gllm-inference-binary 0.5.44__cp313-cp313-win_amd64.whl → 0.5.46__cp313-cp313-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of gllm-inference-binary might be problematic. Click here for more details.

@@ -1,5 +1,5 @@
1
1
  from _typeshed import Incomplete
2
- from gllm_inference.lm_invoker import AnthropicLMInvoker as AnthropicLMInvoker, AzureOpenAILMInvoker as AzureOpenAILMInvoker, BedrockLMInvoker as BedrockLMInvoker, DatasaurLMInvoker as DatasaurLMInvoker, GoogleLMInvoker as GoogleLMInvoker, LangChainLMInvoker as LangChainLMInvoker, LiteLLMLMInvoker as LiteLLMLMInvoker, OpenAIChatCompletionsLMInvoker as OpenAIChatCompletionsLMInvoker, OpenAICompatibleLMInvoker as OpenAICompatibleLMInvoker, OpenAILMInvoker as OpenAILMInvoker, XAILMInvoker as XAILMInvoker
2
+ from gllm_inference.lm_invoker import AnthropicLMInvoker as AnthropicLMInvoker, AzureOpenAILMInvoker as AzureOpenAILMInvoker, BedrockLMInvoker as BedrockLMInvoker, DatasaurLMInvoker as DatasaurLMInvoker, GoogleLMInvoker as GoogleLMInvoker, LangChainLMInvoker as LangChainLMInvoker, LiteLLMLMInvoker as LiteLLMLMInvoker, OpenAIChatCompletionsLMInvoker as OpenAIChatCompletionsLMInvoker, OpenAICompatibleLMInvoker as OpenAICompatibleLMInvoker, OpenAILMInvoker as OpenAILMInvoker, PortkeyLMInvoker as PortkeyLMInvoker, XAILMInvoker as XAILMInvoker
3
3
  from gllm_inference.lm_invoker.lm_invoker import BaseLMInvoker as BaseLMInvoker
4
4
  from gllm_inference.schema.model_id import ModelId as ModelId, ModelProvider as ModelProvider
5
5
  from typing import Any
@@ -14,11 +14,15 @@ class Key:
14
14
  AZURE_DEPLOYMENT: str
15
15
  AZURE_ENDPOINT: str
16
16
  BASE_URL: str
17
+ CONFIG: str
18
+ CUSTOM_HOST: str
17
19
  CREDENTIALS_PATH: str
18
20
  MODEL_ID: str
19
21
  MODEL_KWARGS: str
20
22
  MODEL_NAME: str
21
23
  MODEL_CLASS_PATH: str
24
+ PORTKEY_API_KEY: str
25
+ PROVIDER: str
22
26
  SECRET_ACCESS_KEY: str
23
27
 
24
28
  def build_lm_invoker(model_id: str | ModelId, credentials: str | dict[str, Any] | None = None, config: dict[str, Any] | None = None) -> BaseLMInvoker:
@@ -157,6 +161,61 @@ def build_lm_invoker(model_id: str | ModelId, credentials: str | dict[str, Any]
157
161
  For the list of supported providers, please refer to the following page:
158
162
  https://docs.litellm.ai/docs/providers/
159
163
 
164
+ # Using Portkey
165
+ Portkey supports multiple authentication methods with strict precedence order.
166
+ Authentication methods are mutually exclusive and cannot be combined.
167
+
168
+ ## Config ID Authentication (Highest Precedence)
169
+ ```python
170
+ lm_invoker = build_lm_invoker(
171
+ model_id="portkey/any-model",
172
+ credentials="portkey-api-key",
173
+ config={"config": "pc-openai-4f6905"}
174
+ )
175
+ ```
176
+
177
+ ## Model Catalog Authentication (Combined Format)
178
+ ```python
179
+ lm_invoker = build_lm_invoker(
180
+ model_id="portkey/@openai-custom/gpt-4o",
181
+ credentials="portkey-api-key"
182
+ )
183
+ ```
184
+
185
+ ## Model Catalog Authentication (Separate Parameters)
186
+ ```python
187
+ lm_invoker = build_lm_invoker(
188
+ model_id="portkey/gpt-4o",
189
+ credentials="portkey-api-key",
190
+ config={"provider": "@openai-custom"}
191
+ )
192
+ ```
193
+
194
+ ## Direct Provider Authentication
195
+ ```python
196
+ lm_invoker = build_lm_invoker(
197
+ model_id="portkey/gpt-4o",
198
+ credentials={
199
+ "portkey_api_key": "portkey-api-key",
200
+ "api_key": "sk-...", # Provider\'s API key
201
+ "provider": "openai" # Direct provider (no \'@\' prefix)
202
+ }
203
+ )
204
+ ```
205
+
206
+ ## Custom Host Override
207
+ ```python
208
+ lm_invoker = build_lm_invoker(
209
+ model_id="portkey/@custom-provider/gpt-4o",
210
+ credentials="portkey-api-key",
211
+ config={"custom_host": "https://your-custom-endpoint.com"}
212
+ )
213
+ ```
214
+
215
+ The Portkey API key can also be provided through the `PORTKEY_API_KEY` environment variable.
216
+ For more details on authentication methods, please refer to:
217
+ https://portkey.ai/docs/product/ai-gateway/universal-api
218
+
160
219
  # Using xAI
161
220
  ```python
162
221
  lm_invoker = build_lm_invoker(
@@ -8,6 +8,7 @@ from gllm_inference.lm_invoker.litellm_lm_invoker import LiteLLMLMInvoker as Lit
8
8
  from gllm_inference.lm_invoker.openai_chat_completions_lm_invoker import OpenAIChatCompletionsLMInvoker as OpenAIChatCompletionsLMInvoker
9
9
  from gllm_inference.lm_invoker.openai_compatible_lm_invoker import OpenAICompatibleLMInvoker as OpenAICompatibleLMInvoker
10
10
  from gllm_inference.lm_invoker.openai_lm_invoker import OpenAILMInvoker as OpenAILMInvoker
11
+ from gllm_inference.lm_invoker.portkey_lm_invoker import PortkeyLMInvoker as PortkeyLMInvoker
11
12
  from gllm_inference.lm_invoker.xai_lm_invoker import XAILMInvoker as XAILMInvoker
12
13
 
13
- __all__ = ['AnthropicLMInvoker', 'AzureOpenAILMInvoker', 'BedrockLMInvoker', 'DatasaurLMInvoker', 'GoogleLMInvoker', 'LangChainLMInvoker', 'LiteLLMLMInvoker', 'OpenAIChatCompletionsLMInvoker', 'OpenAICompatibleLMInvoker', 'OpenAILMInvoker', 'XAILMInvoker']
14
+ __all__ = ['AnthropicLMInvoker', 'AzureOpenAILMInvoker', 'BedrockLMInvoker', 'DatasaurLMInvoker', 'GoogleLMInvoker', 'LangChainLMInvoker', 'LiteLLMLMInvoker', 'OpenAIChatCompletionsLMInvoker', 'OpenAICompatibleLMInvoker', 'OpenAILMInvoker', 'PortkeyLMInvoker', 'XAILMInvoker']
@@ -0,0 +1,260 @@
1
+ from _typeshed import Incomplete
2
+ from gllm_core.event import EventEmitter as EventEmitter
3
+ from gllm_core.schema.tool import Tool as Tool
4
+ from gllm_core.utils.retry import RetryConfig as RetryConfig
5
+ from gllm_inference.constants import SECONDS_TO_MILLISECONDS as SECONDS_TO_MILLISECONDS
6
+ from gllm_inference.lm_invoker.openai_chat_completions_lm_invoker import OpenAIChatCompletionsLMInvoker as OpenAIChatCompletionsLMInvoker
7
+ from gllm_inference.lm_invoker.schema.portkey import InputType as InputType, Key as Key
8
+ from gllm_inference.schema import AttachmentType as AttachmentType, LMOutput as LMOutput, ModelId as ModelId, ModelProvider as ModelProvider, ResponseSchema as ResponseSchema
9
+ from langchain_core.tools import Tool as LangChainTool
10
+ from typing import Any
11
+
12
+ MIN_THINKING_BUDGET: int
13
+ SUPPORTED_ATTACHMENTS: Incomplete
14
+ VALID_AUTH_METHODS: str
15
+ logger: Incomplete
16
+
17
+ class PortkeyLMInvoker(OpenAIChatCompletionsLMInvoker):
18
+ '''A language model invoker to interact with Portkey\'s Universal API.
19
+
20
+ This class provides support for Portkey’s Universal AI Gateway, which enables unified access to
21
+ multiple providers (e.g., OpenAI, Anthropic, Google, Cohere, Bedrock) via a single API key.
22
+ The `PortkeyLMInvoker` is compatible with all Portkey model routing configurations, including
23
+ model catalog entries, direct providers, and pre-defined configs.
24
+
25
+ Attributes:
26
+ model_id (str): The model ID of the language model.
27
+ model_provider (str): The provider of the language model.
28
+ model_name (str): The catalog name of the language model.
29
+ client_kwargs (dict[str, Any]): The keyword arguments for the Portkey client.
30
+ default_hyperparameters (dict[str, Any]): Default hyperparameters for invoking the model.
31
+ tools (list[Tool]): The list of tools provided to the model to enable tool calling.
32
+ response_schema (ResponseSchema | None): The schema of the response. If provided, the model will output a
33
+ structured response as defined by the schema. Supports both Pydantic BaseModel and JSON schema dictionary.
34
+ output_analytics (bool): Whether to output the invocation analytics.
35
+ retry_config (RetryConfig): The retry configuration for the language model.
36
+ thinking (bool): Whether to enable thinking mode for supported models.
37
+ thinking_budget (int): The maximum reasoning token budget for thinking mode.
38
+
39
+ Basic usage:
40
+ The `PortkeyLMInvoker` supports multiple authentication methods with strict precedence order.
41
+ Authentication methods are mutually exclusive and cannot be combined.
42
+
43
+ **Authentication Precedence (Highest to Lowest):**
44
+ 1. **Config ID Authentication (Highest precedence)**
45
+ Use a pre-configured routing setup from Portkey’s dashboard.
46
+ ```python
47
+ lm_invoker = PortkeyLMInvoker(
48
+ portkey_api_key="<your-portkey-api-key>",
49
+ config="pc-openai-4f6905",
50
+ )
51
+ ```
52
+
53
+ 2. **Model Catalog Authentication**
54
+ Provider name must match the provider name set in the model catalog.
55
+ More details to set up the model catalog can be found in https://portkey.ai/docs/product/model-catalog#model-catalog.
56
+ There are two ways to specify the model name:
57
+
58
+ 2.1. Using Combined Model Name Format
59
+ Specify the `model_name` in \'@provider-name/model-name\' format.
60
+ ```python
61
+ lm_invoker = PortkeyLMInvoker(
62
+ portkey_api_key="<your-portkey-api-key>",
63
+ model_name="@openai-custom/gpt-4o"
64
+ )
65
+ ```
66
+
67
+ 2.2. Using Separate Provider and Model Name Parameters
68
+ Specify the `provider` in \'@provider-name\' format and `model_name` separately.
69
+ ```python
70
+ lm_invoker = PortkeyLMInvoker(
71
+ portkey_api_key="<your-portkey-api-key>",
72
+ provider="@openai-custom",
73
+ model_name="gpt-4o",
74
+ )
75
+ ```
76
+
77
+ 3. **Direct Provider Authentication**
78
+ Use the `provider` in \'provider-name\' format and `model_name` parameters.
79
+ ```python
80
+ lm_invoker = PortkeyLMInvoker(
81
+ portkey_api_key="<your-portkey-api-key>",
82
+ provider="openai",
83
+ model_name="gpt-4o",
84
+ api_key="sk-...",
85
+ )
86
+ ```
87
+
88
+ Custom Host:
89
+ You can also use the `custom_host` parameter to override the default host. This is available
90
+ for all authentication methods except for Config ID authentication.
91
+ ```python
92
+ lm_invoker = PortkeyLMInvoker(..., custom_host="https://your-custom-endpoint.com")
93
+ ```
94
+
95
+ Input types:
96
+ The `PortkeyLMInvoker` supports text, image, document, and audio inputs.
97
+ Non-text inputs can be passed as an `Attachment` object with the `user` role.
98
+
99
+ ```python
100
+ text = "What animal is in this image?"
101
+ image = Attachment.from_path("path/to/image.png")
102
+ result = await lm_invoker.invoke([text, image])
103
+ ```
104
+
105
+ Tool calling:
106
+ Tools can be provided via the `tools` parameter to enable tool invocation.
107
+
108
+ ```python
109
+ lm_invoker = PortkeyLMInvoker(..., tools=[tool_1, tool_2])
110
+ ```
111
+ Output example:
112
+ ```python
113
+ LMOutput(
114
+ response="Let me call the tools...",
115
+ tool_calls=[
116
+ ToolCall(id="123", name="tool_1", args={"key": "value"}),
117
+ ]
118
+ )
119
+ ```
120
+
121
+ Structured output:
122
+ The `response_schema` parameter enables structured responses (Pydantic BaseModel or JSON schema).
123
+
124
+ ```python
125
+ class Animal(BaseModel):
126
+ name: str
127
+ color: str
128
+ lm_invoker = PortkeyLMInvoker(..., response_schema=Animal)
129
+ ```
130
+ Output example:
131
+ ```python
132
+ LMOutput(structured_output=Animal(name="Golden retriever", color="Golden"))
133
+ ```
134
+
135
+ Analytics tracking:
136
+ When `output_analytics=True`, the invoker includes token usage, duration, and finish details.
137
+
138
+ ```python
139
+ LMOutput(
140
+ response="Golden retriever is a good dog breed.",
141
+ token_usage=TokenUsage(input_tokens=100, output_tokens=50),
142
+ duration=0.729,
143
+ finish_details={"finish_reason": "stop"},
144
+ )
145
+ ```
146
+
147
+ **Note:** When streaming is enabled, token usage analytics are not supported and will be `None`.
148
+
149
+ Retry and timeout:
150
+ The `PortkeyLMInvoker` supports retry and timeout configuration.
151
+ By default, the max retries is set to 0 and the timeout is set to 30.0 seconds.
152
+ They can be customized by providing a custom `RetryConfig` object to the `retry_config` parameter.
153
+
154
+ Retry config examples:
155
+ ```python
156
+ retry_config = RetryConfig(max_retries=0, timeout=None) # No retry, no timeout
157
+ retry_config = RetryConfig(max_retries=0, timeout=10.0) # No retry, 10.0 seconds timeout
158
+ retry_config = RetryConfig(max_retries=5, timeout=None) # 5 max retries, no timeout
159
+ retry_config = RetryConfig(max_retries=5, timeout=10.0) # 5 max retries, 10.0 seconds timeout
160
+ ```
161
+
162
+ Usage example:
163
+ ```python
164
+ lm_invoker = PortkeyLMInvoker(..., retry_config=retry_config)
165
+ ```
166
+
167
+ Thinking:
168
+ The `thinking` parameter enables enhanced reasoning capability for supported models.
169
+ Thinking mode allocates additional “reasoning tokens” up to `thinking_budget` (minimum 1024).
170
+ When enabled, the model’s reasoning trace is stored in the `reasoning` attribute.
171
+
172
+ ```python
173
+ lm_invoker = PortkeyLMInvoker(..., thinking=True, thinking_budget=1024)
174
+ ```
175
+ Output example:
176
+ ```python
177
+ LMOutput(
178
+ response="Golden retriever is a good dog breed.",
179
+ reasoning=[Reasoning(reasoning="Let me think about it...")],
180
+ )
181
+ ```
182
+
183
+ Streaming output example:
184
+ ```python
185
+ {"type": "thinking_start", "value": ""}
186
+ {"type": "thinking", "value": "Let me think "}
187
+ {"type": "thinking", "value": "about it..."}
188
+ {"type": "thinking_end", "value": ""}
189
+ {"type": "response", "value": "Golden retriever "}
190
+ {"type": "response", "value": "is a good dog breed."}
191
+ ```
192
+
193
+ Note: By default, the thinking token will be streamed with the legacy `EventType.DATA` event type.
194
+ To use the new simplified streamed event format, set the `simplify_events` parameter to `True` during
195
+ LM invoker initialization. The legacy event format support will be removed in v0.6.
196
+
197
+ When thinking is enabled, the amount of tokens allocated for the thinking process can be set via the
198
+ `thinking_budget` parameter. The `thinking_budget`:
199
+ 1. Must be a positive integer.
200
+ 2. Must be at least 1024.
201
+ 3. Must be less than or equal to the model\'s maximum context length.
202
+ For more information, please refer to https://portkey.ai/docs/product/ai-gateway/multimodal-capabilities/thinking-mode
203
+
204
+ Setting reasoning-related parameters for non-reasoning models will raise an error.
205
+
206
+ Output types:
207
+ The output of the `PortkeyLMInvoker` can either be:
208
+ 1. `str`: A simple text response.
209
+ 2. `LMOutput`: A structured response model that may contain:
210
+ 2.1. response (str)
211
+ 2.2. tool_calls (list[ToolCall])
212
+ 2.3. structured_output (dict[str, Any] | BaseModel | None)
213
+ 2.4. token_usage (TokenUsage | None)
214
+ 2.5. duration (float | None)
215
+ 2.6. finish_details (dict[str, Any] | None)
216
+ 2.7. reasoning (list[Reasoning])
217
+ '''
218
+ model_kwargs: Incomplete
219
+ thinking: Incomplete
220
+ thinking_budget: Incomplete
221
+ client_kwargs: Incomplete
222
+ client: Incomplete
223
+ def __init__(self, model_name: str | None = None, portkey_api_key: str | None = None, provider: str | None = None, api_key: str | None = None, config: str | None = None, custom_host: str | None = None, model_kwargs: dict[str, Any] | None = None, default_hyperparameters: dict[str, Any] | None = None, tools: list[Tool | LangChainTool] | None = None, response_schema: ResponseSchema | None = None, output_analytics: bool = False, retry_config: RetryConfig | None = None, thinking: bool | None = None, thinking_budget: int | None = None, simplify_events: bool = False) -> None:
224
+ """Initializes a new instance of the PortkeyLMInvoker class.
225
+
226
+ Args:
227
+ model_name (str | None, optional): The name of the model to use. Acceptable formats:
228
+ 1. 'model' for direct authentication,
229
+ 2. '@provider-slug/model' for model catalog authentication.
230
+ Defaults to None.
231
+ portkey_api_key (str | None, optional): The Portkey API key. Defaults to None, in which
232
+ case the `PORTKEY_API_KEY` environment variable will be used.
233
+ provider (str | None, optional): Provider name or catalog slug. Acceptable formats:
234
+ 1. '@provider-slug' for model catalog authentication (no api_key needed),
235
+ 2. 'provider' for direct authentication (requires api_key).
236
+ Will be combined with model_name if model name is not in the format '@provider-slug/model'.
237
+ Defaults to None.
238
+ api_key (str | None, optional): Provider's API key for direct authentication.
239
+ Must be used with 'provider' parameter (without '@' prefix). Not needed for catalog providers.
240
+ Defaults to None.
241
+ config (str | None, optional): Portkey config ID for complex routing configurations,
242
+ load balancing, or fallback scenarios. Defaults to None.
243
+ custom_host (str | None, optional): Custom host URL for self-hosted or custom endpoints.
244
+ Can be combined with catalog providers. Defaults to None.
245
+ model_kwargs (dict[str, Any] | None, optional): Additional model parameters and authentication.
246
+ Defaults to None.
247
+ default_hyperparameters (dict[str, Any] | None, optional): Default hyperparameters for model
248
+ invocation (temperature, max_tokens, etc.). Defaults to None.
249
+ tools (list[Tool | LangChainTool] | None, optional): Tools for enabling tool calling functionality.
250
+ Defaults to None.
251
+ response_schema (ResponseSchema | None, optional): Schema for structured output generation.
252
+ Defaults to None.
253
+ output_analytics (bool, optional): Whether to output detailed invocation analytics including
254
+ token usage and timing. Defaults to False.
255
+ retry_config (RetryConfig | None, optional): Configuration for retry behavior on failures.
256
+ Defaults to None.
257
+ thinking (bool | None, optional): Whether to enable thinking mode. Defaults to None.
258
+ thinking_budget (int | None, optional): Thinking budget in tokens. Defaults to None.
259
+ simplify_events (bool, optional): Whether to use simplified event schemas. Defaults to False.
260
+ """
@@ -0,0 +1,31 @@
1
+ class Key:
2
+ """Valid keys in Portkey."""
3
+ AUTHORIZATION: str
4
+ BUDGET_TOKENS: str
5
+ CONFIG: str
6
+ CONTENT: str
7
+ CONTENT_BLOCKS: str
8
+ CUSTOM_HOST: str
9
+ DELTA: str
10
+ MAX_RETRIES: str
11
+ MODEL: str
12
+ PROVIDER: str
13
+ PROVIDER_MODEL: str
14
+ REQUEST_TIMEOUT: str
15
+ RESPONSE_FORMAT: str
16
+ STRICT_OPEN_AI_COMPLIANCE: str
17
+ THINKING: str
18
+ TOOLS: str
19
+ TYPE: str
20
+ USAGE: str
21
+
22
+ class InputType:
23
+ """Valid input types in Portkey."""
24
+ ENABLED: str
25
+
26
+ class AuthConfig:
27
+ """Authentication configuration keys."""
28
+ CONFIG: str
29
+ MODEL: str
30
+ PROVIDER_AUTH: str
31
+ PROVIDER_CUSTOM_HOST: str
@@ -0,0 +1,4 @@
1
+ from gllm_inference.prompt_builder.format_strategy.jinja_format_strategy import JinjaFormatStrategy as JinjaFormatStrategy
2
+ from gllm_inference.prompt_builder.format_strategy.string_format_strategy import StringFormatStrategy as StringFormatStrategy
3
+
4
+ __all__ = ['StringFormatStrategy', 'JinjaFormatStrategy']
@@ -0,0 +1,55 @@
1
+ import abc
2
+ from _typeshed import Incomplete
3
+ from abc import ABC, abstractmethod
4
+ from gllm_inference.schema.message import MessageContent as MessageContent
5
+
6
+ class BasePromptFormattingStrategy(ABC, metaclass=abc.ABCMeta):
7
+ """Base class for prompt formatting strategies.
8
+
9
+ This class defines the interface for different prompt templating engines. Subclasses
10
+ implement specific formatting strategies to render templates with variable
11
+ substitution.
12
+
13
+ The strategy pattern allows the PromptBuilder to work with different templating engines
14
+ without changing its core logic.
15
+
16
+ Attributes:
17
+ key_defaults (dict[str, str]): The default values for the keys.
18
+ """
19
+ key_defaults: Incomplete
20
+ def __init__(self, key_defaults: dict[str, str] | None = None) -> None:
21
+ """Initialize the BasePromptFormattingStrategy.
22
+
23
+ Args:
24
+ key_defaults (dict[str, str] | None, optional): The default values for the keys. Defaults to None,
25
+ in which case no default values are used.
26
+ """
27
+ def format(self, template: str, variables_map: dict[str, str] | None = None, extra_contents: list[MessageContent] | None = None) -> list[str]:
28
+ """Format template with variables using the template method pattern.
29
+
30
+ This is a template method that defines the algorithm for formatting:
31
+ 1. Merge key_defaults and variables_map
32
+ 2. Render the template (delegated to subclass via _render_template)
33
+ 3. Append extra_contents to the result
34
+
35
+ Args:
36
+ template (str): Template string to format.
37
+ variables_map (dict[str, str] | None, optional): Variables for substitution. Defaults to None.
38
+ extra_contents (list[MessageContent] | None, optional): Extra contents to format. Defaults to None.
39
+
40
+ Returns:
41
+ str: Formatted template string.
42
+ """
43
+ @abstractmethod
44
+ def extract_keys(self, template: str | None) -> set[str]:
45
+ """Extract variable keys from template.
46
+
47
+ Args:
48
+ template (str | None): Template string to extract keys from.
49
+
50
+ Returns:
51
+ set[str]: Set of variable keys found in template.
52
+
53
+ Raises:
54
+ NotImplementedError: If the method is not implemented.
55
+ """
@@ -0,0 +1,45 @@
1
+ from _typeshed import Incomplete
2
+ from gllm_inference.prompt_builder.format_strategy.format_strategy import BasePromptFormattingStrategy as BasePromptFormattingStrategy
3
+ from gllm_inference.schema import JinjaEnvType as JinjaEnvType
4
+ from jinja2.sandbox import SandboxedEnvironment
5
+ from typing import Any
6
+
7
+ JINJA_DEFAULT_BLACKLISTED_FILTERS: list[str]
8
+ JINJA_DEFAULT_SAFE_GLOBALS: dict[str, Any]
9
+ JINJA_DANGEROUS_PATTERNS: list[str]
10
+ PROMPT_BUILDER_VARIABLE_START_STRING: str
11
+ PROMPT_BUILDER_VARIABLE_END_STRING: str
12
+
13
+ class JinjaFormatStrategy(BasePromptFormattingStrategy):
14
+ """Jinja2 template engine for formatting prompts.
15
+
16
+ Attributes:
17
+ jinja_env (SandboxedEnvironment): The Jinja environment for rendering templates.
18
+ key_defaults (dict[str, str]): The default values for the keys.
19
+ """
20
+ jinja_env: Incomplete
21
+ def __init__(self, environment: JinjaEnvType | SandboxedEnvironment = ..., key_defaults: dict[str, str] | None = None) -> None:
22
+ """Initialize the JinjaFormatStrategy.
23
+
24
+ Args:
25
+ environment (JinjaEnvType | SandboxedEnvironment, optional): The environment for Jinja rendering.
26
+ It can be one of the following:
27
+ 1. `JinjaEnvType.RESTRICTED`: Uses a minimal, restricted Jinja environment.
28
+ Safest for most cases.
29
+ 2. `JinjaEnvType.JINJA_DEFAULT`: Uses the full Jinja environment. Allows more powerful templating,
30
+ but with fewer safety restrictions.
31
+ 3. `SandboxedEnvironment` instance: A custom Jinja `SandboxedEnvironment` object provided by the
32
+ user. Offers fine-grained control over template execution.
33
+ Defaults to `JinjaEnvType.RESTRICTED`
34
+ key_defaults (dict[str, str], optional): The default values for the keys. Defaults to None, in which
35
+ case no default values are used.
36
+ """
37
+ def extract_keys(self, template: str | None) -> set[str]:
38
+ """Extract keys from Jinja template using AST analysis.
39
+
40
+ Args:
41
+ template (str | None): The template to extract keys from.
42
+
43
+ Returns:
44
+ set[str]: The set of keys found in the template.
45
+ """
@@ -0,0 +1,20 @@
1
+ from _typeshed import Incomplete
2
+ from gllm_inference.prompt_builder.format_strategy.format_strategy import BasePromptFormattingStrategy as BasePromptFormattingStrategy
3
+
4
+ KEY_EXTRACTOR_REGEX: Incomplete
5
+
6
+ class StringFormatStrategy(BasePromptFormattingStrategy):
7
+ """String format strategy using str.format() method.
8
+
9
+ Attributes:
10
+ key_defaults (dict[str, str]): The default values for the keys.
11
+ """
12
+ def extract_keys(self, template: str | None) -> set[str]:
13
+ """Extract keys from a template.
14
+
15
+ Args:
16
+ template (str | None): The template to extract keys from.
17
+
18
+ Returns:
19
+ set[str]: The set of keys found in the template.
20
+ """
@@ -1,9 +1,9 @@
1
1
  from _typeshed import Incomplete
2
- from gllm_inference.schema import Message as Message, MessageContent as MessageContent, MessageRole as MessageRole
2
+ from gllm_inference.prompt_builder.format_strategy import JinjaFormatStrategy as JinjaFormatStrategy, StringFormatStrategy as StringFormatStrategy
3
+ from gllm_inference.schema import JinjaEnvType as JinjaEnvType, Message as Message, MessageContent as MessageContent, MessageRole as MessageRole
4
+ from jinja2.sandbox import SandboxedEnvironment as SandboxedEnvironment
3
5
  from typing import Any
4
6
 
5
- KEY_EXTRACTOR_REGEX: Incomplete
6
-
7
7
  class PromptBuilder:
8
8
  """A prompt builder class used in Gen AI applications.
9
9
 
@@ -12,12 +12,14 @@ class PromptBuilder:
12
12
  user_template (str): The user prompt template. May contain placeholders enclosed in curly braces `{}`.
13
13
  prompt_key_set (set[str]): A set of expected keys that must be present in the prompt templates.
14
14
  key_defaults (dict[str, str]): Default values for the keys in the prompt templates.
15
+ strategy (BasePromptFormattingStrategy): The format strategy to be used for formatting the prompt.
15
16
  """
17
+ key_defaults: Incomplete
16
18
  system_template: Incomplete
17
19
  user_template: Incomplete
20
+ strategy: Incomplete
18
21
  prompt_key_set: Incomplete
19
- key_defaults: Incomplete
20
- def __init__(self, system_template: str = '', user_template: str = '', key_defaults: dict[str, str] | None = None, ignore_extra_keys: bool | None = None) -> None:
22
+ def __init__(self, system_template: str = '', user_template: str = '', key_defaults: dict[str, str] | None = None, ignore_extra_keys: bool | None = None, use_jinja: bool = False, jinja_env: JinjaEnvType | SandboxedEnvironment = ...) -> None:
21
23
  """Initializes a new instance of the PromptBuilder class.
22
24
 
23
25
  Args:
@@ -30,6 +32,17 @@ class PromptBuilder:
30
32
  Defaults to None, in which case no default values will be assigned to the keys.
31
33
  ignore_extra_keys (bool | None, optional): Deprecated parameter. Will be removed in v0.6. Extra keys
32
34
  will always raise a warning only instead of raising an error.
35
+ use_jinja (bool, optional): Whether to use Jinja for rendering the prompt templates.
36
+ Defaults to False.
37
+ jinja_env (JinjaEnvType | SandboxedEnvironment, optional): The environment for Jinja rendering.
38
+ It can be one of the following:
39
+ 1. `JinjaEnvType.RESTRICTED`: Uses a minimal, restricted Jinja environment.
40
+ Safest for most cases.
41
+ 2. `JinjaEnvType.JINJA_DEFAULT`: Uses the full Jinja environment. Allows more powerful templating,
42
+ but with fewer safety restrictions.
43
+ 3. `SandboxedEnvironment` instance: A custom Jinja `SandboxedEnvironment` object provided by the
44
+ user. Offers fine-grained control over template execution.
45
+ Defaults to `JinjaEnvType.RESTRICTED`
33
46
 
34
47
  Raises:
35
48
  ValueError: If both `system_template` and `user_template` are empty.
@@ -49,7 +62,7 @@ class PromptBuilder:
49
62
  Values must be either a string or an object that can be serialized to a string.
50
63
 
51
64
  Returns:
52
- list[Message]: A formatted list of messages.
65
+ list[Message]: A list of formatted messages.
53
66
 
54
67
  Raises:
55
68
  ValueError: If a required key for the prompt template is missing from `kwargs`.
@@ -2,7 +2,7 @@ from gllm_inference.schema.activity import Activity as Activity, MCPCallActivity
2
2
  from gllm_inference.schema.attachment import Attachment as Attachment
3
3
  from gllm_inference.schema.code_exec_result import CodeExecResult as CodeExecResult
4
4
  from gllm_inference.schema.config import TruncationConfig as TruncationConfig
5
- from gllm_inference.schema.enums import AttachmentType as AttachmentType, BatchStatus as BatchStatus, EmitDataType as EmitDataType, LMEventType as LMEventType, MessageRole as MessageRole, TruncateSide as TruncateSide
5
+ from gllm_inference.schema.enums import AttachmentType as AttachmentType, BatchStatus as BatchStatus, EmitDataType as EmitDataType, JinjaEnvType as JinjaEnvType, LMEventType as LMEventType, MessageRole as MessageRole, TruncateSide as TruncateSide
6
6
  from gllm_inference.schema.events import ActivityEvent as ActivityEvent, CodeEvent as CodeEvent, ThinkingEvent as ThinkingEvent
7
7
  from gllm_inference.schema.lm_input import LMInput as LMInput
8
8
  from gllm_inference.schema.lm_output import LMOutput as LMOutput
@@ -15,4 +15,4 @@ from gllm_inference.schema.tool_call import ToolCall as ToolCall
15
15
  from gllm_inference.schema.tool_result import ToolResult as ToolResult
16
16
  from gllm_inference.schema.type_alias import EMContent as EMContent, MessageContent as MessageContent, ResponseSchema as ResponseSchema, Vector as Vector
17
17
 
18
- __all__ = ['Activity', 'ActivityEvent', 'Attachment', 'AttachmentType', 'BatchStatus', 'CodeEvent', 'CodeExecResult', 'EMContent', 'EmitDataType', 'LMEventType', 'InputTokenDetails', 'LMInput', 'LMOutput', 'MCPCall', 'MCPCallActivity', 'MCPListToolsActivity', 'MCPServer', 'Message', 'MessageContent', 'MessageRole', 'ModelId', 'ModelProvider', 'OutputTokenDetails', 'Reasoning', 'ThinkingEvent', 'ResponseSchema', 'TokenUsage', 'ToolCall', 'ToolResult', 'TruncateSide', 'TruncationConfig', 'Vector', 'WebSearchActivity']
18
+ __all__ = ['Activity', 'ActivityEvent', 'Attachment', 'AttachmentType', 'BatchStatus', 'CodeEvent', 'CodeExecResult', 'EMContent', 'EmitDataType', 'LMEventType', 'InputTokenDetails', 'JinjaEnvType', 'LMInput', 'LMOutput', 'MCPCall', 'MCPCallActivity', 'MCPListToolsActivity', 'MCPServer', 'Message', 'MessageContent', 'MessageRole', 'ModelId', 'ModelProvider', 'OutputTokenDetails', 'Reasoning', 'ThinkingEvent', 'ResponseSchema', 'TokenUsage', 'ToolCall', 'ToolResult', 'TruncateSide', 'TruncationConfig', 'Vector', 'WebSearchActivity']
@@ -54,6 +54,11 @@ class TruncateSide(StrEnum):
54
54
  RIGHT = 'RIGHT'
55
55
  LEFT = 'LEFT'
56
56
 
57
+ class JinjaEnvType(StrEnum):
58
+ """Enumeration for Jinja environment types."""
59
+ JINJA_DEFAULT = 'jinja_default'
60
+ RESTRICTED = 'restricted'
61
+
57
62
  class WebSearchKey(StrEnum):
58
63
  """Defines valid web search keys."""
59
64
  PATTERN = 'pattern'
@@ -19,6 +19,7 @@ class ModelProvider(StrEnum):
19
19
  LANGCHAIN = 'langchain'
20
20
  LITELLM = 'litellm'
21
21
  OPENAI = 'openai'
22
+ PORTKEY = 'portkey'
22
23
  OPENAI_CHAT_COMPLETIONS = 'openai-chat-completions'
23
24
  OPENAI_COMPATIBLE = 'openai-compatible'
24
25
  TWELVELABS = 'twelvelabs'
Binary file
gllm_inference.pyi CHANGED
@@ -32,6 +32,7 @@ import gllm_inference.lm_invoker.LiteLLMLMInvoker
32
32
  import gllm_inference.lm_invoker.OpenAIChatCompletionsLMInvoker
33
33
  import gllm_inference.lm_invoker.OpenAICompatibleLMInvoker
34
34
  import gllm_inference.lm_invoker.OpenAILMInvoker
35
+ import gllm_inference.lm_invoker.PortkeyLMInvoker
35
36
  import gllm_inference.lm_invoker.XAILMInvoker
36
37
  import gllm_inference.prompt_builder.PromptBuilder
37
38
  import gllm_inference.output_parser.JSONOutputParser
@@ -125,15 +126,21 @@ import gllm_inference.schema.MCPCallActivity
125
126
  import gllm_inference.schema.MCPListToolsActivity
126
127
  import gllm_inference.schema.MCPServer
127
128
  import gllm_inference.schema.WebSearchActivity
129
+ import logging
130
+ import portkey_ai
128
131
  import xai_sdk
129
132
  import xai_sdk.chat
130
133
  import xai_sdk.search
131
134
  import xai_sdk.proto
132
135
  import xai_sdk.proto.v5
133
136
  import xai_sdk.proto.v5.chat_pb2
137
+ import jinja2
138
+ import jinja2.sandbox
139
+ import gllm_inference.schema.JinjaEnvType
140
+ import gllm_inference.prompt_builder.format_strategy.JinjaFormatStrategy
141
+ import gllm_inference.prompt_builder.format_strategy.StringFormatStrategy
134
142
  import transformers
135
143
  import gllm_inference.prompt_formatter.HuggingFacePromptFormatter
136
- import logging
137
144
  import traceback
138
145
  import gllm_inference.realtime_chat.input_streamer.KeyboardInputStreamer
139
146
  import gllm_inference.realtime_chat.output_streamer.ConsoleOutputStreamer
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: gllm-inference-binary
3
- Version: 0.5.44
3
+ Version: 0.5.46
4
4
  Summary: A library containing components related to model inferences in Gen AI applications.
5
5
  Author-email: Henry Wicaksono <henry.wicaksono@gdplabs.id>, Resti Febrina <resti.febrina@gdplabs.id>
6
6
  Requires-Python: <3.14,>=3.11
@@ -39,10 +39,12 @@ Requires-Dist: google-genai<=1.36,>=1.23; extra == "google"
39
39
  Provides-Extra: huggingface
40
40
  Requires-Dist: huggingface-hub<0.31.0,>=0.30.0; extra == "huggingface"
41
41
  Requires-Dist: transformers<5.0.0,>=4.52.0; extra == "huggingface"
42
- Provides-Extra: openai
43
- Requires-Dist: openai<2.0.0,>=1.98.0; extra == "openai"
44
42
  Provides-Extra: litellm
45
43
  Requires-Dist: litellm<2.0.0,>=1.69.2; extra == "litellm"
44
+ Provides-Extra: openai
45
+ Requires-Dist: openai<2.0.0,>=1.98.0; extra == "openai"
46
+ Provides-Extra: portkey-ai
47
+ Requires-Dist: portkey-ai<2.0.0,>=1.14.4; extra == "portkey-ai"
46
48
  Provides-Extra: twelvelabs
47
49
  Requires-Dist: twelvelabs<0.5.0,>=0.4.4; extra == "twelvelabs"
48
50
  Provides-Extra: voyage
@@ -1,10 +1,10 @@
1
- gllm_inference.cp313-win_amd64.pyd,sha256=3Xnjm5F7tiaEIKRL19GPUPLSnwzUmugqGBtivByuSOs,3671552
2
- gllm_inference.pyi,sha256=PN9a6F49IGwGrPXny7b-knSKeGsO_ER8e9DaBqiOD2k,4918
1
+ gllm_inference.cp313-win_amd64.pyd,sha256=FmGdE_EHin-8qlPX4uCTEXqCpQn9yIE_m6z171rHitM,3811840
2
+ gllm_inference.pyi,sha256=1WeCtSLoqo97eCY-WiMP-LF9UUJG_pT5NTESuCoStRg,5211
3
3
  gllm_inference/__init__.pyi,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
4
4
  gllm_inference/constants.pyi,sha256=PncjVw-mkzcJ3ln1ohvVZGdJ-TD-VZy1Ygn4Va8Z7i0,350
5
5
  gllm_inference/builder/__init__.pyi,sha256=-bw1uDx7CAM7pkvjvb1ZXku9zXlQ7aEAyC83KIn3bz8,506
6
6
  gllm_inference/builder/build_em_invoker.pyi,sha256=3vO_pLokR4BAZflOMu6qzXoKx6vibT16uwJETH5Y_yc,6283
7
- gllm_inference/builder/build_lm_invoker.pyi,sha256=HvQICF-qvOTzfXZUqhi7rlwcpkMZpxaC-8QZmhnXKzI,7466
7
+ gllm_inference/builder/build_lm_invoker.pyi,sha256=mGMFjTmflPjfz9gRhnLzfdAnumSGfLuXFt4W76ZHSJw,9520
8
8
  gllm_inference/builder/build_lm_request_processor.pyi,sha256=H7Rg88e7PTTCtuyY64r333moTmh4-ypOwgnG10gkEdY,4232
9
9
  gllm_inference/builder/build_output_parser.pyi,sha256=sgSTrzUmSRxPzUUum0fDU7A3NXYoYhpi6bEx4Q2XMnA,965
10
10
  gllm_inference/catalog/__init__.pyi,sha256=HWgPKWIzprpMHRKe_qN9BZSIQhVhrqiyjLjIXwvj1ho,291
@@ -39,7 +39,7 @@ gllm_inference/exceptions/__init__.pyi,sha256=nXOqwsuwUgsnBcJEANVuxbZ1nDfcJ6-pKU
39
39
  gllm_inference/exceptions/error_parser.pyi,sha256=4aiJZhBzBOqlhdmpvaCvildGy7_XxlJzQpe3PzGt8eE,2040
40
40
  gllm_inference/exceptions/exceptions.pyi,sha256=6y3ECgHAStqMGgQv8Dv-Ui-5PDD07mSj6qaRZeSWea4,5857
41
41
  gllm_inference/exceptions/provider_error_map.pyi,sha256=vWa4ZIHn7qIghECGvO-dS2KzOmf3c10GRWKZ4YDPnSQ,1267
42
- gllm_inference/lm_invoker/__init__.pyi,sha256=jG1xc5fTOeIgeKKVYSnsMzQThKk9kTW38yO_MYtv540,1387
42
+ gllm_inference/lm_invoker/__init__.pyi,sha256=L2nlkj13WwWbDYEBtM0mlAj0-UbSilMjVLpCJ_0Eock,1502
43
43
  gllm_inference/lm_invoker/anthropic_lm_invoker.pyi,sha256=JSgKUk9d1ZHlitv_ZjHlAk2hIW-J7u6yslVHflIeUro,16726
44
44
  gllm_inference/lm_invoker/azure_openai_lm_invoker.pyi,sha256=FYfRNPG-oD4wIfitjTHnGib1uMZL7Pid0gbrRsymAHU,14601
45
45
  gllm_inference/lm_invoker/bedrock_lm_invoker.pyi,sha256=dsNxj3ZfHxUplg6nBLgxVGooGYq1QP89gYzCnmRCz3g,11810
@@ -51,6 +51,7 @@ gllm_inference/lm_invoker/lm_invoker.pyi,sha256=PS4cJ5VLNfHqeTgCerY-c1Xaa7ktdWAi
51
51
  gllm_inference/lm_invoker/openai_chat_completions_lm_invoker.pyi,sha256=uYJFgi4tJGab77232IC1gdoU9h9AqoClIUj6tM6O47s,15177
52
52
  gllm_inference/lm_invoker/openai_compatible_lm_invoker.pyi,sha256=T9sShA_9fgEuaaAuT2gJZq_EYNbEhf3IkWwMCwfszY8,4244
53
53
  gllm_inference/lm_invoker/openai_lm_invoker.pyi,sha256=10iKCyleqHNbJc8M1rj3ogRcNlNxcVgyk0v6TcS6gf4,23452
54
+ gllm_inference/lm_invoker/portkey_lm_invoker.pyi,sha256=BmZ5TFiQx3-6Ijf6J2ICzP6SCfnOFUVTPRLijv85oU0,13465
54
55
  gllm_inference/lm_invoker/xai_lm_invoker.pyi,sha256=gyi12K7M9HkjNX6pU6NVv5Uq3-aHErixO-PVhHjioo8,14632
55
56
  gllm_inference/lm_invoker/batch/__init__.pyi,sha256=vJOTHRJ83oq8Bq0UsMdID9_HW5JAxr06gUs4aPRZfEE,130
56
57
  gllm_inference/lm_invoker/batch/batch_operations.pyi,sha256=o2U17M41RKVFW6j_oxy-SxU1JqUtVt75pKRxrqXzorE,5499
@@ -62,6 +63,7 @@ gllm_inference/lm_invoker/schema/google.pyi,sha256=elXHrUMS46pbTsulk7hBXVVFcT022
62
63
  gllm_inference/lm_invoker/schema/langchain.pyi,sha256=2OJOUQPlGdlUbIOTDOyiWDBOMm3MoVX-kU2nK0zQsF0,452
63
64
  gllm_inference/lm_invoker/schema/openai.pyi,sha256=TsCr8_SM5kK2JyROeXtmH13n46TgKjLMc0agYlYUSZc,2328
64
65
  gllm_inference/lm_invoker/schema/openai_chat_completions.pyi,sha256=nNPb7ETC9IrJwkV5wfbGf6Co3-qdq4lhcXz0l_qYCE4,1261
66
+ gllm_inference/lm_invoker/schema/portkey.pyi,sha256=V2q4JIwDAR7BidqfmO01u1_1mLOMtm5OCon6sN2zNt0,662
65
67
  gllm_inference/lm_invoker/schema/xai.pyi,sha256=jpC6ZSBDUltzm9GjD6zvSFIPwqizn_ywLnjvwSa7KuU,663
66
68
  gllm_inference/model/__init__.pyi,sha256=JKQB0wVSVYD-_tdRkG7N_oEVAKGCcoBw0BUOUMLieFo,602
67
69
  gllm_inference/model/em/__init__.pyi,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -77,7 +79,11 @@ gllm_inference/output_parser/__init__.pyi,sha256=dhAeRTBxc6CfS8bhnHjbtrnyqJ1iyff
77
79
  gllm_inference/output_parser/json_output_parser.pyi,sha256=YtgQh8Uzy8W_Tgh8DfuR7VFFS7qvLEasiTwRfaGZZEU,2993
78
80
  gllm_inference/output_parser/output_parser.pyi,sha256=-Xu5onKCBDqShcO-VrQh5icqAmXdihGc3rkZxL93swg,975
79
81
  gllm_inference/prompt_builder/__init__.pyi,sha256=mPsbiafzSNHsgN-CuzjhgZpfXfi1pPC3_gdsq2p0EM4,120
80
- gllm_inference/prompt_builder/prompt_builder.pyi,sha256=ju52smKHT_Bh2EVMZBWe1Z0ZQjD5aPBDLI_xLaILcgo,3334
82
+ gllm_inference/prompt_builder/prompt_builder.pyi,sha256=67X0MXPRGb_Azifk5fM9lAsQX48rASsQk2gCPikqU5k,4626
83
+ gllm_inference/prompt_builder/format_strategy/__init__.pyi,sha256=BliNAdrN2yNoQt8muLe1IknuE78UDQys_3L_8_2Tn9E,312
84
+ gllm_inference/prompt_builder/format_strategy/format_strategy.pyi,sha256=Uay07qR0nMGbrOZ2twEyrIWYRKevBQL9ju_4fVfByyQ,2328
85
+ gllm_inference/prompt_builder/format_strategy/jinja_format_strategy.pyi,sha256=W8SdOPWPz_U355G8rQwiIQ0Ys78vomUBFEEZiz3AS5k,2270
86
+ gllm_inference/prompt_builder/format_strategy/string_format_strategy.pyi,sha256=Xbx8xAtj3AbgFuPY8A3OuC6MlwenjYm6OXnQwxAP45k,713
81
87
  gllm_inference/prompt_formatter/__init__.pyi,sha256=q5sPPrnoCf-4tMGowh7hXxs63uyWfaZyEI-wjLBTGsA,747
82
88
  gllm_inference/prompt_formatter/agnostic_prompt_formatter.pyi,sha256=qp4L3x7XK7oZaSYP8B4idewKpPioB4XELeKVV-dNi-Q,2067
83
89
  gllm_inference/prompt_formatter/huggingface_prompt_formatter.pyi,sha256=kH60A_3DnHd3BrqbgS_FqQTCTHIjC9BTsk6_FNgcZw8,2784
@@ -99,18 +105,18 @@ gllm_inference/realtime_chat/output_streamer/output_streamer.pyi,sha256=5P9NQ0aJ
99
105
  gllm_inference/request_processor/__init__.pyi,sha256=giEme2WFQhgyKiBZHhSet0_nKSCHwGy-_2p6NRzg0Zc,231
100
106
  gllm_inference/request_processor/lm_request_processor.pyi,sha256=0fy1HyILCVDw6y46E-7tLnQTRYx4ppeRMe0QP6t9Jyw,5990
101
107
  gllm_inference/request_processor/uses_lm_mixin.pyi,sha256=LYHq-zLoXEMel1LfVdYv7W3BZ8WtBLo_WWFjRf10Yto,6512
102
- gllm_inference/schema/__init__.pyi,sha256=cGEeGc5xDyfepbCi5r_c61VmS6VnWyvoRjjK7K13lLg,2177
108
+ gllm_inference/schema/__init__.pyi,sha256=Rv821pgyUUbcVhnGJ0CnXVWJMi2pgaglv6Pq4RHK7yE,2223
103
109
  gllm_inference/schema/activity.pyi,sha256=atrU4OwLesA9FEt1H7K3gsUWYNdOqpI5i2VdWkmo6cs,2367
104
110
  gllm_inference/schema/attachment.pyi,sha256=9zgAjGXBjLfzPGaKi68FMW6b5mXdEA352nDe-ynOSvY,3385
105
111
  gllm_inference/schema/code_exec_result.pyi,sha256=WQ-ARoGM9r6nyRX-A0Ro1XKiqrc9R3jRYXZpu_xo5S4,573
106
112
  gllm_inference/schema/config.pyi,sha256=NVmjQK6HipIE0dKSfx12hgIC0O-S1HEcAc-TWlXAF5A,689
107
- gllm_inference/schema/enums.pyi,sha256=zuKgBxcm0GXvyEZag3FAETFTG-uikgjGJ5QRoXluSZg,1675
113
+ gllm_inference/schema/enums.pyi,sha256=dN6FzT4zNbSfqVxmrl3hO7IIiP-Qy4lAP_tf4tp8dNI,1827
108
114
  gllm_inference/schema/events.pyi,sha256=iG3sFAhvek-fSJgmUE6nJ5M0XzSpRKKpJJiXyuB4Wq0,5058
109
115
  gllm_inference/schema/lm_input.pyi,sha256=HxQiZgY7zcXh_Dw8nK8LSeBTZEHMPZVwmPmnfgSsAbs,197
110
116
  gllm_inference/schema/lm_output.pyi,sha256=DIV8BiIOPaSnMKxzKzH_Mp7j7-MScWCvmllegJDLqFg,2479
111
117
  gllm_inference/schema/mcp.pyi,sha256=4SgQ83pEowfWm2p-w9lupV4NayqqVBOy7SuYxIFeWRs,1045
112
118
  gllm_inference/schema/message.pyi,sha256=jJV6A0ihEcun2OhzyMtNkiHnf7d6v5R-GdpTBGfJ0AQ,2272
113
- gllm_inference/schema/model_id.pyi,sha256=3PeAHrCyMAZJPCa7CfaArmOHdh2oDdUu6lkyx9mKG9g,5819
119
+ gllm_inference/schema/model_id.pyi,sha256=Y9YjIOB5dRhs8EskAxoruFAzX0P3eu_xKD1huRM787M,5844
114
120
  gllm_inference/schema/reasoning.pyi,sha256=jbPxkDRHt0Vt-zdcc8lTT1l2hIE1Jm3HIHeNd0hfXGo,577
115
121
  gllm_inference/schema/token_usage.pyi,sha256=WJiGQyz5qatzBK2b-sABLCyTRLCBbAvxCRcqSJOzu-8,3025
116
122
  gllm_inference/schema/tool_call.pyi,sha256=OWT9LUqs_xfUcOkPG0aokAAqzLYYDkfnjTa0zOWvugk,403
@@ -121,7 +127,7 @@ gllm_inference/utils/io_utils.pyi,sha256=Eg7dvHWdXslTKdjh1j3dG50i7r35XG2zTmJ9XXv
121
127
  gllm_inference/utils/langchain.pyi,sha256=4AwFiVAO0ZpdgmqeC4Pb5NJwBt8vVr0MSUqLeCdTscc,1194
122
128
  gllm_inference/utils/validation.pyi,sha256=-RdMmb8afH7F7q4Ao7x6FbwaDfxUHn3hA3WiOgzB-3s,397
123
129
  gllm_inference.build/.gitignore,sha256=aEiIwOuxfzdCmLZe4oB1JsBmCUxwG8x-u-HBCV9JT8E,1
124
- gllm_inference_binary-0.5.44.dist-info/METADATA,sha256=k03CIyjygon71qyD5--ATKsmuR5bi1IZyMotR-Gyqes,5852
125
- gllm_inference_binary-0.5.44.dist-info/WHEEL,sha256=O_u6PJIQ2pIcyIInxVQ9r-yArMuUZbBIaF1kpYVkYxA,96
126
- gllm_inference_binary-0.5.44.dist-info/top_level.txt,sha256=FpOjtN80F-qVNgbScXSEyqa0w09FYn6301iq6qt69IQ,15
127
- gllm_inference_binary-0.5.44.dist-info/RECORD,,
130
+ gllm_inference_binary-0.5.46.dist-info/METADATA,sha256=e97z4bJANZaeXxjyXY_wSvyxm-n7WbAOCXkCnRbcSYY,5945
131
+ gllm_inference_binary-0.5.46.dist-info/WHEEL,sha256=O_u6PJIQ2pIcyIInxVQ9r-yArMuUZbBIaF1kpYVkYxA,96
132
+ gllm_inference_binary-0.5.46.dist-info/top_level.txt,sha256=FpOjtN80F-qVNgbScXSEyqa0w09FYn6301iq6qt69IQ,15
133
+ gllm_inference_binary-0.5.46.dist-info/RECORD,,