gllm-inference-binary 0.5.40__cp313-cp313-win_amd64.whl → 0.5.42__cp313-cp313-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of gllm-inference-binary might be problematic. Click here for more details.

@@ -1,5 +1,5 @@
1
1
  from _typeshed import Incomplete
2
- from gllm_inference.em_invoker import AzureOpenAIEMInvoker as AzureOpenAIEMInvoker, BedrockEMInvoker as BedrockEMInvoker, GoogleEMInvoker as GoogleEMInvoker, LangChainEMInvoker as LangChainEMInvoker, OpenAICompatibleEMInvoker as OpenAICompatibleEMInvoker, OpenAIEMInvoker as OpenAIEMInvoker, TwelveLabsEMInvoker as TwelveLabsEMInvoker, VoyageEMInvoker as VoyageEMInvoker
2
+ from gllm_inference.em_invoker import AzureOpenAIEMInvoker as AzureOpenAIEMInvoker, BedrockEMInvoker as BedrockEMInvoker, GoogleEMInvoker as GoogleEMInvoker, JinaEMInvoker as JinaEMInvoker, LangChainEMInvoker as LangChainEMInvoker, OpenAICompatibleEMInvoker as OpenAICompatibleEMInvoker, OpenAIEMInvoker as OpenAIEMInvoker, TwelveLabsEMInvoker as TwelveLabsEMInvoker, VoyageEMInvoker as VoyageEMInvoker
3
3
  from gllm_inference.em_invoker.em_invoker import BaseEMInvoker as BaseEMInvoker
4
4
  from gllm_inference.schema.model_id import ModelId as ModelId, ModelProvider as ModelProvider
5
5
  from typing import Any
@@ -71,6 +71,16 @@ def build_em_invoker(model_id: str | ModelId, credentials: str | dict[str, Any]
71
71
  ```
72
72
  Providing credentials through environment variable is not supported for Google Vertex AI.
73
73
 
74
+ # Using Jina
75
+ ```python
76
+ em_invoker = build_em_invoker(
77
+ model_id="jina/jina-embeddings-v2-large",
78
+ credentials="jina-api-key"
79
+ )
80
+ ```
81
+ The credentials can also be provided through the `JINA_API_KEY` environment variable. For the list of supported
82
+ models, please refer to the following page: https://jina.ai/models
83
+
74
84
  # Using OpenAI
75
85
  ```python
76
86
  em_invoker = build_em_invoker(
@@ -128,6 +138,7 @@ def build_em_invoker(model_id: str | ModelId, credentials: str | dict[str, Any]
128
138
  variables credentials, please refer to the following page:
129
139
  https://python.langchain.com/docs/integrations/text_embedding/
130
140
 
141
+
131
142
  Security warning:
132
143
  Please provide the EM invoker credentials ONLY to the `credentials` parameter. Do not put any kind of
133
144
  credentials in the `config` parameter as the content of the `config` parameter will be logged.
@@ -2,10 +2,12 @@ from _typeshed import Incomplete
2
2
 
3
3
  AZURE_OPENAI_URL_SUFFIX: str
4
4
  DOCUMENT_MIME_TYPES: Incomplete
5
+ EMBEDDING_ENDPOINT: str
5
6
  GOOGLE_SCOPES: Incomplete
6
7
  GRPC_ENABLE_RETRIES_KEY: str
7
- INVOKER_PROPAGATED_MAX_RETRIES: int
8
- INVOKER_DEFAULT_TIMEOUT: float
9
8
  HEX_REPR_LENGTH: int
9
+ INVOKER_DEFAULT_TIMEOUT: float
10
+ INVOKER_PROPAGATED_MAX_RETRIES: int
11
+ JINA_DEFAULT_URL: str
10
12
  OPENAI_DEFAULT_URL: str
11
13
  SECONDS_TO_MILLISECONDS: int
@@ -1,10 +1,11 @@
1
1
  from gllm_inference.em_invoker.azure_openai_em_invoker import AzureOpenAIEMInvoker as AzureOpenAIEMInvoker
2
2
  from gllm_inference.em_invoker.bedrock_em_invoker import BedrockEMInvoker as BedrockEMInvoker
3
3
  from gllm_inference.em_invoker.google_em_invoker import GoogleEMInvoker as GoogleEMInvoker
4
+ from gllm_inference.em_invoker.jina_em_invoker import JinaEMInvoker as JinaEMInvoker
4
5
  from gllm_inference.em_invoker.langchain_em_invoker import LangChainEMInvoker as LangChainEMInvoker
5
6
  from gllm_inference.em_invoker.openai_compatible_em_invoker import OpenAICompatibleEMInvoker as OpenAICompatibleEMInvoker
6
7
  from gllm_inference.em_invoker.openai_em_invoker import OpenAIEMInvoker as OpenAIEMInvoker
7
8
  from gllm_inference.em_invoker.twelevelabs_em_invoker import TwelveLabsEMInvoker as TwelveLabsEMInvoker
8
9
  from gllm_inference.em_invoker.voyage_em_invoker import VoyageEMInvoker as VoyageEMInvoker
9
10
 
10
- __all__ = ['AzureOpenAIEMInvoker', 'BedrockEMInvoker', 'GoogleEMInvoker', 'LangChainEMInvoker', 'OpenAIEMInvoker', 'OpenAICompatibleEMInvoker', 'TwelveLabsEMInvoker', 'VoyageEMInvoker']
11
+ __all__ = ['AzureOpenAIEMInvoker', 'BedrockEMInvoker', 'GoogleEMInvoker', 'JinaEMInvoker', 'LangChainEMInvoker', 'OpenAIEMInvoker', 'OpenAICompatibleEMInvoker', 'TwelveLabsEMInvoker', 'VoyageEMInvoker']
@@ -0,0 +1,103 @@
1
+ from _typeshed import Incomplete
2
+ from gllm_core.utils.retry import RetryConfig as RetryConfig
3
+ from gllm_inference.constants import EMBEDDING_ENDPOINT as EMBEDDING_ENDPOINT, JINA_DEFAULT_URL as JINA_DEFAULT_URL
4
+ from gllm_inference.em_invoker.em_invoker import BaseEMInvoker as BaseEMInvoker
5
+ from gllm_inference.em_invoker.schema.jina import InputType as InputType, Key as Key
6
+ from gllm_inference.exceptions import BaseInvokerError as BaseInvokerError, ProviderInternalError as ProviderInternalError
7
+ from gllm_inference.exceptions.error_parser import convert_http_status_to_base_invoker_error as convert_http_status_to_base_invoker_error
8
+ from gllm_inference.schema import Attachment as Attachment, AttachmentType as AttachmentType, EMContent as EMContent, ModelId as ModelId, ModelProvider as ModelProvider, TruncationConfig as TruncationConfig, Vector as Vector
9
+ from typing import Any
10
+
11
+ SUPPORTED_ATTACHMENTS: Incomplete
12
+ MULTIMODAL_MODELS: Incomplete
13
+
14
+ class JinaEMInvoker(BaseEMInvoker):
15
+ '''An embedding model invoker to interact with Jina AI embedding models.
16
+
17
+ Attributes:
18
+ model_id (str): The model ID of the embedding model.
19
+ model_provider (str): The provider of the embedding model.
20
+ model_name (str): The name of the embedding model.
21
+ client (AsyncClient): The client for the Jina AI API.
22
+ default_hyperparameters (dict[str, Any]): Default hyperparameters for invoking the embedding model.
23
+ retry_config (RetryConfig): The retry configuration for the embedding model.
24
+ truncation_config (TruncationConfig | None): The truncation configuration for the embedding model.
25
+
26
+ Input types:
27
+ The `JinaEMInvoker` supports the following input types: text and image.
28
+ Non-text inputs must be passed as a `Attachment` object.
29
+
30
+ Output format:
31
+ The `JinaEMInvoker` can embed either:
32
+ 1. A single content.
33
+ 1. A single content is either a text or an image.
34
+ 2. The output will be a `Vector`, representing the embedding of the content.
35
+
36
+ # Example 1: Embedding a text content.
37
+ ```python
38
+ text = "What animal is in this image?"
39
+ result = await em_invoker.invoke(text)
40
+ ```
41
+
42
+ # Example 2: Embedding an image content.
43
+ ```python
44
+ image = Attachment.from_path("path/to/local/image.png")
45
+ result = await em_invoker.invoke(image)
46
+ ```
47
+
48
+ The above examples will return a `Vector` with a size of (embedding_size,).
49
+
50
+ 2. A list of contents.
51
+ 1. A list of contents is a list that consists of any of the above single contents.
52
+ 2. The output will be a `list[Vector]`, where each element is a `Vector` representing the
53
+ embedding of each single content.
54
+
55
+ # Example: Embedding a list of contents.
56
+ ```python
57
+ text = "What animal is in this image?"
58
+ image = Attachment.from_path("path/to/local/image.png")
59
+ result = await em_invoker.invoke([text, image])
60
+ ```
61
+
62
+ The above examples will return a `list[Vector]` with a size of (2, embedding_size).
63
+
64
+ Retry and timeout:
65
+ The `JinaEMInvoker` supports retry and timeout configuration.
66
+ By default, the max retries is set to 0 and the timeout is set to 30.0 seconds.
67
+ They can be customized by providing a custom `RetryConfig` object to the `retry_config` parameter.
68
+
69
+ Retry config examples:
70
+ ```python
71
+ retry_config = RetryConfig(max_retries=0, timeout=None) # No retry, no timeout
72
+ retry_config = RetryConfig(max_retries=0, timeout=10.0) # No retry, 10.0 seconds timeout
73
+ retry_config = RetryConfig(max_retries=5, timeout=None) # 5 max retries, no timeout
74
+ retry_config = RetryConfig(max_retries=5, timeout=10.0) # 5 max retries, 10.0 seconds timeout
75
+ ```
76
+
77
+ Usage example:
78
+ ```python
79
+ em_invoker = JinaEMInvoker(..., retry_config=retry_config)
80
+ ```
81
+ '''
82
+ client: Incomplete
83
+ model_kwargs: Incomplete
84
+ def __init__(self, model_name: str, api_key: str | None = None, base_url: str = ..., model_kwargs: dict[str, Any] | None = None, default_hyperparameters: dict[str, Any] | None = None, retry_config: RetryConfig | None = None, truncation_config: TruncationConfig | None = None) -> None:
85
+ '''Initializes a new instance of the JinaEMInvoker class.
86
+
87
+ Args:
88
+ model_name (str): The name of the Jina embedding model to be used.
89
+ api_key (str | None, optional): The API key for authenticating with Jina AI.
90
+ Defaults to None, in which case the `JINA_API_KEY` environment variable will be used.
91
+ base_url (str, optional): The base URL for the Jina AI API. Defaults to "https://api.jina.ai/v1".
92
+ model_kwargs (dict[str, Any] | None, optional): Additional keyword arguments for the HTTP client.
93
+ Defaults to None.
94
+ default_hyperparameters (dict[str, Any] | None, optional): Default hyperparameters for invoking the model.
95
+ Defaults to None.
96
+ retry_config (RetryConfig | None, optional): The retry configuration for the embedding model.
97
+ Defaults to None, in which case a default config with no retry and 30.0 seconds timeout will be used.
98
+ truncation_config (TruncationConfig | None, optional): Configuration for text truncation behavior.
99
+ Defaults to None, in which case no truncation is applied.
100
+
101
+ Raises:
102
+ ValueError: If neither `api_key` nor `JINA_API_KEY` environment variable is provided.
103
+ '''
@@ -0,0 +1,28 @@
1
+ from enum import StrEnum
2
+
3
+ class InputType(StrEnum):
4
+ """Defines the supported input types for the Jina AI embedding API."""
5
+ IMAGE_URL = 'image_url'
6
+ TEXT = 'text'
7
+
8
+ class Key(StrEnum):
9
+ """Defines key constants used in the Jina AI API payloads."""
10
+ DATA = 'data'
11
+ EMBEDDING = 'embedding'
12
+ ERROR = 'error'
13
+ IMAGE_URL = 'image_url'
14
+ INPUT = 'input'
15
+ JSON = 'json'
16
+ MESSAGE = 'message'
17
+ MODEL = 'model'
18
+ RESPONSE = 'response'
19
+ STATUS = 'status'
20
+ TASK = 'task'
21
+ TEXT = 'text'
22
+ TYPE = 'type'
23
+ URL = 'url'
24
+
25
+ class OutputType(StrEnum):
26
+ """Defines the expected output types returned by the Jina AI embedding API."""
27
+ DATA = 'data'
28
+ EMBEDDING = 'embedding'
@@ -11,7 +11,8 @@ from langchain_core.tools import Tool as LangChainTool
11
11
  from typing import Any
12
12
 
13
13
  SUPPORTED_ATTACHMENTS: Incomplete
14
- STREAM_DATA_TRANSITION_TYPE_MAP: Incomplete
14
+ STREAM_DATA_START_TYPE_MAP: Incomplete
15
+ STREAM_DATA_END_TYPE_MAP: Incomplete
15
16
  STREAM_DATA_CONTENT_TYPE_MAP: Incomplete
16
17
 
17
18
  class OpenAILMInvoker(BaseLMInvoker):
@@ -8,7 +8,7 @@ class ActivityEvent(Event):
8
8
  """Event schema for model-triggered activities (e.g. web search, MCP).
9
9
 
10
10
  Attributes:
11
- id (str): The unique identifier for the activity event. Defaults to an UUID string.
11
+ id (str): The unique identifier for the activity event. Defaults to an empty string.
12
12
  type (Literal): The type of event, always 'activity'.
13
13
  value (Activity): The activity data containing message and type.
14
14
  level (EventLevel): The severity level of the event. Defined through the EventLevel constants.
@@ -22,7 +22,7 @@ class CodeEvent(Event):
22
22
  """Event schema for model-triggered code execution.
23
23
 
24
24
  Attributes:
25
- id (str): The unique identifier for the code event. Defaults to an UUID string.
25
+ id (str): The unique identifier for the code event. Defaults to an empty string.
26
26
  type (Literal): The type of event (code, code_start, or code_end).
27
27
  value (str): The code content.
28
28
  level (EventLevel): The severity level of the event. Defined through the EventLevel constants.
@@ -32,32 +32,32 @@ class CodeEvent(Event):
32
32
  value: str
33
33
  level: EventLevel
34
34
  @classmethod
35
- def start(cls, id: str | None = None) -> CodeEvent:
35
+ def start(cls, id_: str | None = '') -> CodeEvent:
36
36
  """Create a code start event.
37
37
 
38
38
  Args:
39
- id (str | None): The unique identifier for the code event. Defaults to an UUID string.
39
+ id_ (str | None): The unique identifier for the code event. Defaults to an empty string.
40
40
 
41
41
  Returns:
42
42
  CodeEvent: The code start event.
43
43
  """
44
44
  @classmethod
45
- def content(cls, id: str | None = None, value: str = '') -> CodeEvent:
45
+ def content(cls, id_: str | None = '', value: str = '') -> CodeEvent:
46
46
  """Create a code content event.
47
47
 
48
48
  Args:
49
- id (str | None): The unique identifier for the code event. Defaults to an UUID string.
49
+ id_ (str | None): The unique identifier for the code event. Defaults to an empty string.
50
50
  value (str): The code content.
51
51
 
52
52
  Returns:
53
53
  CodeEvent: The code value event.
54
54
  """
55
55
  @classmethod
56
- def end(cls, id: str | None = None) -> CodeEvent:
56
+ def end(cls, id_: str | None = '') -> CodeEvent:
57
57
  """Create a code end event.
58
58
 
59
59
  Args:
60
- id (str | None): The unique identifier for the code event. Defaults to an UUID string.
60
+ id_ (str | None): The unique identifier for the code event. Defaults to an empty string.
61
61
 
62
62
  Returns:
63
63
  CodeEvent: The code end event.
@@ -67,7 +67,7 @@ class ThinkingEvent(Event):
67
67
  """Event schema for model thinking.
68
68
 
69
69
  Attributes:
70
- id (str): The unique identifier for the thinking event. Defaults to an UUID string.
70
+ id (str): The unique identifier for the thinking event. Defaults to an empty string.
71
71
  type (Literal): The type of thinking event (thinking, thinking_start, or thinking_end).
72
72
  value (str): The thinking content or message.
73
73
  level (EventLevel): The severity level of the event. Defined through the EventLevel constants.
@@ -77,32 +77,32 @@ class ThinkingEvent(Event):
77
77
  value: str
78
78
  level: EventLevel
79
79
  @classmethod
80
- def start(cls, id: str | None = None) -> ThinkingEvent:
80
+ def start(cls, id_: str | None = '') -> ThinkingEvent:
81
81
  """Create a thinking start event.
82
82
 
83
83
  Args:
84
- id (str | None): The unique identifier for the thinking event. Defaults to an UUID string.
84
+ id_ (str | None): The unique identifier for the thinking event. Defaults to an empty string.
85
85
 
86
86
  Returns:
87
87
  ThinkingEvent: The thinking start event.
88
88
  """
89
89
  @classmethod
90
- def content(cls, id: str | None = None, value: str = '') -> ThinkingEvent:
90
+ def content(cls, id_: str | None = '', value: str = '') -> ThinkingEvent:
91
91
  """Create a thinking value event.
92
92
 
93
93
  Args:
94
- id (str | None): The unique identifier for the thinking event. Defaults to an UUID string.
94
+ id_ (str | None): The unique identifier for the thinking event. Defaults to an empty string.
95
95
  value (str): The thinking content or message.
96
96
 
97
97
  Returns:
98
98
  ThinkingEvent: The thinking value event.
99
99
  """
100
100
  @classmethod
101
- def end(cls, id: str | None = None) -> ThinkingEvent:
101
+ def end(cls, id_: str | None = '') -> ThinkingEvent:
102
102
  """Create a thinking end event.
103
103
 
104
104
  Args:
105
- id (str | None): The unique identifier for the thinking event. Defaults to an UUID string.
105
+ id_ (str | None): The unique identifier for the thinking event. Defaults to an empty string.
106
106
 
107
107
  Returns:
108
108
  ThinkingEvent: The thinking end event.
@@ -14,6 +14,7 @@ class ModelProvider(StrEnum):
14
14
  BEDROCK = 'bedrock'
15
15
  DATASAUR = 'datasaur'
16
16
  GOOGLE = 'google'
17
+ JINA = 'jina'
17
18
  LANGCHAIN = 'langchain'
18
19
  LITELLM = 'litellm'
19
20
  OPENAI = 'openai'
@@ -55,6 +56,13 @@ class ModelId(BaseModel):
55
56
  model_id = ModelId.from_string("google/gemini-2.5-flash-lite")
56
57
  ```
57
58
 
59
+ # Using Jina
60
+ ```python
61
+ model_id = ModelId.from_string("jina/jina-embeddings-v2-large")
62
+ ```
63
+ For the list of supported models, please refer to the following page:
64
+ https://jina.ai/models
65
+
58
66
  # Using OpenAI
59
67
  ```python
60
68
  model_id = ModelId.from_string("openai/gpt-5-nano")
Binary file
gllm_inference.pyi CHANGED
@@ -15,6 +15,7 @@ import gllm_core.utils
15
15
  import gllm_inference.em_invoker.AzureOpenAIEMInvoker
16
16
  import gllm_inference.em_invoker.BedrockEMInvoker
17
17
  import gllm_inference.em_invoker.GoogleEMInvoker
18
+ import gllm_inference.em_invoker.JinaEMInvoker
18
19
  import gllm_inference.em_invoker.LangChainEMInvoker
19
20
  import gllm_inference.em_invoker.OpenAICompatibleEMInvoker
20
21
  import gllm_inference.em_invoker.OpenAIEMInvoker
@@ -60,6 +61,9 @@ import google
60
61
  import google.auth
61
62
  import google.genai
62
63
  import google.genai.types
64
+ import base64
65
+ import httpx
66
+ import gllm_inference.exceptions.ProviderInternalError
63
67
  import concurrent
64
68
  import concurrent.futures
65
69
  import concurrent.futures.ThreadPoolExecutor
@@ -71,14 +75,13 @@ import gllm_inference.utils.load_langchain_model
71
75
  import gllm_inference.utils.parse_model_data
72
76
  import openai
73
77
  import io
74
- import httpx
75
78
  import twelvelabs
76
- import base64
77
79
  import sys
78
80
  import voyageai
79
81
  import voyageai.client_async
80
82
  import http
81
83
  import http.HTTPStatus
84
+ import uuid
82
85
  import gllm_core.constants
83
86
  import gllm_core.event
84
87
  import gllm_core.schema
@@ -135,7 +138,6 @@ import gllm_inference.realtime_chat.output_streamer.ConsoleOutputStreamer
135
138
  import google.genai.live
136
139
  import gllm_core.utils.logger_manager
137
140
  import mimetypes
138
- import uuid
139
141
  import pathlib
140
142
  import pathlib.Path
141
143
  import filetype
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: gllm-inference-binary
3
- Version: 0.5.40
3
+ Version: 0.5.42
4
4
  Summary: A library containing components related to model inferences in Gen AI applications.
5
5
  Author-email: Henry Wicaksono <henry.wicaksono@gdplabs.id>, Resti Febrina <resti.febrina@gdplabs.id>
6
6
  Requires-Python: <3.14,>=3.11
@@ -1,9 +1,9 @@
1
- gllm_inference.cp313-win_amd64.pyd,sha256=1dYQoCaBFcwcg-fqBMMF3NW3vAzdeJv3_ZRy9de9nAs,3557376
2
- gllm_inference.pyi,sha256=CM8fddhFC2U0VGu9_JWrokO5YDc3B-eXx8pSjLYRlGY,4750
1
+ gllm_inference.cp313-win_amd64.pyd,sha256=FYH5KTQcK7_qnRISOhH_EgUHRR5OuNaCaJrqsP7zsmc,3619840
2
+ gllm_inference.pyi,sha256=ifuvcH5p0J0Q2zXwfqXT4Sh5kcodA7O8x6SmQJ-_M0w,4852
3
3
  gllm_inference/__init__.pyi,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
4
- gllm_inference/constants.pyi,sha256=1OBoHfeWfW9bXH9kStNEH__MGnGp--jLfyheAeQnogY,302
4
+ gllm_inference/constants.pyi,sha256=PncjVw-mkzcJ3ln1ohvVZGdJ-TD-VZy1Ygn4Va8Z7i0,350
5
5
  gllm_inference/builder/__init__.pyi,sha256=-bw1uDx7CAM7pkvjvb1ZXku9zXlQ7aEAyC83KIn3bz8,506
6
- gllm_inference/builder/build_em_invoker.pyi,sha256=r4p0T9g_831Fq0youhxdMrQMWkzARw-PSahMu83ZzQo,5762
6
+ gllm_inference/builder/build_em_invoker.pyi,sha256=ij24IMOYIYjia_cONdVhfW0QpulqyqG6nQhTdo5fYs0,6195
7
7
  gllm_inference/builder/build_lm_invoker.pyi,sha256=HvQICF-qvOTzfXZUqhi7rlwcpkMZpxaC-8QZmhnXKzI,7466
8
8
  gllm_inference/builder/build_lm_request_processor.pyi,sha256=H7Rg88e7PTTCtuyY64r333moTmh4-ypOwgnG10gkEdY,4232
9
9
  gllm_inference/builder/build_output_parser.pyi,sha256=sgSTrzUmSRxPzUUum0fDU7A3NXYoYhpi6bEx4Q2XMnA,965
@@ -11,11 +11,12 @@ gllm_inference/catalog/__init__.pyi,sha256=HWgPKWIzprpMHRKe_qN9BZSIQhVhrqiyjLjIX
11
11
  gllm_inference/catalog/catalog.pyi,sha256=eWPqgQKi-SJGHabi_XOTEKpAj96OSRypKsb5ZEC1VWU,4911
12
12
  gllm_inference/catalog/lm_request_processor_catalog.pyi,sha256=FiveqPDkV58XbDO2znXL-Ix5tFbZwNiVnitlEa90YOY,5536
13
13
  gllm_inference/catalog/prompt_builder_catalog.pyi,sha256=iViWB4SaezzjQY4UY1YxeoXUNxqxa2cTJGaD9JSx4Q8,3279
14
- gllm_inference/em_invoker/__init__.pyi,sha256=pmbsjmsqXwfe4WPykMnrmasKrYuylJWnf2s0pbo0ioM,997
14
+ gllm_inference/em_invoker/__init__.pyi,sha256=ClcAHvB87iqUZ-clWxKqT0dD3v6Tas43pQiRWOgYnog,1100
15
15
  gllm_inference/em_invoker/azure_openai_em_invoker.pyi,sha256=TXC5Kgf1eZqK2FHKAyeG3LB1SEsSEStnbk9bI1mjC5k,5049
16
16
  gllm_inference/em_invoker/bedrock_em_invoker.pyi,sha256=kQETh2r-WR_H3APtt4QavmfwGOR3KB4k6USNYvFateY,5831
17
17
  gllm_inference/em_invoker/em_invoker.pyi,sha256=YDYJ8TGScsz5Gg-OBnEENN1tI1RYvwoddypxUr6SAWw,5191
18
18
  gllm_inference/em_invoker/google_em_invoker.pyi,sha256=zZYjeLp9ncwIVM4UHqDJSVOFn1eXiaz9Ba24-_fCF2c,6953
19
+ gllm_inference/em_invoker/jina_em_invoker.pyi,sha256=wrivFiPFRWBSw-TEAkaQKBvBRhlzN6CBaZkc0HOslRw,5754
19
20
  gllm_inference/em_invoker/langchain_em_invoker.pyi,sha256=nhX6LynrjhfySEt_44OlLoSBd15hoz3giWyNM9CYLKY,3544
20
21
  gllm_inference/em_invoker/openai_compatible_em_invoker.pyi,sha256=SbvCbOhdpkq6IyPhGd_IlxD8hbXDZID2rIehY6mJOIs,2923
21
22
  gllm_inference/em_invoker/openai_em_invoker.pyi,sha256=dwZr9rjrjm060HEnyaPR9-jFJpxSi7fWx7i9ZB4aEY4,6313
@@ -26,6 +27,7 @@ gllm_inference/em_invoker/langchain/em_invoker_embeddings.pyi,sha256=BBSDazMOckO
26
27
  gllm_inference/em_invoker/schema/__init__.pyi,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
27
28
  gllm_inference/em_invoker/schema/bedrock.pyi,sha256=HoNgVi0T21aFd1JrCnSLu4yryv8k8RnYdR3-tIdHFgA,498
28
29
  gllm_inference/em_invoker/schema/google.pyi,sha256=bzdtu4DFH2kATLybIeNl_Lznj99H-6u2Fvx3Zx52oZg,190
30
+ gllm_inference/em_invoker/schema/jina.pyi,sha256=EFo4d8HuzPEZDV5F0PwUIkYPrCTEiCqHq17ICzYxKeg,739
29
31
  gllm_inference/em_invoker/schema/langchain.pyi,sha256=SZ13HDcvAOGmDTi2b72H6Y1J5GePR21JdnM6gYrwcGs,117
30
32
  gllm_inference/em_invoker/schema/openai.pyi,sha256=rNRqN62y5wHOKlr4T0n0m41ikAnSrD72CTnoHxo6kEM,146
31
33
  gllm_inference/em_invoker/schema/openai_compatible.pyi,sha256=A9MOeBhI-IPuvewOk4YYOAGtgyKohERx6-9cEYtbwvs,157
@@ -46,7 +48,7 @@ gllm_inference/lm_invoker/litellm_lm_invoker.pyi,sha256=IJxRUkmgXY8oQwS7tJoskO8f
46
48
  gllm_inference/lm_invoker/lm_invoker.pyi,sha256=vUmMNEl7F__PavQJ42scoYGyWdEvZOw2Bwxhoqv_gKE,8659
47
49
  gllm_inference/lm_invoker/openai_chat_completions_lm_invoker.pyi,sha256=uYJFgi4tJGab77232IC1gdoU9h9AqoClIUj6tM6O47s,15177
48
50
  gllm_inference/lm_invoker/openai_compatible_lm_invoker.pyi,sha256=T9sShA_9fgEuaaAuT2gJZq_EYNbEhf3IkWwMCwfszY8,4244
49
- gllm_inference/lm_invoker/openai_lm_invoker.pyi,sha256=JJ-EEoUZVU147UC0oU11EimWuaEhC9p5lBy-PVW60fM,23419
51
+ gllm_inference/lm_invoker/openai_lm_invoker.pyi,sha256=10iKCyleqHNbJc8M1rj3ogRcNlNxcVgyk0v6TcS6gf4,23452
50
52
  gllm_inference/lm_invoker/xai_lm_invoker.pyi,sha256=gyi12K7M9HkjNX6pU6NVv5Uq3-aHErixO-PVhHjioo8,14632
51
53
  gllm_inference/lm_invoker/batch/__init__.pyi,sha256=vJOTHRJ83oq8Bq0UsMdID9_HW5JAxr06gUs4aPRZfEE,130
52
54
  gllm_inference/lm_invoker/batch/batch_operations.pyi,sha256=o2U17M41RKVFW6j_oxy-SxU1JqUtVt75pKRxrqXzorE,5499
@@ -101,12 +103,12 @@ gllm_inference/schema/attachment.pyi,sha256=9zgAjGXBjLfzPGaKi68FMW6b5mXdEA352nDe
101
103
  gllm_inference/schema/code_exec_result.pyi,sha256=WQ-ARoGM9r6nyRX-A0Ro1XKiqrc9R3jRYXZpu_xo5S4,573
102
104
  gllm_inference/schema/config.pyi,sha256=NVmjQK6HipIE0dKSfx12hgIC0O-S1HEcAc-TWlXAF5A,689
103
105
  gllm_inference/schema/enums.pyi,sha256=U30RGvNFcNNJxTZZPt8vK7SFp3W4KSPVFxTZaiF1eLU,1375
104
- gllm_inference/schema/events.pyi,sha256=ifF75efM1TaEjw4AQmPkoQJUSl8d3Gt9PsBhTwSGsJ4,4020
106
+ gllm_inference/schema/events.pyi,sha256=HMkGU1XoLDR6h9-L13LEn_27Z9jkmKk-kBTD-0qKzJY,4029
105
107
  gllm_inference/schema/lm_input.pyi,sha256=HxQiZgY7zcXh_Dw8nK8LSeBTZEHMPZVwmPmnfgSsAbs,197
106
108
  gllm_inference/schema/lm_output.pyi,sha256=DIV8BiIOPaSnMKxzKzH_Mp7j7-MScWCvmllegJDLqFg,2479
107
109
  gllm_inference/schema/mcp.pyi,sha256=4SgQ83pEowfWm2p-w9lupV4NayqqVBOy7SuYxIFeWRs,1045
108
110
  gllm_inference/schema/message.pyi,sha256=jJV6A0ihEcun2OhzyMtNkiHnf7d6v5R-GdpTBGfJ0AQ,2272
109
- gllm_inference/schema/model_id.pyi,sha256=NuaS4XlKDRJJezj45CEzn8reDDeII9XeRARmM5SZPqA,5408
111
+ gllm_inference/schema/model_id.pyi,sha256=eFNCNAmDSk0M6SqjDq8JRs0I1UcVzx2JhYWaHSFDGTQ,5667
110
112
  gllm_inference/schema/reasoning.pyi,sha256=jbPxkDRHt0Vt-zdcc8lTT1l2hIE1Jm3HIHeNd0hfXGo,577
111
113
  gllm_inference/schema/token_usage.pyi,sha256=WJiGQyz5qatzBK2b-sABLCyTRLCBbAvxCRcqSJOzu-8,3025
112
114
  gllm_inference/schema/tool_call.pyi,sha256=OWT9LUqs_xfUcOkPG0aokAAqzLYYDkfnjTa0zOWvugk,403
@@ -117,7 +119,7 @@ gllm_inference/utils/io_utils.pyi,sha256=Eg7dvHWdXslTKdjh1j3dG50i7r35XG2zTmJ9XXv
117
119
  gllm_inference/utils/langchain.pyi,sha256=4AwFiVAO0ZpdgmqeC4Pb5NJwBt8vVr0MSUqLeCdTscc,1194
118
120
  gllm_inference/utils/validation.pyi,sha256=-RdMmb8afH7F7q4Ao7x6FbwaDfxUHn3hA3WiOgzB-3s,397
119
121
  gllm_inference.build/.gitignore,sha256=aEiIwOuxfzdCmLZe4oB1JsBmCUxwG8x-u-HBCV9JT8E,1
120
- gllm_inference_binary-0.5.40.dist-info/METADATA,sha256=nB6jb13Rpa3SqeBaMsTuF6mTdRMKSkBwzDzuSONeHJc,5770
121
- gllm_inference_binary-0.5.40.dist-info/WHEEL,sha256=O_u6PJIQ2pIcyIInxVQ9r-yArMuUZbBIaF1kpYVkYxA,96
122
- gllm_inference_binary-0.5.40.dist-info/top_level.txt,sha256=FpOjtN80F-qVNgbScXSEyqa0w09FYn6301iq6qt69IQ,15
123
- gllm_inference_binary-0.5.40.dist-info/RECORD,,
122
+ gllm_inference_binary-0.5.42.dist-info/METADATA,sha256=tpuAFFqRUaKa8IeR8xqcX5b0j4e_BkVO9xA7AnIfNGY,5770
123
+ gllm_inference_binary-0.5.42.dist-info/WHEEL,sha256=O_u6PJIQ2pIcyIInxVQ9r-yArMuUZbBIaF1kpYVkYxA,96
124
+ gllm_inference_binary-0.5.42.dist-info/top_level.txt,sha256=FpOjtN80F-qVNgbScXSEyqa0w09FYn6301iq6qt69IQ,15
125
+ gllm_inference_binary-0.5.42.dist-info/RECORD,,