gllm-inference-binary 0.5.49__cp313-cp313-win_amd64.whl → 0.5.51__cp313-cp313-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of gllm-inference-binary might be problematic. Click here for more details.
- gllm_inference/builder/_build_invoker.pyi +28 -0
- gllm_inference/builder/build_em_invoker.pyi +1 -16
- gllm_inference/builder/build_lm_invoker.pyi +0 -20
- gllm_inference/em_invoker/bedrock_em_invoker.pyi +16 -4
- gllm_inference/em_invoker/schema/bedrock.pyi +7 -0
- gllm_inference/schema/model_id.pyi +12 -4
- gllm_inference.cp313-win_amd64.pyd +0 -0
- gllm_inference.pyi +3 -3
- {gllm_inference_binary-0.5.49.dist-info → gllm_inference_binary-0.5.51.dist-info}/METADATA +1 -1
- {gllm_inference_binary-0.5.49.dist-info → gllm_inference_binary-0.5.51.dist-info}/RECORD +12 -11
- {gllm_inference_binary-0.5.49.dist-info → gllm_inference_binary-0.5.51.dist-info}/WHEEL +0 -0
- {gllm_inference_binary-0.5.49.dist-info → gllm_inference_binary-0.5.51.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,28 @@
|
|
|
1
|
+
from _typeshed import Incomplete
|
|
2
|
+
from gllm_inference.em_invoker.em_invoker import BaseEMInvoker as BaseEMInvoker
|
|
3
|
+
from gllm_inference.lm_invoker.lm_invoker import BaseLMInvoker as BaseLMInvoker
|
|
4
|
+
from gllm_inference.schema.model_id import ModelId as ModelId, ModelProvider as ModelProvider, PROVIDERS_OPTIONAL_PATH as PROVIDERS_OPTIONAL_PATH
|
|
5
|
+
|
|
6
|
+
logger: Incomplete
|
|
7
|
+
|
|
8
|
+
class Key:
|
|
9
|
+
"""Defines valid keys in the config."""
|
|
10
|
+
ACCESS_KEY_ID: str
|
|
11
|
+
API_KEY: str
|
|
12
|
+
AZURE_DEPLOYMENT: str
|
|
13
|
+
AZURE_ENDPOINT: str
|
|
14
|
+
BASE_URL: str
|
|
15
|
+
CONFIG: str
|
|
16
|
+
CUSTOM_HOST: str
|
|
17
|
+
CREDENTIALS_PATH: str
|
|
18
|
+
MODEL_ID: str
|
|
19
|
+
MODEL_KWARGS: str
|
|
20
|
+
MODEL_NAME: str
|
|
21
|
+
MODEL_CLASS_PATH: str
|
|
22
|
+
PORTKEY_API_KEY: str
|
|
23
|
+
PROVIDER: str
|
|
24
|
+
SECRET_ACCESS_KEY: str
|
|
25
|
+
|
|
26
|
+
PROVIDERS_REQUIRE_BASE_URL: Incomplete
|
|
27
|
+
MODEL_NAME_KEY_MAP: Incomplete
|
|
28
|
+
DEFAULT_MODEL_NAME_KEY: Incomplete
|
|
@@ -1,24 +1,9 @@
|
|
|
1
|
-
from _typeshed import Incomplete
|
|
2
1
|
from gllm_inference.em_invoker import AzureOpenAIEMInvoker as AzureOpenAIEMInvoker, BedrockEMInvoker as BedrockEMInvoker, CohereEMInvoker as CohereEMInvoker, GoogleEMInvoker as GoogleEMInvoker, JinaEMInvoker as JinaEMInvoker, LangChainEMInvoker as LangChainEMInvoker, OpenAICompatibleEMInvoker as OpenAICompatibleEMInvoker, OpenAIEMInvoker as OpenAIEMInvoker, TwelveLabsEMInvoker as TwelveLabsEMInvoker, VoyageEMInvoker as VoyageEMInvoker
|
|
3
2
|
from gllm_inference.em_invoker.em_invoker import BaseEMInvoker as BaseEMInvoker
|
|
4
|
-
from gllm_inference.schema.model_id import ModelId as ModelId, ModelProvider as ModelProvider
|
|
3
|
+
from gllm_inference.schema.model_id import ModelId as ModelId, ModelProvider as ModelProvider
|
|
5
4
|
from typing import Any
|
|
6
5
|
|
|
7
6
|
PROVIDER_TO_EM_INVOKER_MAP: dict[str, type[BaseEMInvoker]]
|
|
8
|
-
logger: Incomplete
|
|
9
|
-
|
|
10
|
-
class Key:
|
|
11
|
-
"""Defines valid keys in the config."""
|
|
12
|
-
ACCESS_KEY_ID: str
|
|
13
|
-
API_KEY: str
|
|
14
|
-
AZURE_DEPLOYMENT: str
|
|
15
|
-
AZURE_ENDPOINT: str
|
|
16
|
-
BASE_URL: str
|
|
17
|
-
CREDENTIALS_PATH: str
|
|
18
|
-
MODEL_KWARGS: str
|
|
19
|
-
MODEL_NAME: str
|
|
20
|
-
MODEL_CLASS_PATH: str
|
|
21
|
-
SECRET_ACCESS_KEY: str
|
|
22
7
|
|
|
23
8
|
def build_em_invoker(model_id: str | ModelId, credentials: str | dict[str, Any] | None = None, config: dict[str, Any] | None = None) -> BaseEMInvoker:
|
|
24
9
|
'''Build an embedding model invoker based on the provided configurations.
|
|
@@ -1,29 +1,9 @@
|
|
|
1
|
-
from _typeshed import Incomplete
|
|
2
1
|
from gllm_inference.lm_invoker import AnthropicLMInvoker as AnthropicLMInvoker, AzureOpenAILMInvoker as AzureOpenAILMInvoker, BedrockLMInvoker as BedrockLMInvoker, DatasaurLMInvoker as DatasaurLMInvoker, GoogleLMInvoker as GoogleLMInvoker, LangChainLMInvoker as LangChainLMInvoker, LiteLLMLMInvoker as LiteLLMLMInvoker, OpenAIChatCompletionsLMInvoker as OpenAIChatCompletionsLMInvoker, OpenAICompatibleLMInvoker as OpenAICompatibleLMInvoker, OpenAILMInvoker as OpenAILMInvoker, PortkeyLMInvoker as PortkeyLMInvoker, XAILMInvoker as XAILMInvoker
|
|
3
2
|
from gllm_inference.lm_invoker.lm_invoker import BaseLMInvoker as BaseLMInvoker
|
|
4
3
|
from gllm_inference.schema.model_id import ModelId as ModelId, ModelProvider as ModelProvider
|
|
5
4
|
from typing import Any
|
|
6
5
|
|
|
7
6
|
PROVIDER_TO_LM_INVOKER_MAP: dict[str, type[BaseLMInvoker]]
|
|
8
|
-
logger: Incomplete
|
|
9
|
-
|
|
10
|
-
class Key:
|
|
11
|
-
"""Defines valid keys in the config."""
|
|
12
|
-
ACCESS_KEY_ID: str
|
|
13
|
-
API_KEY: str
|
|
14
|
-
AZURE_DEPLOYMENT: str
|
|
15
|
-
AZURE_ENDPOINT: str
|
|
16
|
-
BASE_URL: str
|
|
17
|
-
CONFIG: str
|
|
18
|
-
CUSTOM_HOST: str
|
|
19
|
-
CREDENTIALS_PATH: str
|
|
20
|
-
MODEL_ID: str
|
|
21
|
-
MODEL_KWARGS: str
|
|
22
|
-
MODEL_NAME: str
|
|
23
|
-
MODEL_CLASS_PATH: str
|
|
24
|
-
PORTKEY_API_KEY: str
|
|
25
|
-
PROVIDER: str
|
|
26
|
-
SECRET_ACCESS_KEY: str
|
|
27
7
|
|
|
28
8
|
def build_lm_invoker(model_id: str | ModelId, credentials: str | dict[str, Any] | None = None, config: dict[str, Any] | None = None) -> BaseLMInvoker:
|
|
29
9
|
'''Build a language model invoker based on the provided configurations.
|
|
@@ -5,12 +5,13 @@ from gllm_inference.em_invoker.em_invoker import BaseEMInvoker as BaseEMInvoker
|
|
|
5
5
|
from gllm_inference.em_invoker.schema.bedrock import InputType as InputType, Key as Key, OutputType as OutputType
|
|
6
6
|
from gllm_inference.exceptions import BaseInvokerError as BaseInvokerError, convert_http_status_to_base_invoker_error as convert_http_status_to_base_invoker_error
|
|
7
7
|
from gllm_inference.exceptions.provider_error_map import BEDROCK_ERROR_MAPPING as BEDROCK_ERROR_MAPPING
|
|
8
|
-
from gllm_inference.schema import ModelId as ModelId, ModelProvider as ModelProvider, TruncationConfig as TruncationConfig, Vector as Vector
|
|
8
|
+
from gllm_inference.schema import Attachment as Attachment, AttachmentType as AttachmentType, EMContent as EMContent, ModelId as ModelId, ModelProvider as ModelProvider, TruncationConfig as TruncationConfig, Vector as Vector
|
|
9
9
|
from typing import Any
|
|
10
10
|
|
|
11
11
|
class ModelType(StrEnum):
|
|
12
12
|
"""Defines the type of the Bedrock embedding model."""
|
|
13
13
|
COHERE = 'cohere'
|
|
14
|
+
MARENGO = 'marengo'
|
|
14
15
|
TITAN = 'titan'
|
|
15
16
|
|
|
16
17
|
SUPPORTED_ATTACHMENTS: Incomplete
|
|
@@ -29,12 +30,14 @@ class BedrockEMInvoker(BaseEMInvoker):
|
|
|
29
30
|
truncation_config (TruncationConfig | None): The truncation configuration for the embedding model.
|
|
30
31
|
|
|
31
32
|
Input types:
|
|
32
|
-
The `BedrockEMInvoker`
|
|
33
|
+
The `BedrockEMInvoker` supports:
|
|
34
|
+
1. Text inputs for Cohere, Titan, and Marengo models
|
|
35
|
+
2. Image inputs for Marengo models through Attachment objects
|
|
33
36
|
|
|
34
37
|
Output format:
|
|
35
38
|
The `BedrockEMInvoker` can embed either:
|
|
36
39
|
1. A single content.
|
|
37
|
-
1. A single content is a single text.
|
|
40
|
+
1. A single content is a single text or single image (image only supported for Marengo).
|
|
38
41
|
2. The output will be a `Vector`, representing the embedding of the content.
|
|
39
42
|
|
|
40
43
|
# Example 1: Embedding a text content.
|
|
@@ -43,10 +46,19 @@ class BedrockEMInvoker(BaseEMInvoker):
|
|
|
43
46
|
result = await em_invoker.invoke(text)
|
|
44
47
|
```
|
|
45
48
|
|
|
49
|
+
# Example 2: Embedding an image with Marengo.
|
|
50
|
+
```python
|
|
51
|
+
em_invoker = BedrockEMInvoker(
|
|
52
|
+
model_name="us.twelvelabs.marengo-2.7"
|
|
53
|
+
)
|
|
54
|
+
image = Attachment.from_path("path/to/local/image.png")
|
|
55
|
+
result = await em_invoker.invoke(image)
|
|
56
|
+
```
|
|
57
|
+
|
|
46
58
|
The above examples will return a `Vector` with a size of (embedding_size,).
|
|
47
59
|
|
|
48
60
|
2. A list of contents.
|
|
49
|
-
1. A list of contents is a list of texts.
|
|
61
|
+
1. A list of contents is a list of texts or images (images only supported for Marengo).
|
|
50
62
|
2. The output will be a `list[Vector]`, where each element is a `Vector` representing the
|
|
51
63
|
embedding of each single content.
|
|
52
64
|
|
|
@@ -1,22 +1,29 @@
|
|
|
1
1
|
class Key:
|
|
2
2
|
"""Defines valid keys in Bedrock."""
|
|
3
3
|
ACCEPT: str
|
|
4
|
+
BASE64_STRING: str
|
|
4
5
|
CONTENT_TYPE: str
|
|
5
6
|
HTTP_STATUS_CODE: str
|
|
6
7
|
INPUT_TEXT: str
|
|
7
8
|
INPUT_TYPE: str
|
|
9
|
+
INPUT_TYPE_MARENGO: str
|
|
10
|
+
MEDIA_SOURCE: str
|
|
8
11
|
MODEL_ID: str
|
|
9
12
|
RESPONSE_METADATA: str
|
|
13
|
+
TEXT_TRUNCATE: str
|
|
10
14
|
TEXTS: str
|
|
11
15
|
|
|
12
16
|
class InputType:
|
|
13
17
|
"""Defines valid input types in Bedrock."""
|
|
14
18
|
APPLICATION_JSON: str
|
|
19
|
+
IMAGE: str
|
|
15
20
|
SEARCH_DOCUMENT: str
|
|
16
21
|
SEARCH_QUERY: str
|
|
22
|
+
TEXT: str
|
|
17
23
|
|
|
18
24
|
class OutputType:
|
|
19
25
|
"""Defines valid output types in Bedrock."""
|
|
20
26
|
BODY: str
|
|
27
|
+
DATA: str
|
|
21
28
|
EMBEDDING: str
|
|
22
29
|
EMBEDDINGS: str
|
|
@@ -26,8 +26,8 @@ class ModelProvider(StrEnum):
|
|
|
26
26
|
VOYAGE = 'voyage'
|
|
27
27
|
XAI = 'xai'
|
|
28
28
|
|
|
29
|
-
|
|
30
|
-
|
|
29
|
+
PROVIDERS_OPTIONAL_PATH: Incomplete
|
|
30
|
+
PROVIDERS_SUPPORT_PATH: Incomplete
|
|
31
31
|
|
|
32
32
|
class ModelId(BaseModel):
|
|
33
33
|
'''Defines a representation of a valid model id.
|
|
@@ -53,6 +53,11 @@ class ModelId(BaseModel):
|
|
|
53
53
|
model_id = ModelId.from_string("cohere/embed-english-v3.0")
|
|
54
54
|
```
|
|
55
55
|
|
|
56
|
+
# Using Cohere with custom endpoint
|
|
57
|
+
```python
|
|
58
|
+
model_id = ModelId.from_string("cohere/https://my-cohere-url:8000/v1:my-model-name")
|
|
59
|
+
```
|
|
60
|
+
|
|
56
61
|
# Using Datasaur
|
|
57
62
|
```python
|
|
58
63
|
model_id = ModelId.from_string("datasaur/https://deployment.datasaur.ai/api/deployment/teamId/deploymentId/")
|
|
@@ -67,8 +72,11 @@ class ModelId(BaseModel):
|
|
|
67
72
|
```python
|
|
68
73
|
model_id = ModelId.from_string("jina/jina-embeddings-v2-large")
|
|
69
74
|
```
|
|
70
|
-
|
|
71
|
-
|
|
75
|
+
|
|
76
|
+
# Using Jina with custom endpoint
|
|
77
|
+
```python
|
|
78
|
+
model_id = ModelId.from_string("jina/https://my-jina-url:8000/v1:my-model-name")
|
|
79
|
+
```
|
|
72
80
|
|
|
73
81
|
# Using OpenAI
|
|
74
82
|
```python
|
|
Binary file
|
gllm_inference.pyi
CHANGED
|
@@ -48,15 +48,15 @@ import gllm_inference.schema.ModelId
|
|
|
48
48
|
import gllm_inference.schema.ModelProvider
|
|
49
49
|
import gllm_inference.schema.TruncationConfig
|
|
50
50
|
import asyncio
|
|
51
|
+
import base64
|
|
51
52
|
import enum
|
|
52
53
|
import gllm_inference.exceptions.BaseInvokerError
|
|
53
54
|
import gllm_inference.exceptions.convert_http_status_to_base_invoker_error
|
|
54
|
-
import gllm_inference.schema.Vector
|
|
55
|
-
import aioboto3
|
|
56
|
-
import base64
|
|
57
55
|
import gllm_inference.schema.Attachment
|
|
58
56
|
import gllm_inference.schema.AttachmentType
|
|
59
57
|
import gllm_inference.schema.EMContent
|
|
58
|
+
import gllm_inference.schema.Vector
|
|
59
|
+
import aioboto3
|
|
60
60
|
import gllm_inference.utils.validate_string_enum
|
|
61
61
|
import cohere
|
|
62
62
|
import asyncio.CancelledError
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.2
|
|
2
2
|
Name: gllm-inference-binary
|
|
3
|
-
Version: 0.5.
|
|
3
|
+
Version: 0.5.51
|
|
4
4
|
Summary: A library containing components related to model inferences in Gen AI applications.
|
|
5
5
|
Author-email: Henry Wicaksono <henry.wicaksono@gdplabs.id>, Resti Febrina <resti.febrina@gdplabs.id>
|
|
6
6
|
Requires-Python: <3.14,>=3.11
|
|
@@ -1,10 +1,11 @@
|
|
|
1
|
-
gllm_inference.cp313-win_amd64.pyd,sha256=
|
|
2
|
-
gllm_inference.pyi,sha256=
|
|
1
|
+
gllm_inference.cp313-win_amd64.pyd,sha256=lLUG8N3eYLgG67vxVyE4OZBNnFH0F3q8m4pg1rJAn4Y,3844096
|
|
2
|
+
gllm_inference.pyi,sha256=3TbylLc0CkZzlLT7WqOloWNruBH0tojkkQJ_krV9mQs,5211
|
|
3
3
|
gllm_inference/__init__.pyi,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
4
4
|
gllm_inference/constants.pyi,sha256=PncjVw-mkzcJ3ln1ohvVZGdJ-TD-VZy1Ygn4Va8Z7i0,350
|
|
5
5
|
gllm_inference/builder/__init__.pyi,sha256=-bw1uDx7CAM7pkvjvb1ZXku9zXlQ7aEAyC83KIn3bz8,506
|
|
6
|
-
gllm_inference/builder/
|
|
7
|
-
gllm_inference/builder/
|
|
6
|
+
gllm_inference/builder/_build_invoker.pyi,sha256=SZst1ocnRntcA7lWKp44lMJ3yRA5GP_jsUZkcsxwTjw,876
|
|
7
|
+
gllm_inference/builder/build_em_invoker.pyi,sha256=Z09hP6_ziumI2XB-7HCdyIE4AyoV1oL9DBdoU2G8izo,5879
|
|
8
|
+
gllm_inference/builder/build_lm_invoker.pyi,sha256=1Qgb0bD8tqobDh9kR_Kce7Vwu_Oljc2xv-HBIrC3HUY,9065
|
|
8
9
|
gllm_inference/builder/build_lm_request_processor.pyi,sha256=H7Rg88e7PTTCtuyY64r333moTmh4-ypOwgnG10gkEdY,4232
|
|
9
10
|
gllm_inference/builder/build_output_parser.pyi,sha256=sgSTrzUmSRxPzUUum0fDU7A3NXYoYhpi6bEx4Q2XMnA,965
|
|
10
11
|
gllm_inference/catalog/__init__.pyi,sha256=HWgPKWIzprpMHRKe_qN9BZSIQhVhrqiyjLjIXwvj1ho,291
|
|
@@ -13,7 +14,7 @@ gllm_inference/catalog/lm_request_processor_catalog.pyi,sha256=FiveqPDkV58XbDO2z
|
|
|
13
14
|
gllm_inference/catalog/prompt_builder_catalog.pyi,sha256=iViWB4SaezzjQY4UY1YxeoXUNxqxa2cTJGaD9JSx4Q8,3279
|
|
14
15
|
gllm_inference/em_invoker/__init__.pyi,sha256=uCWfCjh5a5DciRFcUdbHndewokM3J5hp3mbhmM5wQC8,1211
|
|
15
16
|
gllm_inference/em_invoker/azure_openai_em_invoker.pyi,sha256=TXC5Kgf1eZqK2FHKAyeG3LB1SEsSEStnbk9bI1mjC5k,5049
|
|
16
|
-
gllm_inference/em_invoker/bedrock_em_invoker.pyi,sha256=
|
|
17
|
+
gllm_inference/em_invoker/bedrock_em_invoker.pyi,sha256=ZPse0qNR74qFcc-9svTN8DzVO6kCLz-KYsLDo3cEEd0,6483
|
|
17
18
|
gllm_inference/em_invoker/cohere_em_invoker.pyi,sha256=4eLqeKLoK8vJB61bGdttfWUUvNDBToBqNA6KQYBMT8s,6793
|
|
18
19
|
gllm_inference/em_invoker/em_invoker.pyi,sha256=YDYJ8TGScsz5Gg-OBnEENN1tI1RYvwoddypxUr6SAWw,5191
|
|
19
20
|
gllm_inference/em_invoker/google_em_invoker.pyi,sha256=zZYjeLp9ncwIVM4UHqDJSVOFn1eXiaz9Ba24-_fCF2c,6953
|
|
@@ -26,7 +27,7 @@ gllm_inference/em_invoker/voyage_em_invoker.pyi,sha256=nlcyjYnd3JvKy8UCGzjfXQLR4
|
|
|
26
27
|
gllm_inference/em_invoker/langchain/__init__.pyi,sha256=aOTlRvS9aG1tBErjsmhe75s4Sq-g2z9ArfGqNW7QyEs,151
|
|
27
28
|
gllm_inference/em_invoker/langchain/em_invoker_embeddings.pyi,sha256=BBSDazMOckO9Aw17tC3LGUTPqLb01my1xUZLtKZlwJY,3388
|
|
28
29
|
gllm_inference/em_invoker/schema/__init__.pyi,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
29
|
-
gllm_inference/em_invoker/schema/bedrock.pyi,sha256=
|
|
30
|
+
gllm_inference/em_invoker/schema/bedrock.pyi,sha256=nDyRk3jnt8UmPuiR-2wiVByxSag_Yrk5YqMFqPbNwEQ,644
|
|
30
31
|
gllm_inference/em_invoker/schema/cohere.pyi,sha256=Wio6h0sbY93GygqETtflRaaucFzYSeLZRg7jyxMDK0s,567
|
|
31
32
|
gllm_inference/em_invoker/schema/google.pyi,sha256=bzdtu4DFH2kATLybIeNl_Lznj99H-6u2Fvx3Zx52oZg,190
|
|
32
33
|
gllm_inference/em_invoker/schema/jina.pyi,sha256=B38heufA7nwWt_f93qY_aQVieuOSOH35Xotf3p_3BKc,770
|
|
@@ -119,7 +120,7 @@ gllm_inference/schema/lm_input.pyi,sha256=HxQiZgY7zcXh_Dw8nK8LSeBTZEHMPZVwmPmnfg
|
|
|
119
120
|
gllm_inference/schema/lm_output.pyi,sha256=DIV8BiIOPaSnMKxzKzH_Mp7j7-MScWCvmllegJDLqFg,2479
|
|
120
121
|
gllm_inference/schema/mcp.pyi,sha256=4SgQ83pEowfWm2p-w9lupV4NayqqVBOy7SuYxIFeWRs,1045
|
|
121
122
|
gllm_inference/schema/message.pyi,sha256=jJV6A0ihEcun2OhzyMtNkiHnf7d6v5R-GdpTBGfJ0AQ,2272
|
|
122
|
-
gllm_inference/schema/model_id.pyi,sha256=
|
|
123
|
+
gllm_inference/schema/model_id.pyi,sha256=Ozu46pp1uaPPvXJ6SPKpiL1vETPJqErEjNAYfOb5b6Y,6070
|
|
123
124
|
gllm_inference/schema/reasoning.pyi,sha256=jbPxkDRHt0Vt-zdcc8lTT1l2hIE1Jm3HIHeNd0hfXGo,577
|
|
124
125
|
gllm_inference/schema/token_usage.pyi,sha256=WJiGQyz5qatzBK2b-sABLCyTRLCBbAvxCRcqSJOzu-8,3025
|
|
125
126
|
gllm_inference/schema/tool_call.pyi,sha256=OWT9LUqs_xfUcOkPG0aokAAqzLYYDkfnjTa0zOWvugk,403
|
|
@@ -130,7 +131,7 @@ gllm_inference/utils/io_utils.pyi,sha256=Eg7dvHWdXslTKdjh1j3dG50i7r35XG2zTmJ9XXv
|
|
|
130
131
|
gllm_inference/utils/langchain.pyi,sha256=4AwFiVAO0ZpdgmqeC4Pb5NJwBt8vVr0MSUqLeCdTscc,1194
|
|
131
132
|
gllm_inference/utils/validation.pyi,sha256=-RdMmb8afH7F7q4Ao7x6FbwaDfxUHn3hA3WiOgzB-3s,397
|
|
132
133
|
gllm_inference.build/.gitignore,sha256=aEiIwOuxfzdCmLZe4oB1JsBmCUxwG8x-u-HBCV9JT8E,1
|
|
133
|
-
gllm_inference_binary-0.5.
|
|
134
|
-
gllm_inference_binary-0.5.
|
|
135
|
-
gllm_inference_binary-0.5.
|
|
136
|
-
gllm_inference_binary-0.5.
|
|
134
|
+
gllm_inference_binary-0.5.51.dist-info/METADATA,sha256=YYGvuy7NbswW0XC-0PcrjX1olPf4rOGAchD5hHbWgto,5945
|
|
135
|
+
gllm_inference_binary-0.5.51.dist-info/WHEEL,sha256=O_u6PJIQ2pIcyIInxVQ9r-yArMuUZbBIaF1kpYVkYxA,96
|
|
136
|
+
gllm_inference_binary-0.5.51.dist-info/top_level.txt,sha256=FpOjtN80F-qVNgbScXSEyqa0w09FYn6301iq6qt69IQ,15
|
|
137
|
+
gllm_inference_binary-0.5.51.dist-info/RECORD,,
|
|
File without changes
|
{gllm_inference_binary-0.5.49.dist-info → gllm_inference_binary-0.5.51.dist-info}/top_level.txt
RENAMED
|
File without changes
|