parameter. Available options include:
207
- 1. "auto": The model decides the summary level automatically.
208
- 2. "detailed": The model will generate a detailed summary of the reasoning tokens.
209
- Reasoning summary is not compatible with tool calling.
210
- When enabled, the reasoning summary will be stored in the `reasoning` attribute in the output.
211
-
212
174
  Output example:
213
175
  ```python
214
176
  LMOutput(
215
- response="Golden retriever is a good dog breed.",
216
- reasoning=[Reasoning(id="x", reasoning="Let me think about it...")],
177
+ outputs=[
178
+ LMOutputItem(type="text", output="I\'m using tools..."),
179
+ LMOutputItem(type="tool_call", output=ToolCall(id="123", name="tool_1", args={"key": "value"})),
180
+ LMOutputItem(type="tool_call", output=ToolCall(id="456", name="tool_2", args={"key": "value"})),
181
+ ]
217
182
  )
218
183
  ```
219
184
 
220
- Streaming output example:
221
- ```python
222
- {"type": "thinking_start", "value": ""}\', ...}
223
- {"type": "thinking", "value": "Let me think "}\', ...}
224
- {"type": "thinking", "value": "about it..."}\', ...}
225
- {"type": "thinking_end", "value": ""}\', ...}
226
- {"type": "response", "value": "Golden retriever ", ...}
227
- {"type": "response", "value": "is a good dog breed.", ...}
228
- ```
229
- Note: By default, the thinking token will be streamed with the legacy `EventType.DATA` event type.
230
- To use the new simplified streamed event format, set the `simplify_events` parameter to `True` during
231
- LM invoker initialization. The legacy event format support will be removed in v0.6.
232
-
233
- Setting reasoning-related parameters for non-reasoning models will raise an error.
234
-
235
185
  MCP tool calling:
236
- The `OpenAILMInvoker` supports MCP tool calling. This feature can be enabled by providing a list of
237
- MCP servers to the `mcp_servers` parameter. When MCP servers are provided and the model decides to call
238
- an MCP tool, the MCP calls are stored in the `mcp_calls` attribute in the output.
186
+ The `OpenAILMInvoker` can be configured to call MCP tools to perform certain tasks.
187
+ This feature can be enabled by providing a list of MCP servers to the `mcp_servers` parameter.
188
+
189
+ MCP calls outputs are stored in the `outputs` attribute of the `LMOutput` object and
190
+ can be accessed via the `mcp_calls` property.
239
191
 
240
192
  Usage example:
241
193
  ```python
242
194
  from gllm_inference.schema import MCPServer
243
- mcp_server_1 = MCPServer(
244
- url="https://mcp_server_1.com",
245
- name="mcp_server_1",
246
- )
195
+
196
+ mcp_server_1 = MCPServer(url="https://mcp_server_1.com", name="mcp_server_1")
247
197
  lm_invoker = OpenAILMInvoker(..., mcp_servers=[mcp_server_1])
248
198
  ```
249
199
 
250
200
  Output example:
251
201
  ```python
252
202
  LMOutput(
253
- response="The result is 10.",
254
- mcp_calls=[
255
- MCPCall(
256
- id="123",
257
- server_name="mcp_server_1",
258
- tool_name="mcp_tool_1",
259
- args={"key": "value"},
260
- output="The result is 10.",
203
+ outputs=[
204
+ LMOutputItem(type="text", output="I\'m using MCP tools..."),
205
+ LMOutputItem(
206
+ type="mcp_call",
207
+ output=MCPCall(
208
+ id="123",
209
+ server_name="mcp_server_1",
210
+ tool_name="mcp_tool_1",
211
+ args={"key": "value"},
212
+ output="The result is 10."
213
+ ),
261
214
  ),
262
215
  ],
263
216
  )
@@ -274,39 +227,83 @@ class OpenAILMInvoker(BaseLMInvoker):
274
227
  To use the new simplified streamed event format, set the `simplify_events` parameter to `True` during
275
228
  LM invoker initialization. The legacy event format support will be removed in v0.6.
276
229
 
277
- Code interpreter:
278
- The code interpreter is a feature that allows the language model to write and run Python code in a
279
- sandboxed environment to solve complex problems in domains like data analysis, coding, and math.
280
- This feature can be enabled by setting the `code_interpreter` parameter to `True`.
230
+ Reasoning:
231
+ The `OpenAILMInvoker` performs step-by-step reasoning before generating a response when reasoning
232
+ models are used, such as GPT-5 models and o-series models.
233
+
234
+ The reasoning effort can be set via the `reasoning_effort` parameter, which guides the models on the amount
235
+ of reasoning tokens to generate. Available options include `minimal`, `low`, `medium`, and `high`.
236
+
237
+ While the raw reasoning tokens are not available, the summary of the reasoning tokens can still be generated.
238
+ This can be done by passing the desired summary level via the `reasoning_summary` parameter.
239
+ Available options include `auto` and `detailed`.
240
+
241
+ Reasoning summaries are stored in the `outputs` attribute of the `LMOutput` object
242
+ and can be accessed via the `thinkings` property.
281
243
 
282
244
  Usage example:
283
245
  ```python
284
- lm_invoker = OpenAILMInvoker(..., code_interpreter=True)
246
+ lm_invoker = OpenAILMInvoker(..., reasoning_effort="high", reasoning_summary="detailed")
285
247
  ```
286
248
 
249
+ Output example:
250
+ ```python
251
+ LMOutput(
252
+ outputs=[
253
+ LMOutputItem(type="thinking", output=Reasoning(type="thinking", reasoning="I\'m thinking...", ...)),
254
+ LMOutputItem(type="text", output="Golden retriever is a good dog breed."),
255
+ ]
256
+ )
257
+ ```
258
+
259
+ Streaming output example:
260
+ ```python
261
+ {"type": "thinking_start", "value": "", ...}
262
+ {"type": "thinking", "value": "I\'m ", ...}
263
+ {"type": "thinking", "value": "thinking...", ...}
264
+ {"type": "thinking_end", "value": "", ...}
265
+ {"type": "response", "value": "Golden retriever ", ...}
266
+ {"type": "response", "value": "is a good dog breed.", ...}
267
+ ```
268
+ Note: By default, the thinking token will be streamed with the legacy `EventType.DATA` event type.
269
+ To use the new simplified streamed event format, set the `simplify_events` parameter to `True` during
270
+ LM invoker initialization. The legacy event format support will be removed in v0.6.
271
+
272
+ Reasoning summary is not compatible with tool calling.
273
+
274
+ Code interpreter:
275
+ The `OpenAILMInvoker` can be configured to write and run Python code in a sandboxed environment.
276
+ This is useful for solving complex problems in domains like data analysis, coding, and math.
277
+ This feature can be enabled by setting the `code_interpreter` parameter to `True`.
278
+
287
279
  When code interpreter is enabled, it is highly recommended to instruct the model to use the "python tool"
288
280
  in the system message, as "python tool" is the term recognized by the model to refer to the code interpreter.
289
281
 
290
- Messages example:
282
+ Code execution results are stored in the `outputs` attribute of the `LMOutput` object and
283
+ can be accessed via the `code_exec_results` property.
284
+
285
+ Usage example:
291
286
  ```python
287
+ lm_invoker = OpenAILMInvoker(..., code_interpreter=True)
292
288
  messages = [
293
289
  Message.system("You are a data analyst. Use the python tool to generate a file."]),
294
290
  Message.user("Show an histogram of the following data: [1, 2, 1, 4, 1, 2, 4, 2, 3, 1]"),
295
291
  ]
292
+ result = await lm_invoker.invoke(messages)
296
293
  ```
297
294
 
298
- When code interpreter is enabled, the code execution results are stored in the `code_exec_results`
299
- attribute in the output.
300
-
301
295
  Output example:
302
296
  ```python
303
297
  LMOutput(
304
- response="The histogram is attached.",
305
- code_exec_results=[
306
- CodeExecResult(
307
- id="123",
308
- code="import matplotlib.pyplot as plt...",
309
- output=[Attachment(data=b"...", mime_type="image/png")],
298
+ outputs=[
299
+ LMOutputItem(type="text", output="The histogram is attached."),
300
+ LMOutputItem(
301
+ type="code_exec_result",
302
+ output=CodeExecResult(
303
+ id="123",
304
+ code="import matplotlib.pyplot as plt...",
305
+ output=[Attachment(data=b"...", mime_type="image/png")],
306
+ ),
310
307
  ),
311
308
  ],
312
309
  )
@@ -325,35 +322,24 @@ class OpenAILMInvoker(BaseLMInvoker):
325
322
  To use the new simplified streamed event format, set the `simplify_events` parameter to `True` during
326
323
  LM invoker initialization. The legacy event format support will be removed in v0.6.
327
324
 
328
- Web search:
329
- The web search is a feature that allows the language model to search the web for relevant information.
325
+ Web Search:
326
+ The `OpenAILMInvoker` can be configured to search the web for relevant information.
330
327
  This feature can be enabled by setting the `web_search` parameter to `True`.
331
328
 
329
+ Web search citations are stored in the `outputs` attribute of the `LMOutput` object and
330
+ can be accessed via the `citations` property.
331
+
332
332
  Usage example:
333
333
  ```python
334
334
  lm_invoker = OpenAILMInvoker(..., web_search=True)
335
335
  ```
336
336
 
337
- When web search is enabled, the language model will search the web for relevant information and may cite the
338
- relevant sources. The citations will be stored as `Chunk` objects in the `citations` attribute in the output.
339
- The content of the `Chunk` object is the type of the citation, e.g. "url_citation".
340
-
341
337
  Output example:
342
338
  ```python
343
339
  LMOutput(
344
- response="The winner of the match is team A ([Example title](https://www.example.com)).",
345
- citations=[
346
- Chunk(
347
- id="123",
348
- content="url_citation",
349
- metadata={
350
- "start_index": 164,
351
- "end_index": 275,
352
- "title": "Example title",
353
- "url": "https://www.example.com",
354
- "type": "url_citation",
355
- },
356
- ),
340
+ outputs=[
341
+ LMOutputItem(type="citation", output=Chunk(id="123", content="...", metadata={...}, score=None)),
342
+ LMOutputItem(type="text", output="According to recent reports... ([Source](https://example.com))."),
357
343
  ],
358
344
  )
359
345
  ```
@@ -361,30 +347,93 @@ class OpenAILMInvoker(BaseLMInvoker):
361
347
  Streaming output example:
362
348
  ```python
363
349
  {"type": "activity", "value": {"query": "search query"}, ...}
364
- {"type": "response", "value": "The winner of the match ", ...}
365
- {"type": "response", "value": "is team A ([Example title](https://www.example.com)).", ...}
350
+ {"type": "response", "value": "According to recent ", ...}
351
+ {"type": "response", "value": "reports... ([Source](https://example.com)).", ...}
366
352
  ```
367
353
  Note: By default, the activity token will be streamed with the legacy `EventType.DATA` event type.
368
354
  To use the new simplified streamed event format, set the `simplify_events` parameter to `True` during
369
355
  LM invoker initialization. The legacy event format support will be removed in v0.6.
370
356
 
371
- Output types:
372
- The output of the `OpenAILMInvoker` can either be:
373
- 1. `str`: A text response.
374
- 2. `LMOutput`: A Pydantic model that may contain the following attributes:
375
- 2.1. response (str)
376
- 2.2. tool_calls (list[ToolCall])
377
- 2.3. structured_output (dict[str, Any] | BaseModel | None)
378
- 2.4. token_usage (TokenUsage | None)
379
- 2.5. duration (float | None)
380
- 2.6. finish_details (dict[str, Any])
381
- 2.7. reasoning (list[Reasoning])
382
- 2.8. citations (list[Chunk])
383
- 2.9. code_exec_results (list[CodeExecResult])
384
- 2.10. mcp_calls (list[MCPCall])
357
+ Analytics tracking:
358
+ The `OpenAILMInvoker` can be configured to output additional information about the invocation.
359
+ This feature can be enabled by setting the `output_analytics` parameter to `True`.
360
+
361
+ When enabled, the following attributes will be stored in the output:
362
+ 1. `token_usage`: The token usage.
363
+ 2. `duration`: The duration in seconds.
364
+ 3. `finish_details`: The details about how the generation finished.
365
+
366
+ Output example:
367
+ ```python
368
+ LMOutput(
369
+ outputs=[...],
370
+ token_usage=TokenUsage(input_tokens=100, output_tokens=50),
371
+ duration=0.729,
372
+ finish_details={"stop_reason": "end_turn"},
373
+ )
374
+ ```
375
+
376
+ Retry and timeout:
377
+ The `OpenAILMInvoker` supports retry and timeout configuration.
378
+ By default, the max retries is set to 0 and the timeout is set to 30.0 seconds.
379
+ They can be customized by providing a custom `RetryConfig` object to the `retry_config` parameter.
380
+
381
+ Retry config examples:
382
+ ```python
383
+ retry_config = RetryConfig(max_retries=0, timeout=None) # No retry, no timeout
384
+ retry_config = RetryConfig(max_retries=5, timeout=10.0) # 5 max retries, 10.0 seconds timeout
385
+ ```
386
+
387
+ Usage example:
388
+ ```python
389
+ lm_invoker = OpenAILMInvoker(..., retry_config=retry_config)
390
+ ```
391
+
392
+ Batch processing:
393
+ The `OpenAILMInvoker` supports batch processing, which allows the language model to process multiple
394
+ requests in a single call. The batch processing operations include:
395
+
396
+ 1. Create a batch job:
397
+ ```python
398
+ requests = {"request_1": "What color is the sky?", "request_2": "What color is the grass?"}
399
+ batch_id = await lm_invoker.batch.create(requests)
400
+ ```
401
+ 2. Get the status of a batch job:
402
+ ```python
403
+ status = await lm_invoker.batch.status(batch_id)
404
+ ```
405
+ 3. Retrieve the results of a batch job:
406
+ Results are keyed by the request indices provided during batch creation.
407
+
408
+ ```python
409
+ results = await lm_invoker.batch.retrieve(batch_id)
410
+ ```
411
+ Output example:
412
+ ```python
413
+ {
414
+ "request_1": LMOutput(outputs=[LMOutputItem(type="text", output="The sky is blue.")]),
415
+ "request_2": LMOutput(finish_details={"type": "error", "error": {"message": "...", ...}, ...}),
416
+ }
417
+ ```
418
+ 4. List the batch jobs:
419
+ ```python
420
+ batch_jobs = await lm_invoker.batch.list()
421
+ ```
422
+ Output example:
423
+ ```python
424
+ [
425
+ {"id": "batch_123", "status": "finished"},
426
+ {"id": "batch_456", "status": "in_progress"},
427
+ {"id": "batch_789", "status": "canceling"},
428
+ ]
429
+ ```
430
+ 5. Cancel a batch job:
431
+ ```python
432
+ await lm_invoker.batch.cancel(batch_id)
433
+ ```
385
434
  '''
386
435
  client_kwargs: Incomplete
387
- def __init__(self, model_name: str, api_key: str | None = None, base_url: str = ..., model_kwargs: dict[str, Any] | None = None, default_hyperparameters: dict[str, Any] | None = None, tools: list[Tool | LangChainTool] | None = None, response_schema: ResponseSchema | None = None, output_analytics: bool = False, retry_config: RetryConfig | None = None, reasoning_effort: ReasoningEffort | None = None, reasoning_summary: ReasoningSummary | None = None, mcp_servers: list[MCPServer] | None = None, code_interpreter: bool = False, web_search: bool = False, simplify_events: bool = False) -> None:
436
+ def __init__(self, model_name: str, api_key: str | None = None, base_url: str = ..., model_kwargs: dict[str, Any] | None = None, default_hyperparameters: dict[str, Any] | None = None, tools: list[Tool | LangChainTool] | None = None, response_schema: ResponseSchema | None = None, output_analytics: bool = False, retry_config: RetryConfig | None = None, reasoning_effort: ReasoningEffort | None = None, reasoning_summary: ReasoningSummary | None = None, image_generation: bool = False, mcp_servers: list[MCPServer] | None = None, code_interpreter: bool = False, web_search: bool = False, simplify_events: bool = False) -> None:
388
437
  '''Initializes a new instance of the OpenAILMInvoker class.
389
438
 
390
439
  Args:
@@ -409,6 +458,7 @@ class OpenAILMInvoker(BaseLMInvoker):
409
458
  for non-reasoning models. If None, the model will perform medium reasoning effort. Defaults to None.
410
459
  reasoning_summary (ReasoningSummary | None, optional): The reasoning summary level for reasoning models.
411
460
  Not allowed for non-reasoning models. If None, no summary will be generated. Defaults to None.
461
+ image_generation (bool, optional): Whether to enable image generation. Defaults to False.
412
462
  mcp_servers (list[MCPServer] | None, optional): The MCP servers containing tools to be accessed by the
413
463
  language model. Defaults to None.
414
464
  code_interpreter (bool, optional): Whether to enable the code interpreter. Defaults to False.