gllm-inference-binary 0.5.41__cp313-cp313-win_amd64.whl → 0.5.43__cp313-cp313-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of gllm-inference-binary might be problematic. Click here for more details.

@@ -1,7 +1,7 @@
1
1
  from _typeshed import Incomplete
2
- from gllm_inference.em_invoker import AzureOpenAIEMInvoker as AzureOpenAIEMInvoker, BedrockEMInvoker as BedrockEMInvoker, GoogleEMInvoker as GoogleEMInvoker, LangChainEMInvoker as LangChainEMInvoker, OpenAICompatibleEMInvoker as OpenAICompatibleEMInvoker, OpenAIEMInvoker as OpenAIEMInvoker, TwelveLabsEMInvoker as TwelveLabsEMInvoker, VoyageEMInvoker as VoyageEMInvoker
2
+ from gllm_inference.em_invoker import AzureOpenAIEMInvoker as AzureOpenAIEMInvoker, BedrockEMInvoker as BedrockEMInvoker, CohereEMInvoker as CohereEMInvoker, GoogleEMInvoker as GoogleEMInvoker, JinaEMInvoker as JinaEMInvoker, LangChainEMInvoker as LangChainEMInvoker, OpenAICompatibleEMInvoker as OpenAICompatibleEMInvoker, OpenAIEMInvoker as OpenAIEMInvoker, TwelveLabsEMInvoker as TwelveLabsEMInvoker, VoyageEMInvoker as VoyageEMInvoker
3
3
  from gllm_inference.em_invoker.em_invoker import BaseEMInvoker as BaseEMInvoker
4
- from gllm_inference.schema.model_id import ModelId as ModelId, ModelProvider as ModelProvider
4
+ from gllm_inference.schema.model_id import ModelId as ModelId, ModelProvider as ModelProvider, OPTIONAL_PATH_PROVIDERS as OPTIONAL_PATH_PROVIDERS
5
5
  from typing import Any
6
6
 
7
7
  PROVIDER_TO_EM_INVOKER_MAP: dict[str, type[BaseEMInvoker]]
@@ -71,6 +71,16 @@ def build_em_invoker(model_id: str | ModelId, credentials: str | dict[str, Any]
71
71
  ```
72
72
  Providing credentials through environment variable is not supported for Google Vertex AI.
73
73
 
74
+ # Using Jina
75
+ ```python
76
+ em_invoker = build_em_invoker(
77
+ model_id="jina/jina-embeddings-v2-large",
78
+ credentials="jina-api-key"
79
+ )
80
+ ```
81
+ The credentials can also be provided through the `JINA_API_KEY` environment variable. For the list of supported
82
+ models, please refer to the following page: https://jina.ai/models
83
+
74
84
  # Using OpenAI
75
85
  ```python
76
86
  em_invoker = build_em_invoker(
@@ -128,6 +138,7 @@ def build_em_invoker(model_id: str | ModelId, credentials: str | dict[str, Any]
128
138
  variables credentials, please refer to the following page:
129
139
  https://python.langchain.com/docs/integrations/text_embedding/
130
140
 
141
+
131
142
  Security warning:
132
143
  Please provide the EM invoker credentials ONLY to the `credentials` parameter. Do not put any kind of
133
144
  credentials in the `config` parameter as the content of the `config` parameter will be logged.
@@ -2,10 +2,12 @@ from _typeshed import Incomplete
2
2
 
3
3
  AZURE_OPENAI_URL_SUFFIX: str
4
4
  DOCUMENT_MIME_TYPES: Incomplete
5
+ EMBEDDING_ENDPOINT: str
5
6
  GOOGLE_SCOPES: Incomplete
6
7
  GRPC_ENABLE_RETRIES_KEY: str
7
- INVOKER_PROPAGATED_MAX_RETRIES: int
8
- INVOKER_DEFAULT_TIMEOUT: float
9
8
  HEX_REPR_LENGTH: int
9
+ INVOKER_DEFAULT_TIMEOUT: float
10
+ INVOKER_PROPAGATED_MAX_RETRIES: int
11
+ JINA_DEFAULT_URL: str
10
12
  OPENAI_DEFAULT_URL: str
11
13
  SECONDS_TO_MILLISECONDS: int
@@ -1,10 +1,12 @@
1
1
  from gllm_inference.em_invoker.azure_openai_em_invoker import AzureOpenAIEMInvoker as AzureOpenAIEMInvoker
2
2
  from gllm_inference.em_invoker.bedrock_em_invoker import BedrockEMInvoker as BedrockEMInvoker
3
+ from gllm_inference.em_invoker.cohere_em_invoker import CohereEMInvoker as CohereEMInvoker
3
4
  from gllm_inference.em_invoker.google_em_invoker import GoogleEMInvoker as GoogleEMInvoker
5
+ from gllm_inference.em_invoker.jina_em_invoker import JinaEMInvoker as JinaEMInvoker
4
6
  from gllm_inference.em_invoker.langchain_em_invoker import LangChainEMInvoker as LangChainEMInvoker
5
7
  from gllm_inference.em_invoker.openai_compatible_em_invoker import OpenAICompatibleEMInvoker as OpenAICompatibleEMInvoker
6
8
  from gllm_inference.em_invoker.openai_em_invoker import OpenAIEMInvoker as OpenAIEMInvoker
7
9
  from gllm_inference.em_invoker.twelevelabs_em_invoker import TwelveLabsEMInvoker as TwelveLabsEMInvoker
8
10
  from gllm_inference.em_invoker.voyage_em_invoker import VoyageEMInvoker as VoyageEMInvoker
9
11
 
10
- __all__ = ['AzureOpenAIEMInvoker', 'BedrockEMInvoker', 'GoogleEMInvoker', 'LangChainEMInvoker', 'OpenAIEMInvoker', 'OpenAICompatibleEMInvoker', 'TwelveLabsEMInvoker', 'VoyageEMInvoker']
12
+ __all__ = ['AzureOpenAIEMInvoker', 'BedrockEMInvoker', 'CohereEMInvoker', 'GoogleEMInvoker', 'JinaEMInvoker', 'LangChainEMInvoker', 'OpenAIEMInvoker', 'OpenAICompatibleEMInvoker', 'TwelveLabsEMInvoker', 'VoyageEMInvoker']
@@ -0,0 +1,128 @@
1
+ from _typeshed import Incomplete
2
+ from gllm_core.utils.retry import RetryConfig as RetryConfig
3
+ from gllm_inference.em_invoker.em_invoker import BaseEMInvoker as BaseEMInvoker
4
+ from gllm_inference.em_invoker.schema.cohere import CohereInputType as CohereInputType, Key as Key
5
+ from gllm_inference.schema import Attachment as Attachment, AttachmentType as AttachmentType, EMContent as EMContent, ModelId as ModelId, ModelProvider as ModelProvider, TruncationConfig as TruncationConfig, Vector as Vector
6
+ from gllm_inference.utils import validate_string_enum as validate_string_enum
7
+ from typing import Any
8
+
9
+ SUPPORTED_ATTACHMENTS: Incomplete
10
+ MULTIMODAL_MODEL_VERSION: Incomplete
11
+
12
+ class CohereEMInvoker(BaseEMInvoker):
13
+ '''An embedding model invoker to interact with Cohere embedding models.
14
+
15
+ Attributes:
16
+ model_id (str): The model ID of the embedding model.
17
+ model_provider (str): The provider of the embedding model (Cohere).
18
+ model_name (str): The name of the Cohere embedding model.
19
+ client (AsyncClient): The asynchronous client for the Cohere API.
20
+ default_hyperparameters (dict[str, Any]): Default hyperparameters for invoking the embedding model.
21
+ retry_config (RetryConfig): The retry configuration for the embedding model.
22
+ truncation_config (TruncationConfig | None): The truncation configuration for the embedding model.
23
+ input_type (CohereInputType): The input type for the embedding model. Supported values include:
24
+ 1. `CohereInputType.SEARCH_DOCUMENT`,
25
+ 2. `CohereInputType.SEARCH_QUERY`,
26
+ 3. `CohereInputType.CLASSIFICATION`,
27
+ 4. `CohereInputType.CLUSTERING`,
28
+ 5. `CohereInputType.IMAGE`.
29
+
30
+ Initialization:
31
+ You can initialize the `CohereEMInvoker` as follows:
32
+ ```python
33
+ em_invoker = CohereEMInvoker(
34
+ model_name="embed-english-v4.0",
35
+ input_type="search_document"
36
+ )
37
+ ```
38
+
39
+ Note: The `input_type` parameter can be one of the following:
40
+ 1. "search_document"
41
+ 2. "search_query"
42
+ 3. "classification"
43
+ 4. "clustering"
44
+ 5. "image"
45
+
46
+ This parameter is optional and defaults to "search_document". For more information about
47
+ input_type, please refer to https://docs.cohere.com/docs/embeddings#the-input_type-parameter.
48
+
49
+ Input types:
50
+ The `CohereEMInvoker` supports the following input types: text and image.
51
+ Non-text inputs must be passed as an `Attachment` object.
52
+
53
+ Output format:
54
+ The `CohereEMInvoker` can embed either:
55
+ 1. A single content.
56
+ 1. A single content is either a text or an image.
57
+ 2. The output will be a `Vector`, representing the embedding of the content.
58
+
59
+ # Example 1: Embedding a text content.
60
+ ```python
61
+ text = "What animal is in this image?"
62
+ result = await em_invoker.invoke(text)
63
+ ```
64
+
65
+ # Example 2: Embedding an image content.
66
+ ```python
67
+ image = Attachment.from_path("path/to/local/image.png")
68
+ result = await em_invoker.invoke(image)
69
+ ```
70
+
71
+ The above examples will return a `Vector` with a size of (embedding_size,).
72
+
73
+ 2. A list of contents.
74
+ 1. A list of contents is a list that consists of any of the above single contents.
75
+ 2. The output will be a `list[Vector]`, where each element is a `Vector` representing the
76
+ embedding of each single content.
77
+
78
+ # Example: Embedding a list of contents.
79
+ ```python
80
+ text = "What animal is in this image?"
81
+ image = Attachment.from_path("path/to/local/image.png")
82
+ result = await em_invoker.invoke([text, image])
83
+ ```
84
+
85
+ The above examples will return a `list[Vector]` with a size of (2, embedding_size).
86
+
87
+ Retry and timeout:
88
+ The `CohereEMInvoker` supports retry and timeout configuration.
89
+ By default, the max retries is set to 0 and the timeout is set to 30.0 seconds.
90
+ They can be customized by providing a custom `RetryConfig` object to the `retry_config` parameter.
91
+
92
+ Retry config examples:
93
+ ```python
94
+ retry_config = RetryConfig(max_retries=0, timeout=None) # No retry, no timeout
95
+ retry_config = RetryConfig(max_retries=0, timeout=10.0) # No retry, 10.0 seconds timeout
96
+ retry_config = RetryConfig(max_retries=5, timeout=None) # 5 max retries, no timeout
97
+ retry_config = RetryConfig(max_retries=5, timeout=10.0) # 5 max retries, 10.0 seconds timeout
98
+ ```
99
+
100
+ Usage example:
101
+ ```python
102
+ em_invoker = CohereEMInvoker(..., retry_config=retry_config)
103
+ ```
104
+
105
+ '''
106
+ input_type: Incomplete
107
+ client: Incomplete
108
+ def __init__(self, model_name: str, api_key: str | None = None, base_url: str | None = None, model_kwargs: dict[str, Any] | None = None, default_hyperparameters: dict[str, Any] | None = None, retry_config: RetryConfig | None = None, truncation_config: TruncationConfig | None = None, input_type: CohereInputType = ...) -> None:
109
+ '''Initializes a new instance of the CohereEMInvoker class.
110
+
111
+ Args:
112
+ model_name (str): The name of the Cohere embedding model to be used.
113
+ api_key (str | None, optional): The API key for authenticating with Cohere. Defaults to None, in which
114
+ case the `COHERE_API_KEY` environment variable will be used.
115
+ base_url (str | None, optional): The base URL for a custom Cohere-compatible endpoint.
116
+ Defaults to None, in which case Cohere\'s default URL will be used.
117
+ model_kwargs (dict[str, Any] | None, optional): Additional keyword arguments for the Cohere client.
118
+ Defaults to None.
119
+ default_hyperparameters (dict[str, Any] | None, optional): Default hyperparameters for invoking the model.
120
+ Defaults to None.
121
+ retry_config (RetryConfig | None, optional): The retry configuration for the embedding model.
122
+ Defaults to None, in which case a default config with no retry and 30.0 seconds timeout will be used.
123
+ truncation_config (TruncationConfig | None, optional): Configuration for text truncation behavior.
124
+ Defaults to None, in which case no truncation is applied.
125
+ input_type (CohereInputType, optional): The input type for the embedding model.
126
+ Defaults to `CohereInputType.SEARCH_DOCUMENT`. Valid values are: "search_document", "search_query",
127
+ "classification", "clustering", and "image".
128
+ '''
@@ -0,0 +1,103 @@
1
+ from _typeshed import Incomplete
2
+ from gllm_core.utils.retry import RetryConfig as RetryConfig
3
+ from gllm_inference.constants import EMBEDDING_ENDPOINT as EMBEDDING_ENDPOINT, JINA_DEFAULT_URL as JINA_DEFAULT_URL
4
+ from gllm_inference.em_invoker.em_invoker import BaseEMInvoker as BaseEMInvoker
5
+ from gllm_inference.em_invoker.schema.jina import InputType as InputType, Key as Key
6
+ from gllm_inference.exceptions import BaseInvokerError as BaseInvokerError, ProviderInternalError as ProviderInternalError
7
+ from gllm_inference.exceptions.error_parser import convert_http_status_to_base_invoker_error as convert_http_status_to_base_invoker_error
8
+ from gllm_inference.schema import Attachment as Attachment, AttachmentType as AttachmentType, EMContent as EMContent, ModelId as ModelId, ModelProvider as ModelProvider, TruncationConfig as TruncationConfig, Vector as Vector
9
+ from typing import Any
10
+
11
+ SUPPORTED_ATTACHMENTS: Incomplete
12
+ MULTIMODAL_MODELS: Incomplete
13
+
14
+ class JinaEMInvoker(BaseEMInvoker):
15
+ '''An embedding model invoker to interact with Jina AI embedding models.
16
+
17
+ Attributes:
18
+ model_id (str): The model ID of the embedding model.
19
+ model_provider (str): The provider of the embedding model.
20
+ model_name (str): The name of the embedding model.
21
+ client (AsyncClient): The client for the Jina AI API.
22
+ default_hyperparameters (dict[str, Any]): Default hyperparameters for invoking the embedding model.
23
+ retry_config (RetryConfig): The retry configuration for the embedding model.
24
+ truncation_config (TruncationConfig | None): The truncation configuration for the embedding model.
25
+
26
+ Input types:
27
+ The `JinaEMInvoker` supports the following input types: text and image.
28
+ Non-text inputs must be passed as a `Attachment` object.
29
+
30
+ Output format:
31
+ The `JinaEMInvoker` can embed either:
32
+ 1. A single content.
33
+ 1. A single content is either a text or an image.
34
+ 2. The output will be a `Vector`, representing the embedding of the content.
35
+
36
+ # Example 1: Embedding a text content.
37
+ ```python
38
+ text = "What animal is in this image?"
39
+ result = await em_invoker.invoke(text)
40
+ ```
41
+
42
+ # Example 2: Embedding an image content.
43
+ ```python
44
+ image = Attachment.from_path("path/to/local/image.png")
45
+ result = await em_invoker.invoke(image)
46
+ ```
47
+
48
+ The above examples will return a `Vector` with a size of (embedding_size,).
49
+
50
+ 2. A list of contents.
51
+ 1. A list of contents is a list that consists of any of the above single contents.
52
+ 2. The output will be a `list[Vector]`, where each element is a `Vector` representing the
53
+ embedding of each single content.
54
+
55
+ # Example: Embedding a list of contents.
56
+ ```python
57
+ text = "What animal is in this image?"
58
+ image = Attachment.from_path("path/to/local/image.png")
59
+ result = await em_invoker.invoke([text, image])
60
+ ```
61
+
62
+ The above examples will return a `list[Vector]` with a size of (2, embedding_size).
63
+
64
+ Retry and timeout:
65
+ The `JinaEMInvoker` supports retry and timeout configuration.
66
+ By default, the max retries is set to 0 and the timeout is set to 30.0 seconds.
67
+ They can be customized by providing a custom `RetryConfig` object to the `retry_config` parameter.
68
+
69
+ Retry config examples:
70
+ ```python
71
+ retry_config = RetryConfig(max_retries=0, timeout=None) # No retry, no timeout
72
+ retry_config = RetryConfig(max_retries=0, timeout=10.0) # No retry, 10.0 seconds timeout
73
+ retry_config = RetryConfig(max_retries=5, timeout=None) # 5 max retries, no timeout
74
+ retry_config = RetryConfig(max_retries=5, timeout=10.0) # 5 max retries, 10.0 seconds timeout
75
+ ```
76
+
77
+ Usage example:
78
+ ```python
79
+ em_invoker = JinaEMInvoker(..., retry_config=retry_config)
80
+ ```
81
+ '''
82
+ client: Incomplete
83
+ model_kwargs: Incomplete
84
+ def __init__(self, model_name: str, api_key: str | None = None, base_url: str = ..., model_kwargs: dict[str, Any] | None = None, default_hyperparameters: dict[str, Any] | None = None, retry_config: RetryConfig | None = None, truncation_config: TruncationConfig | None = None) -> None:
85
+ '''Initializes a new instance of the JinaEMInvoker class.
86
+
87
+ Args:
88
+ model_name (str): The name of the Jina embedding model to be used.
89
+ api_key (str | None, optional): The API key for authenticating with Jina AI.
90
+ Defaults to None, in which case the `JINA_API_KEY` environment variable will be used.
91
+ base_url (str, optional): The base URL for the Jina AI API. Defaults to "https://api.jina.ai/v1".
92
+ model_kwargs (dict[str, Any] | None, optional): Additional keyword arguments for the HTTP client.
93
+ Defaults to None.
94
+ default_hyperparameters (dict[str, Any] | None, optional): Default hyperparameters for invoking the model.
95
+ Defaults to None.
96
+ retry_config (RetryConfig | None, optional): The retry configuration for the embedding model.
97
+ Defaults to None, in which case a default config with no retry and 30.0 seconds timeout will be used.
98
+ truncation_config (TruncationConfig | None, optional): Configuration for text truncation behavior.
99
+ Defaults to None, in which case no truncation is applied.
100
+
101
+ Raises:
102
+ ValueError: If neither `api_key` nor `JINA_API_KEY` environment variable is provided.
103
+ '''
@@ -0,0 +1,20 @@
1
+ from enum import StrEnum
2
+
3
+ class Key(StrEnum):
4
+ """Defines valid keys in Cohere."""
5
+ BASE_URL = 'base_url'
6
+ IMAGE_URL = 'image_url'
7
+ INPUT_TYPE = 'input_type'
8
+ MAX_RETRIES = 'max_retries'
9
+ MODEL = 'model'
10
+ TIMEOUT = 'timeout'
11
+ TYPE = 'type'
12
+ URL = 'url'
13
+
14
+ class CohereInputType(StrEnum):
15
+ """Defines valid embedding input types for Cohere embedding API."""
16
+ CLASSIFICATION = 'classification'
17
+ CLUSTERING = 'clustering'
18
+ IMAGE = 'image'
19
+ SEARCH_DOCUMENT = 'search_document'
20
+ SEARCH_QUERY = 'search_query'
@@ -0,0 +1,28 @@
1
+ from enum import StrEnum
2
+
3
+ class InputType(StrEnum):
4
+ """Defines the supported input types for the Jina AI embedding API."""
5
+ IMAGE_URL = 'image_url'
6
+ TEXT = 'text'
7
+
8
+ class Key(StrEnum):
9
+ """Defines key constants used in the Jina AI API payloads."""
10
+ DATA = 'data'
11
+ EMBEDDING = 'embedding'
12
+ ERROR = 'error'
13
+ IMAGE_URL = 'image_url'
14
+ INPUT = 'input'
15
+ JSON = 'json'
16
+ MESSAGE = 'message'
17
+ MODEL = 'model'
18
+ RESPONSE = 'response'
19
+ STATUS = 'status'
20
+ TASK = 'task'
21
+ TEXT = 'text'
22
+ TYPE = 'type'
23
+ URL = 'url'
24
+
25
+ class OutputType(StrEnum):
26
+ """Defines the expected output types returned by the Jina AI embedding API."""
27
+ DATA = 'data'
28
+ EMBEDDING = 'embedding'
@@ -13,6 +13,7 @@ class ExtendedHTTPStatus(IntEnum):
13
13
  HTTP_STATUS_TO_EXCEPTION_MAP: dict[int, type[BaseInvokerError]]
14
14
  ANTHROPIC_ERROR_MAPPING: Incomplete
15
15
  BEDROCK_ERROR_MAPPING: Incomplete
16
+ COHERE_ERROR_MAPPING: Incomplete
16
17
  GOOGLE_ERROR_MAPPING: Incomplete
17
18
  LANGCHAIN_ERROR_CODE_MAPPING: Incomplete
18
19
  LITELLM_ERROR_MAPPING: Incomplete
@@ -12,8 +12,10 @@ class ModelProvider(StrEnum):
12
12
  ANTHROPIC = 'anthropic'
13
13
  AZURE_OPENAI = 'azure-openai'
14
14
  BEDROCK = 'bedrock'
15
+ COHERE = 'cohere'
15
16
  DATASAUR = 'datasaur'
16
17
  GOOGLE = 'google'
18
+ JINA = 'jina'
17
19
  LANGCHAIN = 'langchain'
18
20
  LITELLM = 'litellm'
19
21
  OPENAI = 'openai'
@@ -45,6 +47,11 @@ class ModelId(BaseModel):
45
47
  model_id = ModelId.from_string("bedrock/us.anthropic.claude-sonnet-4-20250514-v1:0")
46
48
  ```
47
49
 
50
+ # Using Cohere
51
+ ```python
52
+ model_id = ModelId.from_string("cohere/embed-english-v3.0")
53
+ ```
54
+
48
55
  # Using Datasaur
49
56
  ```python
50
57
  model_id = ModelId.from_string("datasaur/https://deployment.datasaur.ai/api/deployment/teamId/deploymentId/")
@@ -55,6 +62,13 @@ class ModelId(BaseModel):
55
62
  model_id = ModelId.from_string("google/gemini-2.5-flash-lite")
56
63
  ```
57
64
 
65
+ # Using Jina
66
+ ```python
67
+ model_id = ModelId.from_string("jina/jina-embeddings-v2-large")
68
+ ```
69
+ For the list of supported models, please refer to the following page:
70
+ https://jina.ai/models
71
+
58
72
  # Using OpenAI
59
73
  ```python
60
74
  model_id = ModelId.from_string("openai/gpt-5-nano")
@@ -94,6 +108,7 @@ class ModelId(BaseModel):
94
108
  ```python
95
109
  model_id = ModelId.from_string("langchain/langchain_openai.ChatOpenAI:gpt-4o-mini")
96
110
  ```
111
+
97
112
  For the list of supported providers, please refer to the following table:
98
113
  https://python.langchain.com/docs/integrations/chat/#featured-providers
99
114
 
Binary file
gllm_inference.pyi CHANGED
@@ -14,7 +14,9 @@ import gllm_core
14
14
  import gllm_core.utils
15
15
  import gllm_inference.em_invoker.AzureOpenAIEMInvoker
16
16
  import gllm_inference.em_invoker.BedrockEMInvoker
17
+ import gllm_inference.em_invoker.CohereEMInvoker
17
18
  import gllm_inference.em_invoker.GoogleEMInvoker
19
+ import gllm_inference.em_invoker.JinaEMInvoker
18
20
  import gllm_inference.em_invoker.LangChainEMInvoker
19
21
  import gllm_inference.em_invoker.OpenAICompatibleEMInvoker
20
22
  import gllm_inference.em_invoker.OpenAIEMInvoker
@@ -50,16 +52,21 @@ import gllm_inference.exceptions.BaseInvokerError
50
52
  import gllm_inference.exceptions.convert_http_status_to_base_invoker_error
51
53
  import gllm_inference.schema.Vector
52
54
  import aioboto3
53
- import asyncio.CancelledError
54
- import gllm_inference.exceptions.convert_to_base_invoker_error
55
+ import base64
55
56
  import gllm_inference.schema.Attachment
56
57
  import gllm_inference.schema.AttachmentType
57
58
  import gllm_inference.schema.EMContent
59
+ import gllm_inference.utils.validate_string_enum
60
+ import cohere
61
+ import asyncio.CancelledError
62
+ import gllm_inference.exceptions.convert_to_base_invoker_error
58
63
  import gllm_inference.schema.TruncateSide
59
64
  import google
60
65
  import google.auth
61
66
  import google.genai
62
67
  import google.genai.types
68
+ import httpx
69
+ import gllm_inference.exceptions.ProviderInternalError
63
70
  import concurrent
64
71
  import concurrent.futures
65
72
  import concurrent.futures.ThreadPoolExecutor
@@ -71,9 +78,7 @@ import gllm_inference.utils.load_langchain_model
71
78
  import gllm_inference.utils.parse_model_data
72
79
  import openai
73
80
  import io
74
- import httpx
75
81
  import twelvelabs
76
- import base64
77
82
  import sys
78
83
  import voyageai
79
84
  import voyageai.client_async
@@ -111,7 +116,6 @@ import jsonschema
111
116
  import gllm_inference.lm_invoker.batch.BatchOperations
112
117
  import gllm_inference.schema.Activity
113
118
  import gllm_inference.schema.MessageContent
114
- import gllm_inference.utils.validate_string_enum
115
119
  import __future__
116
120
  import gllm_inference.schema.ActivityEvent
117
121
  import gllm_inference.schema.CodeEvent
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: gllm-inference-binary
3
- Version: 0.5.41
3
+ Version: 0.5.43
4
4
  Summary: A library containing components related to model inferences in Gen AI applications.
5
5
  Author-email: Henry Wicaksono <henry.wicaksono@gdplabs.id>, Resti Febrina <resti.febrina@gdplabs.id>
6
6
  Requires-Python: <3.14,>=3.11
@@ -30,6 +30,8 @@ Provides-Extra: anthropic
30
30
  Requires-Dist: anthropic<0.61.0,>=0.60.0; extra == "anthropic"
31
31
  Provides-Extra: bedrock
32
32
  Requires-Dist: aioboto3<16.0.0,>=15.0.0; extra == "bedrock"
33
+ Provides-Extra: cohere
34
+ Requires-Dist: cohere<6.0.0,>=5.18.0; extra == "cohere"
33
35
  Provides-Extra: datasaur
34
36
  Requires-Dist: openai<2.0.0,>=1.98.0; extra == "datasaur"
35
37
  Provides-Extra: google
@@ -1,9 +1,9 @@
1
- gllm_inference.cp313-win_amd64.pyd,sha256=uQdGAS_-xI9CJ-JpL9vYtwZhbumBcRgeq6PkUA6wSCI,3563520
2
- gllm_inference.pyi,sha256=NskQYpOC23IIFjCyeiQUcUyDHS65WGLN30RNyoDrhZI,4750
1
+ gllm_inference.cp313-win_amd64.pyd,sha256=sTq5zg0Q1e7Ht2gLViCkrKP-qASuNCM9S27SUMbAy98,3670016
2
+ gllm_inference.pyi,sha256=1LjTXA3c1aB5HyEpUvV9dsED8cBDfdOJNqQhzwbYq1o,4915
3
3
  gllm_inference/__init__.pyi,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
4
- gllm_inference/constants.pyi,sha256=1OBoHfeWfW9bXH9kStNEH__MGnGp--jLfyheAeQnogY,302
4
+ gllm_inference/constants.pyi,sha256=PncjVw-mkzcJ3ln1ohvVZGdJ-TD-VZy1Ygn4Va8Z7i0,350
5
5
  gllm_inference/builder/__init__.pyi,sha256=-bw1uDx7CAM7pkvjvb1ZXku9zXlQ7aEAyC83KIn3bz8,506
6
- gllm_inference/builder/build_em_invoker.pyi,sha256=r4p0T9g_831Fq0youhxdMrQMWkzARw-PSahMu83ZzQo,5762
6
+ gllm_inference/builder/build_em_invoker.pyi,sha256=3vO_pLokR4BAZflOMu6qzXoKx6vibT16uwJETH5Y_yc,6283
7
7
  gllm_inference/builder/build_lm_invoker.pyi,sha256=HvQICF-qvOTzfXZUqhi7rlwcpkMZpxaC-8QZmhnXKzI,7466
8
8
  gllm_inference/builder/build_lm_request_processor.pyi,sha256=H7Rg88e7PTTCtuyY64r333moTmh4-ypOwgnG10gkEdY,4232
9
9
  gllm_inference/builder/build_output_parser.pyi,sha256=sgSTrzUmSRxPzUUum0fDU7A3NXYoYhpi6bEx4Q2XMnA,965
@@ -11,11 +11,13 @@ gllm_inference/catalog/__init__.pyi,sha256=HWgPKWIzprpMHRKe_qN9BZSIQhVhrqiyjLjIX
11
11
  gllm_inference/catalog/catalog.pyi,sha256=eWPqgQKi-SJGHabi_XOTEKpAj96OSRypKsb5ZEC1VWU,4911
12
12
  gllm_inference/catalog/lm_request_processor_catalog.pyi,sha256=FiveqPDkV58XbDO2znXL-Ix5tFbZwNiVnitlEa90YOY,5536
13
13
  gllm_inference/catalog/prompt_builder_catalog.pyi,sha256=iViWB4SaezzjQY4UY1YxeoXUNxqxa2cTJGaD9JSx4Q8,3279
14
- gllm_inference/em_invoker/__init__.pyi,sha256=pmbsjmsqXwfe4WPykMnrmasKrYuylJWnf2s0pbo0ioM,997
14
+ gllm_inference/em_invoker/__init__.pyi,sha256=uCWfCjh5a5DciRFcUdbHndewokM3J5hp3mbhmM5wQC8,1211
15
15
  gllm_inference/em_invoker/azure_openai_em_invoker.pyi,sha256=TXC5Kgf1eZqK2FHKAyeG3LB1SEsSEStnbk9bI1mjC5k,5049
16
16
  gllm_inference/em_invoker/bedrock_em_invoker.pyi,sha256=kQETh2r-WR_H3APtt4QavmfwGOR3KB4k6USNYvFateY,5831
17
+ gllm_inference/em_invoker/cohere_em_invoker.pyi,sha256=4eLqeKLoK8vJB61bGdttfWUUvNDBToBqNA6KQYBMT8s,6793
17
18
  gllm_inference/em_invoker/em_invoker.pyi,sha256=YDYJ8TGScsz5Gg-OBnEENN1tI1RYvwoddypxUr6SAWw,5191
18
19
  gllm_inference/em_invoker/google_em_invoker.pyi,sha256=zZYjeLp9ncwIVM4UHqDJSVOFn1eXiaz9Ba24-_fCF2c,6953
20
+ gllm_inference/em_invoker/jina_em_invoker.pyi,sha256=wrivFiPFRWBSw-TEAkaQKBvBRhlzN6CBaZkc0HOslRw,5754
19
21
  gllm_inference/em_invoker/langchain_em_invoker.pyi,sha256=nhX6LynrjhfySEt_44OlLoSBd15hoz3giWyNM9CYLKY,3544
20
22
  gllm_inference/em_invoker/openai_compatible_em_invoker.pyi,sha256=SbvCbOhdpkq6IyPhGd_IlxD8hbXDZID2rIehY6mJOIs,2923
21
23
  gllm_inference/em_invoker/openai_em_invoker.pyi,sha256=dwZr9rjrjm060HEnyaPR9-jFJpxSi7fWx7i9ZB4aEY4,6313
@@ -25,7 +27,9 @@ gllm_inference/em_invoker/langchain/__init__.pyi,sha256=aOTlRvS9aG1tBErjsmhe75s4
25
27
  gllm_inference/em_invoker/langchain/em_invoker_embeddings.pyi,sha256=BBSDazMOckO9Aw17tC3LGUTPqLb01my1xUZLtKZlwJY,3388
26
28
  gllm_inference/em_invoker/schema/__init__.pyi,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
27
29
  gllm_inference/em_invoker/schema/bedrock.pyi,sha256=HoNgVi0T21aFd1JrCnSLu4yryv8k8RnYdR3-tIdHFgA,498
30
+ gllm_inference/em_invoker/schema/cohere.pyi,sha256=Wio6h0sbY93GygqETtflRaaucFzYSeLZRg7jyxMDK0s,567
28
31
  gllm_inference/em_invoker/schema/google.pyi,sha256=bzdtu4DFH2kATLybIeNl_Lznj99H-6u2Fvx3Zx52oZg,190
32
+ gllm_inference/em_invoker/schema/jina.pyi,sha256=EFo4d8HuzPEZDV5F0PwUIkYPrCTEiCqHq17ICzYxKeg,739
29
33
  gllm_inference/em_invoker/schema/langchain.pyi,sha256=SZ13HDcvAOGmDTi2b72H6Y1J5GePR21JdnM6gYrwcGs,117
30
34
  gllm_inference/em_invoker/schema/openai.pyi,sha256=rNRqN62y5wHOKlr4T0n0m41ikAnSrD72CTnoHxo6kEM,146
31
35
  gllm_inference/em_invoker/schema/openai_compatible.pyi,sha256=A9MOeBhI-IPuvewOk4YYOAGtgyKohERx6-9cEYtbwvs,157
@@ -34,7 +38,7 @@ gllm_inference/em_invoker/schema/voyage.pyi,sha256=Aqvu6mhFkNb01aXAI5mChLKIgEnFn
34
38
  gllm_inference/exceptions/__init__.pyi,sha256=nXOqwsuwUgsnBcJEANVuxbZ1nDfcJ6-pKUfKeZwltkk,1218
35
39
  gllm_inference/exceptions/error_parser.pyi,sha256=4aiJZhBzBOqlhdmpvaCvildGy7_XxlJzQpe3PzGt8eE,2040
36
40
  gllm_inference/exceptions/exceptions.pyi,sha256=6y3ECgHAStqMGgQv8Dv-Ui-5PDD07mSj6qaRZeSWea4,5857
37
- gllm_inference/exceptions/provider_error_map.pyi,sha256=4AsAgbXAh91mxEW2YiomEuhBoeSNeAIo9WbT9WK8gQk,1233
41
+ gllm_inference/exceptions/provider_error_map.pyi,sha256=vWa4ZIHn7qIghECGvO-dS2KzOmf3c10GRWKZ4YDPnSQ,1267
38
42
  gllm_inference/lm_invoker/__init__.pyi,sha256=jG1xc5fTOeIgeKKVYSnsMzQThKk9kTW38yO_MYtv540,1387
39
43
  gllm_inference/lm_invoker/anthropic_lm_invoker.pyi,sha256=JSgKUk9d1ZHlitv_ZjHlAk2hIW-J7u6yslVHflIeUro,16726
40
44
  gllm_inference/lm_invoker/azure_openai_lm_invoker.pyi,sha256=FYfRNPG-oD4wIfitjTHnGib1uMZL7Pid0gbrRsymAHU,14601
@@ -106,7 +110,7 @@ gllm_inference/schema/lm_input.pyi,sha256=HxQiZgY7zcXh_Dw8nK8LSeBTZEHMPZVwmPmnfg
106
110
  gllm_inference/schema/lm_output.pyi,sha256=DIV8BiIOPaSnMKxzKzH_Mp7j7-MScWCvmllegJDLqFg,2479
107
111
  gllm_inference/schema/mcp.pyi,sha256=4SgQ83pEowfWm2p-w9lupV4NayqqVBOy7SuYxIFeWRs,1045
108
112
  gllm_inference/schema/message.pyi,sha256=jJV6A0ihEcun2OhzyMtNkiHnf7d6v5R-GdpTBGfJ0AQ,2272
109
- gllm_inference/schema/model_id.pyi,sha256=NuaS4XlKDRJJezj45CEzn8reDDeII9XeRARmM5SZPqA,5408
113
+ gllm_inference/schema/model_id.pyi,sha256=3PeAHrCyMAZJPCa7CfaArmOHdh2oDdUu6lkyx9mKG9g,5819
110
114
  gllm_inference/schema/reasoning.pyi,sha256=jbPxkDRHt0Vt-zdcc8lTT1l2hIE1Jm3HIHeNd0hfXGo,577
111
115
  gllm_inference/schema/token_usage.pyi,sha256=WJiGQyz5qatzBK2b-sABLCyTRLCBbAvxCRcqSJOzu-8,3025
112
116
  gllm_inference/schema/tool_call.pyi,sha256=OWT9LUqs_xfUcOkPG0aokAAqzLYYDkfnjTa0zOWvugk,403
@@ -117,7 +121,7 @@ gllm_inference/utils/io_utils.pyi,sha256=Eg7dvHWdXslTKdjh1j3dG50i7r35XG2zTmJ9XXv
117
121
  gllm_inference/utils/langchain.pyi,sha256=4AwFiVAO0ZpdgmqeC4Pb5NJwBt8vVr0MSUqLeCdTscc,1194
118
122
  gllm_inference/utils/validation.pyi,sha256=-RdMmb8afH7F7q4Ao7x6FbwaDfxUHn3hA3WiOgzB-3s,397
119
123
  gllm_inference.build/.gitignore,sha256=aEiIwOuxfzdCmLZe4oB1JsBmCUxwG8x-u-HBCV9JT8E,1
120
- gllm_inference_binary-0.5.41.dist-info/METADATA,sha256=8KVy2fPehAniiRxbGTA0N14cLIFFttOQj9gtrTbupEI,5770
121
- gllm_inference_binary-0.5.41.dist-info/WHEEL,sha256=O_u6PJIQ2pIcyIInxVQ9r-yArMuUZbBIaF1kpYVkYxA,96
122
- gllm_inference_binary-0.5.41.dist-info/top_level.txt,sha256=FpOjtN80F-qVNgbScXSEyqa0w09FYn6301iq6qt69IQ,15
123
- gllm_inference_binary-0.5.41.dist-info/RECORD,,
124
+ gllm_inference_binary-0.5.43.dist-info/METADATA,sha256=j6Vv5yVz4dPzbuM8DunV5vgKTdrKrnobNAyv4oJxVaI,5851
125
+ gllm_inference_binary-0.5.43.dist-info/WHEEL,sha256=O_u6PJIQ2pIcyIInxVQ9r-yArMuUZbBIaF1kpYVkYxA,96
126
+ gllm_inference_binary-0.5.43.dist-info/top_level.txt,sha256=FpOjtN80F-qVNgbScXSEyqa0w09FYn6301iq6qt69IQ,15
127
+ gllm_inference_binary-0.5.43.dist-info/RECORD,,