gllm-inference-binary 0.5.39__cp313-cp313-win_amd64.whl → 0.5.40__cp313-cp313-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of gllm-inference-binary might be problematic. Click here for more details.

@@ -57,9 +57,9 @@ class AzureOpenAIEMInvoker(OpenAIEMInvoker):
57
57
 
58
58
  Retry config examples:
59
59
  ```python
60
- retry_config = RetryConfig(max_retries=0, timeout=0.0) # No retry, no timeout
60
+ retry_config = RetryConfig(max_retries=0, timeout=None) # No retry, no timeout
61
61
  retry_config = RetryConfig(max_retries=0, timeout=10.0) # No retry, 10.0 seconds timeout
62
- retry_config = RetryConfig(max_retries=5, timeout=0.0) # 5 max retries, no timeout
62
+ retry_config = RetryConfig(max_retries=5, timeout=None) # 5 max retries, no timeout
63
63
  retry_config = RetryConfig(max_retries=5, timeout=10.0) # 5 max retries, 10.0 seconds timeout
64
64
  ```
65
65
 
@@ -67,9 +67,9 @@ class BedrockEMInvoker(BaseEMInvoker):
67
67
 
68
68
  Retry config examples:
69
69
  ```python
70
- retry_config = RetryConfig(max_retries=0, timeout=0.0) # No retry, no timeout
70
+ retry_config = RetryConfig(max_retries=0, timeout=None) # No retry, no timeout
71
71
  retry_config = RetryConfig(max_retries=0, timeout=10.0) # No retry, 10.0 seconds timeout
72
- retry_config = RetryConfig(max_retries=5, timeout=0.0) # 5 max retries, no timeout
72
+ retry_config = RetryConfig(max_retries=5, timeout=None) # 5 max retries, no timeout
73
73
  retry_config = RetryConfig(max_retries=5, timeout=10.0) # 5 max retries, 10.0 seconds timeout
74
74
  ```
75
75
 
@@ -89,9 +89,9 @@ class GoogleEMInvoker(BaseEMInvoker):
89
89
 
90
90
  Retry config examples:
91
91
  ```python
92
- retry_config = RetryConfig(max_retries=0, timeout=0.0) # No retry, no timeout
92
+ retry_config = RetryConfig(max_retries=0, timeout=None) # No retry, no timeout
93
93
  retry_config = RetryConfig(max_retries=0, timeout=10.0) # No retry, 10.0 seconds timeout
94
- retry_config = RetryConfig(max_retries=5, timeout=0.0) # 5 max retries, no timeout
94
+ retry_config = RetryConfig(max_retries=5, timeout=None) # 5 max retries, no timeout
95
95
  retry_config = RetryConfig(max_retries=5, timeout=10.0) # 5 max retries, 10.0 seconds timeout
96
96
  ```
97
97
 
@@ -85,9 +85,9 @@ class OpenAIEMInvoker(BaseEMInvoker):
85
85
 
86
86
  Retry config examples:
87
87
  ```python
88
- retry_config = RetryConfig(max_retries=0, timeout=0.0) # No retry, no timeout
88
+ retry_config = RetryConfig(max_retries=0, timeout=None) # No retry, no timeout
89
89
  retry_config = RetryConfig(max_retries=0, timeout=10.0) # No retry, 10.0 seconds timeout
90
- retry_config = RetryConfig(max_retries=5, timeout=0.0) # 5 max retries, no timeout
90
+ retry_config = RetryConfig(max_retries=5, timeout=None) # 5 max retries, no timeout
91
91
  retry_config = RetryConfig(max_retries=5, timeout=10.0) # 5 max retries, 10.0 seconds timeout
92
92
  ```
93
93
 
@@ -71,9 +71,9 @@ class TwelveLabsEMInvoker(BaseEMInvoker):
71
71
 
72
72
  Retry config examples:
73
73
  ```python
74
- retry_config = RetryConfig(max_retries=0, timeout=0.0) # No retry, no timeout
74
+ retry_config = RetryConfig(max_retries=0, timeout=None) # No retry, no timeout
75
75
  retry_config = RetryConfig(max_retries=0, timeout=10.0) # No retry, 10.0 seconds timeout
76
- retry_config = RetryConfig(max_retries=5, timeout=0.0) # 5 max retries, no timeout
76
+ retry_config = RetryConfig(max_retries=5, timeout=None) # 5 max retries, no timeout
77
77
  retry_config = RetryConfig(max_retries=5, timeout=10.0) # 5 max retries, 10.0 seconds timeout
78
78
  ```
79
79
 
@@ -74,9 +74,9 @@ class VoyageEMInvoker(BaseEMInvoker):
74
74
 
75
75
  Retry config examples:
76
76
  ```python
77
- retry_config = RetryConfig(max_retries=0, timeout=0.0) # No retry, no timeout
77
+ retry_config = RetryConfig(max_retries=0, timeout=None) # No retry, no timeout
78
78
  retry_config = RetryConfig(max_retries=0, timeout=10.0) # No retry, 10.0 seconds timeout
79
- retry_config = RetryConfig(max_retries=5, timeout=0.0) # 5 max retries, no timeout
79
+ retry_config = RetryConfig(max_retries=5, timeout=None) # 5 max retries, no timeout
80
80
  retry_config = RetryConfig(max_retries=5, timeout=10.0) # 5 max retries, 10.0 seconds timeout
81
81
  ```
82
82
 
@@ -149,9 +149,9 @@ class AnthropicLMInvoker(BaseLMInvoker):
149
149
 
150
150
  Retry config examples:
151
151
  ```python
152
- retry_config = RetryConfig(max_retries=0, timeout=0.0) # No retry, no timeout
152
+ retry_config = RetryConfig(max_retries=0, timeout=None) # No retry, no timeout
153
153
  retry_config = RetryConfig(max_retries=0, timeout=10.0) # No retry, 10.0 seconds timeout
154
- retry_config = RetryConfig(max_retries=5, timeout=0.0) # 5 max retries, no timeout
154
+ retry_config = RetryConfig(max_retries=5, timeout=None) # 5 max retries, no timeout
155
155
  retry_config = RetryConfig(max_retries=5, timeout=10.0) # 5 max retries, 10.0 seconds timeout
156
156
  ```
157
157
 
@@ -266,25 +266,15 @@ class AnthropicLMInvoker(BaseLMInvoker):
266
266
 
267
267
  Output types:
268
268
  The output of the `AnthropicLMInvoker` can either be:
269
- 1. `str`: The text response if no additional output is needed.
270
- 2. `LMOutput`: A Pydantic model with the following attributes if any additional output is needed:
271
- 2.1. response (str): The text response.
272
- 2.2. tool_calls (list[ToolCall]): The tool calls, if the `tools` parameter is defined and the language
273
- model decides to invoke tools. Defaults to an empty list.
274
- 2.3. structured_output (dict[str, Any] | BaseModel | None): The structured output, if the `response_schema`
275
- parameter is defined. Defaults to None.
276
- 2.4. token_usage (TokenUsage | None): The token usage information, if the `output_analytics` parameter is
277
- set to `True`. Defaults to None.
278
- 2.5. duration (float | None): The duration of the invocation in seconds, if the `output_analytics`
279
- parameter is set to `True`. Defaults to None.
280
- 2.6. finish_details (dict[str, Any]): The details about how the generation finished, if the
281
- `output_analytics` parameter is set to `True`. Defaults to an empty dictionary.
282
- 2.7. reasoning (list[Reasoning]): The reasoning objects, if the `thinking` parameter is set to `True`.
283
- Defaults to an empty list.
284
- 2.8. citations (list[Chunk]): The citations. Currently not supported. Defaults to an empty list.
285
- 2.9. code_exec_results (list[CodeExecResult]): The code execution results. Currently not supported.
286
- Defaults to an empty list.
287
- 2.10. mcp_calls (list[MCPCall]): The MCP calls. Currently not supported. Defaults to an empty list.
269
+ 1. `str`: A text response.
270
+ 2. `LMOutput`: A Pydantic model that may contain the following attributes:
271
+ 2.1. response (str)
272
+ 2.2. tool_calls (list[ToolCall])
273
+ 2.3. structured_output (dict[str, Any] | BaseModel | None)
274
+ 2.4. token_usage (TokenUsage | None)
275
+ 2.5. duration (float | None)
276
+ 2.6. finish_details (dict[str, Any])
277
+ 2.7. reasoning (list[Reasoning])
288
278
  '''
289
279
  client: Incomplete
290
280
  thinking: Incomplete
@@ -152,9 +152,9 @@ class AzureOpenAILMInvoker(OpenAILMInvoker):
152
152
 
153
153
  Retry config examples:
154
154
  ```python
155
- retry_config = RetryConfig(max_retries=0, timeout=0.0) # No retry, no timeout
155
+ retry_config = RetryConfig(max_retries=0, timeout=None) # No retry, no timeout
156
156
  retry_config = RetryConfig(max_retries=0, timeout=10.0) # No retry, 10.0 seconds timeout
157
- retry_config = RetryConfig(max_retries=5, timeout=0.0) # 5 max retries, no timeout
157
+ retry_config = RetryConfig(max_retries=5, timeout=None) # 5 max retries, no timeout
158
158
  retry_config = RetryConfig(max_retries=5, timeout=10.0) # 5 max retries, 10.0 seconds timeout
159
159
  ```
160
160
 
@@ -208,25 +208,15 @@ class AzureOpenAILMInvoker(OpenAILMInvoker):
208
208
 
209
209
  Output types:
210
210
  The output of the `AzureOpenAILMInvoker` can either be:
211
- 1. `str`: The text response if no additional output is needed.
212
- 2. `LMOutput`: A Pydantic model with the following attributes if any additional output is needed:
213
- 2.1. response (str): The text response.
214
- 2.2. tool_calls (list[ToolCall]): The tool calls, if the `tools` parameter is defined and the language
215
- model decides to invoke tools. Defaults to an empty list.
216
- 2.3. structured_output (dict[str, Any] | BaseModel | None): The structured output, if the `response_schema`
217
- parameter is defined. Defaults to None.
218
- 2.4. token_usage (TokenUsage | None): The token usage analytics, if the `output_analytics` parameter is
219
- set to `True`. Defaults to None.
220
- 2.5. duration (float | None): The duration of the invocation in seconds, if the `output_analytics`
221
- parameter is set to `True`. Defaults to None.
222
- 2.6. finish_details (dict[str, Any] | None): The details about how the generation finished, if the
223
- `output_analytics` parameter is set to `True`. Defaults to None.
224
- 2.7. reasoning (list[Reasoning]): The reasoning objects, if the `reasoning_summary` parameter is provided
225
- for reasoning models. Defaults to an empty list.
226
- 2.8. citations (list[Chunk]): The citations. Currently not supported. Defaults to an empty list.
227
- 2.9. code_exec_results (list[CodeExecResult]): The code execution results. Currently not supported.
228
- Defaults to an empty list.
229
- 2.10. mcp_calls (list[MCPCall]): The MCP calls. Currently not supported. Defaults to an empty list.
211
+ 1. `str`: A text response.
212
+ 2. `LMOutput`: A Pydantic model that may contain the following attributes:
213
+ 2.1. response (str)
214
+ 2.2. tool_calls (list[ToolCall])
215
+ 2.3. structured_output (dict[str, Any] | BaseModel | None)
216
+ 2.4. token_usage (TokenUsage | None)
217
+ 2.5. duration (float | None)
218
+ 2.6. finish_details (dict[str, Any] | None)
219
+ 2.7. reasoning (list[Reasoning])
230
220
  '''
231
221
  client_kwargs: Incomplete
232
222
  def __init__(self, azure_endpoint: str, azure_deployment: str, api_key: str | None = None, api_version: str | None = None, model_kwargs: dict[str, Any] | None = None, default_hyperparameters: dict[str, Any] | None = None, tools: list[Tool | LangChainTool] | None = None, response_schema: ResponseSchema | None = None, output_analytics: bool = False, retry_config: RetryConfig | None = None, reasoning_effort: ReasoningEffort | None = None, reasoning_summary: ReasoningSummary | None = None, simplify_events: bool = False) -> None:
@@ -149,9 +149,9 @@ class BedrockLMInvoker(BaseLMInvoker):
149
149
 
150
150
  Retry config examples:
151
151
  ```python
152
- retry_config = RetryConfig(max_retries=0, timeout=0.0) # No retry, no timeout
152
+ retry_config = RetryConfig(max_retries=0, timeout=None) # No retry, no timeout
153
153
  retry_config = RetryConfig(max_retries=0, timeout=10.0) # No retry, 10.0 seconds timeout
154
- retry_config = RetryConfig(max_retries=5, timeout=0.0) # 5 max retries, no timeout
154
+ retry_config = RetryConfig(max_retries=5, timeout=None) # 5 max retries, no timeout
155
155
  retry_config = RetryConfig(max_retries=5, timeout=10.0) # 5 max retries, 10.0 seconds timeout
156
156
  ```
157
157
 
@@ -162,24 +162,14 @@ class BedrockLMInvoker(BaseLMInvoker):
162
162
 
163
163
  Output types:
164
164
  The output of the `BedrockLMInvoker` can either be:
165
- 1. `str`: The text response if no additional output is needed.
166
- 2. `LMOutput`: A Pydantic model with the following attributes if any additional output is needed:
167
- 2.1. response (str): The text response.
168
- 2.2. tool_calls (list[ToolCall]): The tool calls, if the `tools` parameter is defined and the language
169
- model decides to invoke tools. Defaults to an empty list.
170
- 2.3. structured_output (dict[str, Any] | BaseModel | None): The structured output, if the `response_schema`
171
- parameter is defined. Defaults to None.
172
- 2.4. token_usage (TokenUsage | None): The token usage information, if the `output_analytics` parameter is
173
- set to `True`. Defaults to None.
174
- 2.5. duration (float | None): The duration of the invocation in seconds, if the `output_analytics`
175
- parameter is set to `True`. Defaults to None.
176
- 2.6. finish_details (dict[str, Any]): The details about how the generation finished, if the
177
- `output_analytics` parameter is set to `True`. Defaults to an empty dictionary.
178
- 2.7. reasoning (list[Reasoning]): The reasoning objects. Currently not supported. Defaults to an empty list.
179
- 2.8. citations (list[Chunk]): The citations. Currently not supported. Defaults to an empty list.
180
- 2.9. code_exec_results (list[CodeExecResult]): The code execution results. Currently not supported.
181
- Defaults to an empty list.
182
- 2.10. mcp_calls (list[MCPCall]): The MCP calls. Currently not supported. Defaults to an empty list.
165
+ 1. `str`: A text response.
166
+ 2. `LMOutput`: A Pydantic model that may contain the following attributes:
167
+ 2.1. response (str)
168
+ 2.2. tool_calls (list[ToolCall])
169
+ 2.3. structured_output (dict[str, Any] | BaseModel | None)
170
+ 2.4. token_usage (TokenUsage | None)
171
+ 2.5. duration (float | None)
172
+ 2.6. finish_details (dict[str, Any] | None)
183
173
  '''
184
174
  session: Incomplete
185
175
  client_kwargs: Incomplete
@@ -72,9 +72,9 @@ class DatasaurLMInvoker(OpenAIChatCompletionsLMInvoker):
72
72
 
73
73
  Retry config examples:
74
74
  ```python
75
- retry_config = RetryConfig(max_retries=0, timeout=0.0) # No retry, no timeout
75
+ retry_config = RetryConfig(max_retries=0, timeout=None) # No retry, no timeout
76
76
  retry_config = RetryConfig(max_retries=0, timeout=10.0) # No retry, 10.0 seconds timeout
77
- retry_config = RetryConfig(max_retries=5, timeout=0.0) # 5 max retries, no timeout
77
+ retry_config = RetryConfig(max_retries=5, timeout=None) # 5 max retries, no timeout
78
78
  retry_config = RetryConfig(max_retries=5, timeout=10.0) # 5 max retries, 10.0 seconds timeout
79
79
  ```
80
80
 
@@ -103,23 +103,13 @@ class DatasaurLMInvoker(OpenAIChatCompletionsLMInvoker):
103
103
 
104
104
  Output types:
105
105
  The output of the `DatasaurLMInvoker` can either be:
106
- 1. `str`: The text response if no additional output is needed.
107
- 2. `LMOutput`: A Pydantic model with the following attributes if any additional output is needed:
108
- 2.1. response (str): The text response.
109
- 2.2. tool_calls (list[ToolCall]): The tool calls. Currently not supported. Defaults to an empty list.
110
- 2.3. structured_output (dict[str, Any] | BaseModel | None): The structured output. Currently not supported.
111
- Defaults to None.
112
- 2.4. token_usage (TokenUsage | None): The token usage analytics, if the `output_analytics` parameter is
113
- set to `True`. Defaults to None.
114
- 2.5. duration (float | None): The duration of the invocation in seconds, if the `output_analytics`
115
- parameter is set to `True`. Defaults to None.
116
- 2.6. finish_details (dict[str, Any] | None): The details about how the generation finished, if the
117
- `output_analytics` parameter is set to `True`. Defaults to None.
118
- 2.7. reasoning (list[Reasoning]): The reasoning objects. Currently not supported. Defaults to an empty list.
119
- 2.8. citations (list[Chunk]): The citations. Currently not supported. Defaults to an empty list.
120
- 2.9. code_exec_results (list[CodeExecResult]): The code execution results. Currently not supported.
121
- Defaults to an empty list.
122
- 2.10. mcp_calls (list[MCPCall]): The MCP calls. Currently not supported. Defaults to an empty list.
106
+ 1. `str`: A text response.
107
+ 2. `LMOutput`: A Pydantic model that may contain the following attributes:
108
+ 2.1. response (str)
109
+ 2.2. token_usage (TokenUsage | None)
110
+ 2.3. duration (float | None)
111
+ 2.4. finish_details (dict[str, Any] | None)
112
+ 2.5. citations (list[Chunk])
123
113
  '''
124
114
  client_kwargs: Incomplete
125
115
  citations: Incomplete
@@ -14,6 +14,7 @@ from typing import Any
14
14
  SUPPORTED_ATTACHMENTS: Incomplete
15
15
  DEFAULT_THINKING_BUDGET: int
16
16
  REQUIRE_THINKING_MODEL_PREFIX: Incomplete
17
+ IMAGE_GENERATION_MODELS: Incomplete
17
18
  YOUTUBE_URL_PATTERN: Incomplete
18
19
 
19
20
  class GoogleLMInvoker(BaseLMInvoker):
@@ -30,6 +31,7 @@ class GoogleLMInvoker(BaseLMInvoker):
30
31
  structured response as defined by the schema. Supports both Pydantic BaseModel and JSON schema dictionary.
31
32
  output_analytics (bool): Whether to output the invocation analytics.
32
33
  retry_config (RetryConfig | None): The retry configuration for the language model.
34
+ generate_image (bool): Whether to generate image. Only allowed for image generation models.
33
35
  thinking (bool): Whether to enable thinking. Only allowed for thinking models.
34
36
  thinking_budget (int): The tokens allowed for thinking process. Only allowed for thinking models.
35
37
  If set to -1, the model will control the budget automatically.
@@ -80,6 +82,26 @@ class GoogleLMInvoker(BaseLMInvoker):
80
82
  result = await lm_invoker.invoke([text, image])
81
83
  ```
82
84
 
85
+ Image generation:
86
+ The `GoogleLMInvoker` supports image generation. This can be done by using an image generation model,
87
+ such as `gemini-2.5-flash-image`. Streaming is disabled for image generation models.
88
+ The generated image will be stored in the `attachments` attribute in the output.
89
+
90
+ Usage example:
91
+ ```python
92
+ lm_invoker = GoogleLMInvoker("gemini-2.5-flash-image")
93
+ result = await lm_invoker.invoke("Create a picture...")
94
+ result.attachments[0].write_to_file("path/to/local/image.png")
95
+ ```
96
+
97
+ Output example:
98
+ ```python
99
+ LMOutput(
100
+ response="Let me call the tools...",
101
+ attachments=[Attachment(filename="image.png", mime_type="image/png", data=b"...")],
102
+ )
103
+ ```
104
+
83
105
  Tool calling:
84
106
  Tool calling is a feature that allows the language model to call tools to perform tasks.
85
107
  Tools can be passed to the via the `tools` parameter as a list of `Tool` objects.
@@ -182,9 +204,9 @@ class GoogleLMInvoker(BaseLMInvoker):
182
204
 
183
205
  Retry config examples:
184
206
  ```python
185
- retry_config = RetryConfig(max_retries=0, timeout=0.0) # No retry, no timeout
207
+ retry_config = RetryConfig(max_retries=0, timeout=None) # No retry, no timeout
186
208
  retry_config = RetryConfig(max_retries=0, timeout=10.0) # No retry, 10.0 seconds timeout
187
- retry_config = RetryConfig(max_retries=5, timeout=0.0) # 5 max retries, no timeout
209
+ retry_config = RetryConfig(max_retries=5, timeout=None) # 5 max retries, no timeout
188
210
  retry_config = RetryConfig(max_retries=5, timeout=10.0) # 5 max retries, 10.0 seconds timeout
189
211
  ```
190
212
 
@@ -237,27 +259,19 @@ class GoogleLMInvoker(BaseLMInvoker):
237
259
 
238
260
  Output types:
239
261
  The output of the `GoogleLMInvoker` can either be:
240
- 1. `str`: The text response if no additional output is needed.
241
- 2. `LMOutput`: A Pydantic model with the following attributes if any additional output is needed:
242
- 2.1. response (str): The text response.
243
- 2.2. tool_calls (list[ToolCall]): The tool calls, if the `tools` parameter is defined and the language
244
- model decides to invoke tools. Defaults to an empty list.
245
- 2.3. structured_output (dict[str, Any] | BaseModel | None): The structured output, if the `response_schema`
246
- parameter is defined. Defaults to None.
247
- 2.4. token_usage (TokenUsage | None): The token usage analytics, if the `output_analytics` parameter is
248
- set to `True`. Defaults to None.
249
- 2.5. duration (float | None): The duration of the invocation in seconds, if the `output_analytics`
250
- parameter is set to `True`. Defaults to None.
251
- 2.6. finish_details (dict[str, Any] | None): The details about how the generation finished, if the
252
- `output_analytics` parameter is set to `True`. Defaults to None.
253
- 2.7. reasoning (list[Reasoning]): The reasoning objects, if the `thinking` parameter is set to `True`.
254
- Defaults to an empty list.
255
- 2.8. citations (list[Chunk]): The citations. Currently not supported. Defaults to an empty list.
256
- 2.9. code_exec_results (list[CodeExecResult]): The code execution results. Currently not supported.
257
- Defaults to an empty list.
258
- 2.10. mcp_calls (list[MCPCall]): The MCP calls. Currently not supported. Defaults to an empty list.
262
+ 1. `str`: A text response.
263
+ 2. `LMOutput`: A Pydantic model that may contain the following attributes:
264
+ 2.1. response (str)
265
+ 2.2. attachments (list[Attachment])
266
+ 2.3. tool_calls (list[ToolCall])
267
+ 2.4. structured_output (dict[str, Any] | BaseModel | None)
268
+ 2.5. token_usage (TokenUsage | None)
269
+ 2.6. duration (float | None)
270
+ 2.7. finish_details (dict[str, Any])
271
+ 2.8. reasoning (list[Reasoning])
259
272
  '''
260
273
  client_params: Incomplete
274
+ generate_image: Incomplete
261
275
  thinking: Incomplete
262
276
  thinking_budget: Incomplete
263
277
  def __init__(self, model_name: str, api_key: str | None = None, credentials_path: str | None = None, project_id: str | None = None, location: str = 'us-central1', model_kwargs: dict[str, Any] | None = None, default_hyperparameters: dict[str, Any] | None = None, tools: list[Tool | LangChainTool] | None = None, response_schema: ResponseSchema | None = None, output_analytics: bool = False, retry_config: RetryConfig | None = None, thinking: bool | None = None, thinking_budget: int = ..., simplify_events: bool = False) -> None:
@@ -175,9 +175,9 @@ class LangChainLMInvoker(BaseLMInvoker):
175
175
 
176
176
  Retry config examples:
177
177
  ```python
178
- retry_config = RetryConfig(max_retries=0, timeout=0.0) # No retry, no timeout
178
+ retry_config = RetryConfig(max_retries=0, timeout=None) # No retry, no timeout
179
179
  retry_config = RetryConfig(max_retries=0, timeout=10.0) # No retry, 10.0 seconds timeout
180
- retry_config = RetryConfig(max_retries=5, timeout=0.0) # 5 max retries, no timeout
180
+ retry_config = RetryConfig(max_retries=5, timeout=None) # 5 max retries, no timeout
181
181
  retry_config = RetryConfig(max_retries=5, timeout=10.0) # 5 max retries, 10.0 seconds timeout
182
182
  ```
183
183
 
@@ -188,24 +188,14 @@ class LangChainLMInvoker(BaseLMInvoker):
188
188
 
189
189
  Output types:
190
190
  The output of the `LangChainLMInvoker` can either be:
191
- 1. `str`: The text response if no additional output is needed.
192
- 2. `LMOutput`: A Pydantic model with the following attributes if any additional output is needed:
193
- 2.1. response (str): The text response.
194
- 2.2. tool_calls (list[ToolCall]): The tool calls, if the `tools` parameter is defined and the language
195
- model decides to invoke tools. Defaults to an empty list.
196
- 2.3. structured_output (dict[str, Any] | BaseModel | None): The structured output, if the `response_schema`
197
- parameter is defined. Defaults to None.
198
- 2.4. token_usage (TokenUsage | None): The token usage analytics, if the `output_analytics` parameter is
199
- set to `True`. Defaults to None.
200
- 2.5. duration (float | None): The duration of the invocation in seconds, if the `output_analytics`
201
- parameter is set to `True`. Defaults to None.
202
- 2.6. finish_details (dict[str, Any] | None): The details about how the generation finished, if the
203
- `output_analytics` parameter is set to `True`. Defaults to None.
204
- 2.7. reasoning (list[Reasoning]): The reasoning objects. Currently not supported. Defaults to an empty list.
205
- 2.8. citations (list[Chunk]): The citations. Currently not supported. Defaults to an empty list.
206
- 2.9. code_exec_results (list[CodeExecResult]): The code execution results. Currently not supported.
207
- Defaults to an empty list.
208
- 2.10. mcp_calls (list[MCPCall]): The MCP calls. Currently not supported. Defaults to an empty list.
191
+ 1. `str`: A text response.
192
+ 2. `LMOutput`: A Pydantic model that may contain the following attributes:
193
+ 2.1. response (str)
194
+ 2.2. tool_calls (list[ToolCall])
195
+ 2.3. structured_output (dict[str, Any] | BaseModel | None)
196
+ 2.4. token_usage (TokenUsage | None)
197
+ 2.5. duration (float | None)
198
+ 2.6. finish_details (dict[str, Any])
209
199
  '''
210
200
  model: Incomplete
211
201
  def __init__(self, model: BaseChatModel | None = None, model_class_path: str | None = None, model_name: str | None = None, model_kwargs: dict[str, Any] | None = None, default_hyperparameters: dict[str, Any] | None = None, tools: list[Tool | LangChainTool] | None = None, response_schema: ResponseSchema | None = None, output_analytics: bool = False, retry_config: RetryConfig | None = None) -> None:
@@ -156,9 +156,9 @@ class LiteLLMLMInvoker(OpenAIChatCompletionsLMInvoker):
156
156
 
157
157
  Retry config examples:
158
158
  ```python
159
- retry_config = RetryConfig(max_retries=0, timeout=0.0) # No retry, no timeout
159
+ retry_config = RetryConfig(max_retries=0, timeout=None) # No retry, no timeout
160
160
  retry_config = RetryConfig(max_retries=0, timeout=10.0) # No retry, 10.0 seconds timeout
161
- retry_config = RetryConfig(max_retries=5, timeout=0.0) # 5 max retries, no timeout
161
+ retry_config = RetryConfig(max_retries=5, timeout=None) # 5 max retries, no timeout
162
162
  retry_config = RetryConfig(max_retries=5, timeout=10.0) # 5 max retries, 10.0 seconds timeout
163
163
  ```
164
164
 
@@ -210,24 +210,15 @@ class LiteLLMLMInvoker(OpenAIChatCompletionsLMInvoker):
210
210
 
211
211
  Output types:
212
212
  The output of the `LiteLLMLMInvoker` can either be:
213
- 1. `str`: The text response if no additional output is needed.
214
- 2. `LMOutput`: A Pydantic model with the following attributes if any additional output is needed:
215
- 2.1. response (str): The text response.
216
- 2.2. tool_calls (list[ToolCall]): The tool calls, if the `tools` parameter is defined and the language
217
- model decides to invoke tools. Defaults to an empty list.
218
- 2.3. structured_output (dict[str, Any] | BaseModel | None): The structured output, if the `response_schema`
219
- parameter is defined. Defaults to None.
220
- 2.4. token_usage (TokenUsage | None): The token usage analytics, if the `output_analytics` parameter is
221
- set to `True`. Defaults to None.
222
- 2.5. duration (float | None): The duration of the invocation in seconds, if the `output_analytics`
223
- parameter is set to `True`. Defaults to None.
224
- 2.6. finish_details (dict[str, Any] | None): The details about how the generation finished, if the
225
- `output_analytics` parameter is set to `True`. Defaults to None.
226
- 2.7. reasoning (list[Reasoning]): The reasoning objects. Currently not supported. Defaults to an empty list.
227
- 2.8. citations (list[Chunk]): The citations. Currently not supported. Defaults to an empty list.
228
- 2.9. code_exec_results (list[CodeExecResult]): The code execution results. Currently not supported.
229
- Defaults to an empty list.
230
- 2.10. mcp_calls (list[MCPCall]): The MCP calls. Currently not supported. Defaults to an empty list.
213
+ 1. `str`: A text response.
214
+ 2. `LMOutput`: A Pydantic model that may contain the following attributes:
215
+ 2.1. response (str)
216
+ 2.2. tool_calls (list[ToolCall])
217
+ 2.3. structured_output (dict[str, Any] | BaseModel | None)
218
+ 2.4. token_usage (TokenUsage | None)
219
+ 2.5. duration (float | None)
220
+ 2.6. finish_details (dict[str, Any])
221
+ 2.7. reasoning (list[Reasoning])
231
222
  '''
232
223
  completion: Incomplete
233
224
  def __init__(self, model_id: str, default_hyperparameters: dict[str, Any] | None = None, tools: list[Tool | LangChainTool] | None = None, response_schema: ResponseSchema | None = None, output_analytics: bool = False, retry_config: RetryConfig | None = None, reasoning_effort: ReasoningEffort | None = None, simplify_events: bool = False) -> None:
@@ -171,9 +171,9 @@ class OpenAIChatCompletionsLMInvoker(BaseLMInvoker):
171
171
 
172
172
  Retry config examples:
173
173
  ```python
174
- retry_config = RetryConfig(max_retries=0, timeout=0.0) # No retry, no timeout
174
+ retry_config = RetryConfig(max_retries=0, timeout=None) # No retry, no timeout
175
175
  retry_config = RetryConfig(max_retries=0, timeout=10.0) # No retry, 10.0 seconds timeout
176
- retry_config = RetryConfig(max_retries=5, timeout=0.0) # 5 max retries, no timeout
176
+ retry_config = RetryConfig(max_retries=5, timeout=None) # 5 max retries, no timeout
177
177
  retry_config = RetryConfig(max_retries=5, timeout=10.0) # 5 max retries, 10.0 seconds timeout
178
178
  ```
179
179
 
@@ -224,24 +224,15 @@ class OpenAIChatCompletionsLMInvoker(BaseLMInvoker):
224
224
 
225
225
  Output types:
226
226
  The output of the `OpenAIChatCompletionsLMInvoker` can either be:
227
- 1. `str`: The text response if no additional output is needed.
228
- 2. `LMOutput`: A Pydantic model with the following attributes if any additional output is needed:
229
- 2.1. response (str): The text response.
230
- 2.2. tool_calls (list[ToolCall]): The tool calls, if the `tools` parameter is defined and the language
231
- model decides to invoke tools. Defaults to an empty list.
232
- 2.3. structured_output (dict[str, Any] | BaseModel | None): The structured output, if the `response_schema`
233
- parameter is defined. Defaults to None.
234
- 2.4. token_usage (TokenUsage | None): The token usage analytics, if the `output_analytics` parameter is
235
- set to `True`. Defaults to None.
236
- 2.5. duration (float | None): The duration of the invocation in seconds, if the `output_analytics`
237
- parameter is set to `True`. Defaults to None.
238
- 2.6. finish_details (dict[str, Any] | None): The details about how the generation finished, if the
239
- `output_analytics` parameter is set to `True`. Defaults to None.
240
- 2.7. reasoning (list[Reasoning]): The reasoning objects. Currently not supported. Defaults to an empty list.
241
- 2.8. citations (list[Chunk]): The citations. Currently not supported. Defaults to an empty list.
242
- 2.9. code_exec_results (list[CodeExecResult]): The code execution results. Currently not supported.
243
- Defaults to an empty list.
244
- 2.10. mcp_calls (list[MCPCall]): The MCP calls. Currently not supported. Defaults to an empty list.
227
+ 1. `str`: A text response.
228
+ 2. `LMOutput`: A Pydantic model that may contain the following attributes:
229
+ 2.1. response (str)
230
+ 2.2. tool_calls (list[ToolCall])
231
+ 2.3. structured_output (dict[str, Any] | BaseModel | None)
232
+ 2.4. token_usage (TokenUsage | None)
233
+ 2.5. duration (float | None)
234
+ 2.6. finish_details (dict[str, Any])
235
+ 2.7. reasoning (list[Reasoning])
245
236
  '''
246
237
  client_kwargs: Incomplete
247
238
  def __init__(self, model_name: str, api_key: str | None = None, base_url: str = ..., model_kwargs: dict[str, Any] | None = None, default_hyperparameters: dict[str, Any] | None = None, tools: list[Tool | LangChainTool] | None = None, response_schema: ResponseSchema | None = None, output_analytics: bool = False, retry_config: RetryConfig | None = None, reasoning_effort: ReasoningEffort | None = None, simplify_events: bool = False) -> None:
@@ -176,9 +176,9 @@ class OpenAILMInvoker(BaseLMInvoker):
176
176
 
177
177
  Retry config examples:
178
178
  ```python
179
- retry_config = RetryConfig(max_retries=0, timeout=0.0) # No retry, no timeout
179
+ retry_config = RetryConfig(max_retries=0, timeout=None) # No retry, no timeout
180
180
  retry_config = RetryConfig(max_retries=0, timeout=10.0) # No retry, 10.0 seconds timeout
181
- retry_config = RetryConfig(max_retries=5, timeout=0.0) # 5 max retries, no timeout
181
+ retry_config = RetryConfig(max_retries=5, timeout=None) # 5 max retries, no timeout
182
182
  retry_config = RetryConfig(max_retries=5, timeout=10.0) # 5 max retries, 10.0 seconds timeout
183
183
  ```
184
184
 
@@ -369,27 +369,18 @@ class OpenAILMInvoker(BaseLMInvoker):
369
369
 
370
370
  Output types:
371
371
  The output of the `OpenAILMInvoker` can either be:
372
- 1. `str`: The text response if no additional output is needed.
373
- 2. `LMOutput`: A Pydantic model with the following attributes if any additional output is needed:
374
- 2.1. response (str): The text response.
375
- 2.2. tool_calls (list[ToolCall]): The tool calls, if the `tools` parameter is defined and the language
376
- model decides to invoke tools. Defaults to an empty list.
377
- 2.3. structured_output (dict[str, Any] | BaseModel | None): The structured output, if the `response_schema`
378
- parameter is defined. Defaults to None.
379
- 2.4. token_usage (TokenUsage | None): The token usage analytics, if the `output_analytics` parameter is
380
- set to `True`. Defaults to None.
381
- 2.5. duration (float | None): The duration of the invocation in seconds, if the `output_analytics`
382
- parameter is set to `True`. Defaults to None.
383
- 2.6. finish_details (dict[str, Any] | None): The details about how the generation finished, if the
384
- `output_analytics` parameter is set to `True`. Defaults to None.
385
- 2.7. reasoning (list[Reasoning]): The reasoning objects, if the `reasoning_summary` parameter is provided
386
- for reasoning models. Defaults to an empty list.
387
- 2.8. citations (list[Chunk]): The citations, if the web_search is enabled and the language model decides
388
- to cite the relevant sources. Defaults to an empty list.
389
- 2.9. code_exec_results (list[CodeExecResult]): The code execution results, if the code interpreter is
390
- enabled and the language model decides to execute any codes. Defaults to an empty list.
391
- 2.10. mcp_calls (list[MCPCall]): The MCP calls, if the MCP servers are provided and the language model
392
- decides to invoke MCP tools. Defaults to an empty list.
372
+ 1. `str`: A text response.
373
+ 2. `LMOutput`: A Pydantic model that may contain the following attributes:
374
+ 2.1. response (str)
375
+ 2.2. tool_calls (list[ToolCall])
376
+ 2.3. structured_output (dict[str, Any] | BaseModel | None)
377
+ 2.4. token_usage (TokenUsage | None)
378
+ 2.5. duration (float | None)
379
+ 2.6. finish_details (dict[str, Any])
380
+ 2.7. reasoning (list[Reasoning])
381
+ 2.8. citations (list[Chunk])
382
+ 2.9. code_exec_results (list[CodeExecResult])
383
+ 2.10. mcp_calls (list[MCPCall])
393
384
  '''
394
385
  client_kwargs: Incomplete
395
386
  def __init__(self, model_name: str, api_key: str | None = None, base_url: str = ..., model_kwargs: dict[str, Any] | None = None, default_hyperparameters: dict[str, Any] | None = None, tools: list[Tool | LangChainTool] | None = None, response_schema: ResponseSchema | None = None, output_analytics: bool = False, retry_config: RetryConfig | None = None, reasoning_effort: ReasoningEffort | None = None, reasoning_summary: ReasoningSummary | None = None, mcp_servers: list[MCPServer] | None = None, code_interpreter: bool = False, web_search: bool = False, simplify_events: bool = False) -> None:
@@ -194,9 +194,9 @@ class XAILMInvoker(BaseLMInvoker):
194
194
 
195
195
  Retry config examples:
196
196
  ```python
197
- retry_config = RetryConfig(max_retries=0, timeout=0.0) # No retry, no timeout
197
+ retry_config = RetryConfig(max_retries=0, timeout=None) # No retry, no timeout
198
198
  retry_config = RetryConfig(max_retries=0, timeout=10.0) # No retry, 10.0 seconds timeout
199
- retry_config = RetryConfig(max_retries=5, timeout=0.0) # 5 max retries, no timeout
199
+ retry_config = RetryConfig(max_retries=5, timeout=None) # 5 max retries, no timeout
200
200
  retry_config = RetryConfig(max_retries=5, timeout=10.0) # 5 max retries, 10.0 seconds timeout
201
201
  ```
202
202
 
@@ -243,25 +243,16 @@ class XAILMInvoker(BaseLMInvoker):
243
243
 
244
244
  Output types:
245
245
  The output of the `XAILMInvoker` can either be:
246
- 1. `str`: The text response if no additional output is needed.
247
- 2. `LMOutput`: A Pydantic model with the following attributes if any additional output is needed:
248
- 2.1. response (str): The text response.
249
- 2.2. tool_calls (list[ToolCall]): The tool calls, if the `tools` parameter is defined and the language
250
- model decides to invoke tools. Defaults to an empty list.
251
- 2.3. structured_output (dict[str, Any] | BaseModel | None): The structured output, if the `response_schema`
252
- parameter is defined. Defaults to None.
253
- 2.4. token_usage (TokenUsage | None): The token usage analytics, if the `output_analytics` parameter is
254
- set to `True`. Defaults to None.
255
- 2.5. duration (float | None): The duration of the invocation in seconds, if the `output_analytics`
256
- parameter is set to `True`. Defaults to None.
257
- 2.6. finish_details (dict[str, Any] | None): The details about how the generation finished, if the
258
- `output_analytics` parameter is set to `True`. Defaults to None.
259
- 2.7. reasoning (list[Reasoning]): The reasoning objects, if the `reasoning_effort` parameter is set.
260
- Defaults to an empty list.
261
- 2.8. citations (list[Chunk]): The citations, if the web_search is enabled and the language model decides
262
- to cite the relevant sources. Defaults to an empty list.
263
- 2.9. code_exec_results (list[CodeExecResult]): The code execution results. Currently not supported.
264
- Defaults to an empty list.
246
+ 1. `str`: A text response.
247
+ 2. `LMOutput`: A Pydantic model that may contain the following attributes:
248
+ 2.1. response (str)
249
+ 2.2. tool_calls (list[ToolCall])
250
+ 2.3. structured_output (dict[str, Any] | BaseModel | None)
251
+ 2.4. token_usage (TokenUsage | None)
252
+ 2.5. duration (float | None)
253
+ 2.6. finish_details (dict[str, Any])
254
+ 2.7. reasoning (list[Reasoning])
255
+ 2.8. citations (list[Chunk])
265
256
  '''
266
257
  reasoning_effort: Incomplete
267
258
  web_search: Incomplete
@@ -1,4 +1,5 @@
1
1
  from gllm_core.schema import Chunk as Chunk
2
+ from gllm_inference.schema.attachment import Attachment as Attachment
2
3
  from gllm_inference.schema.code_exec_result import CodeExecResult as CodeExecResult
3
4
  from gllm_inference.schema.mcp import MCPCall as MCPCall
4
5
  from gllm_inference.schema.reasoning import Reasoning as Reasoning
@@ -12,6 +13,8 @@ class LMOutput(BaseModel):
12
13
 
13
14
  Attributes:
14
15
  response (str): The text response. Defaults to an empty string.
16
+ attachments (list[Attachment]): The attachments, if the language model decides to output attachments.
17
+ Defaults to an empty list.
15
18
  tool_calls (list[ToolCall]): The tool calls, if the language model decides to invoke tools.
16
19
  Defaults to an empty list.
17
20
  structured_output (dict[str, Any] | BaseModel | None): The structured output, if a response schema is defined
@@ -29,6 +32,7 @@ class LMOutput(BaseModel):
29
32
  Defaults to an empty list.
30
33
  """
31
34
  response: str
35
+ attachments: list[Attachment]
32
36
  tool_calls: list[ToolCall]
33
37
  structured_output: dict[str, Any] | BaseModel | None
34
38
  token_usage: TokenUsage | None
Binary file
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: gllm-inference-binary
3
- Version: 0.5.39
3
+ Version: 0.5.40
4
4
  Summary: A library containing components related to model inferences in Gen AI applications.
5
5
  Author-email: Henry Wicaksono <henry.wicaksono@gdplabs.id>, Resti Febrina <resti.febrina@gdplabs.id>
6
6
  Requires-Python: <3.14,>=3.11
@@ -1,4 +1,4 @@
1
- gllm_inference.cp313-win_amd64.pyd,sha256=nUkymTjVs8f2rSGYculJnhZrrTx4NpNav00YIOdUkU0,3560448
1
+ gllm_inference.cp313-win_amd64.pyd,sha256=1dYQoCaBFcwcg-fqBMMF3NW3vAzdeJv3_ZRy9de9nAs,3557376
2
2
  gllm_inference.pyi,sha256=CM8fddhFC2U0VGu9_JWrokO5YDc3B-eXx8pSjLYRlGY,4750
3
3
  gllm_inference/__init__.pyi,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
4
4
  gllm_inference/constants.pyi,sha256=1OBoHfeWfW9bXH9kStNEH__MGnGp--jLfyheAeQnogY,302
@@ -12,15 +12,15 @@ gllm_inference/catalog/catalog.pyi,sha256=eWPqgQKi-SJGHabi_XOTEKpAj96OSRypKsb5ZE
12
12
  gllm_inference/catalog/lm_request_processor_catalog.pyi,sha256=FiveqPDkV58XbDO2znXL-Ix5tFbZwNiVnitlEa90YOY,5536
13
13
  gllm_inference/catalog/prompt_builder_catalog.pyi,sha256=iViWB4SaezzjQY4UY1YxeoXUNxqxa2cTJGaD9JSx4Q8,3279
14
14
  gllm_inference/em_invoker/__init__.pyi,sha256=pmbsjmsqXwfe4WPykMnrmasKrYuylJWnf2s0pbo0ioM,997
15
- gllm_inference/em_invoker/azure_openai_em_invoker.pyi,sha256=2Z_6tTE2KYbj_xXMo-GAij0yC9gvYvKnirascrPSoo0,5047
16
- gllm_inference/em_invoker/bedrock_em_invoker.pyi,sha256=UqodtpDmE7fEgpctXEETIlZGorX9i1lmmuTvGaJke6o,5829
15
+ gllm_inference/em_invoker/azure_openai_em_invoker.pyi,sha256=TXC5Kgf1eZqK2FHKAyeG3LB1SEsSEStnbk9bI1mjC5k,5049
16
+ gllm_inference/em_invoker/bedrock_em_invoker.pyi,sha256=kQETh2r-WR_H3APtt4QavmfwGOR3KB4k6USNYvFateY,5831
17
17
  gllm_inference/em_invoker/em_invoker.pyi,sha256=YDYJ8TGScsz5Gg-OBnEENN1tI1RYvwoddypxUr6SAWw,5191
18
- gllm_inference/em_invoker/google_em_invoker.pyi,sha256=q69kdVuE44ZqziQ8BajFYZ1tYn-MPjKjzXS9cRh4oAo,6951
18
+ gllm_inference/em_invoker/google_em_invoker.pyi,sha256=zZYjeLp9ncwIVM4UHqDJSVOFn1eXiaz9Ba24-_fCF2c,6953
19
19
  gllm_inference/em_invoker/langchain_em_invoker.pyi,sha256=nhX6LynrjhfySEt_44OlLoSBd15hoz3giWyNM9CYLKY,3544
20
20
  gllm_inference/em_invoker/openai_compatible_em_invoker.pyi,sha256=SbvCbOhdpkq6IyPhGd_IlxD8hbXDZID2rIehY6mJOIs,2923
21
- gllm_inference/em_invoker/openai_em_invoker.pyi,sha256=7qfTzh55335wLrzk1mUAw15abqOBqOBoUmeF3lZpmAA,6311
22
- gllm_inference/em_invoker/twelevelabs_em_invoker.pyi,sha256=MMVgSnjMXksdhSDXIi3vOULIXnjbhtq19eR5LPnUmGo,5446
23
- gllm_inference/em_invoker/voyage_em_invoker.pyi,sha256=vdB_qS8QKrCcb-HtXwKZS4WW1R1wGzpMBFmOKC39sjU,5619
21
+ gllm_inference/em_invoker/openai_em_invoker.pyi,sha256=dwZr9rjrjm060HEnyaPR9-jFJpxSi7fWx7i9ZB4aEY4,6313
22
+ gllm_inference/em_invoker/twelevelabs_em_invoker.pyi,sha256=4E-xCtkkiry_tuMiI9jUk6l6iwy6iPQNxaq67AqHvjk,5448
23
+ gllm_inference/em_invoker/voyage_em_invoker.pyi,sha256=nlcyjYnd3JvKy8UCGzjfXQLR4UmQIJnRbnNwnDK3xng,5621
24
24
  gllm_inference/em_invoker/langchain/__init__.pyi,sha256=aOTlRvS9aG1tBErjsmhe75s4Sq-g2z9ArfGqNW7QyEs,151
25
25
  gllm_inference/em_invoker/langchain/em_invoker_embeddings.pyi,sha256=BBSDazMOckO9Aw17tC3LGUTPqLb01my1xUZLtKZlwJY,3388
26
26
  gllm_inference/em_invoker/schema/__init__.pyi,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -36,18 +36,18 @@ gllm_inference/exceptions/error_parser.pyi,sha256=4aiJZhBzBOqlhdmpvaCvildGy7_Xxl
36
36
  gllm_inference/exceptions/exceptions.pyi,sha256=6y3ECgHAStqMGgQv8Dv-Ui-5PDD07mSj6qaRZeSWea4,5857
37
37
  gllm_inference/exceptions/provider_error_map.pyi,sha256=4AsAgbXAh91mxEW2YiomEuhBoeSNeAIo9WbT9WK8gQk,1233
38
38
  gllm_inference/lm_invoker/__init__.pyi,sha256=jG1xc5fTOeIgeKKVYSnsMzQThKk9kTW38yO_MYtv540,1387
39
- gllm_inference/lm_invoker/anthropic_lm_invoker.pyi,sha256=qc9zU0ZMT8RIAIqNSUTaQaDyNleNg-E6-0D5cPn2s_c,17952
40
- gllm_inference/lm_invoker/azure_openai_lm_invoker.pyi,sha256=nv9WZwgsMUKlct3CYAv2VM8vU423ZTu7pZ5l1yyPfbQ,15835
41
- gllm_inference/lm_invoker/bedrock_lm_invoker.pyi,sha256=ptyHTm1szPJEpQObdrsxHpbTkchCWE6K-YmVTmbdhvM,13037
42
- gllm_inference/lm_invoker/datasaur_lm_invoker.pyi,sha256=S50ULbQO_HW3rvyKPtIcS08gvEcXzjtKPSBzwk3q1i4,9537
43
- gllm_inference/lm_invoker/google_lm_invoker.pyi,sha256=CbWl2NGe0Hb-FV3fNzYyAoe1Tb4k1J0g9yGQyodLkXk,17856
44
- gllm_inference/lm_invoker/langchain_lm_invoker.pyi,sha256=dKN0flBxjiCUWW1QOz8HjoRfKpqXjNEz1pm5cS-40zA,13966
45
- gllm_inference/lm_invoker/litellm_lm_invoker.pyi,sha256=FtrOu0h-M8jMToMPUzt7ngRtPBdRNmKYI4ewP-TplWc,13826
39
+ gllm_inference/lm_invoker/anthropic_lm_invoker.pyi,sha256=JSgKUk9d1ZHlitv_ZjHlAk2hIW-J7u6yslVHflIeUro,16726
40
+ gllm_inference/lm_invoker/azure_openai_lm_invoker.pyi,sha256=FYfRNPG-oD4wIfitjTHnGib1uMZL7Pid0gbrRsymAHU,14601
41
+ gllm_inference/lm_invoker/bedrock_lm_invoker.pyi,sha256=dsNxj3ZfHxUplg6nBLgxVGooGYq1QP89gYzCnmRCz3g,11810
42
+ gllm_inference/lm_invoker/datasaur_lm_invoker.pyi,sha256=LR0EM4vTfufq9OWk8JVIwLyFeJFTguPNmPgJBUooSq4,8342
43
+ gllm_inference/lm_invoker/google_lm_invoker.pyi,sha256=aSmEgoYj_V72Nb6erDResphw9RaHfbE5C6PhqpMfEeQ,17674
44
+ gllm_inference/lm_invoker/langchain_lm_invoker.pyi,sha256=tJIxkFUKjLF-yz0niaDjN3L0QNCbn4sT8hmPKtERpog,12742
45
+ gllm_inference/lm_invoker/litellm_lm_invoker.pyi,sha256=IJxRUkmgXY8oQwS7tJoskO8fiESB7M4pyvpE64pyXDo,12648
46
46
  gllm_inference/lm_invoker/lm_invoker.pyi,sha256=vUmMNEl7F__PavQJ42scoYGyWdEvZOw2Bwxhoqv_gKE,8659
47
- gllm_inference/lm_invoker/openai_chat_completions_lm_invoker.pyi,sha256=iwjwm9ZuxGZUVInNeknJUNqs56nnnQlw8ye_3cUkJ9M,16355
47
+ gllm_inference/lm_invoker/openai_chat_completions_lm_invoker.pyi,sha256=uYJFgi4tJGab77232IC1gdoU9h9AqoClIUj6tM6O47s,15177
48
48
  gllm_inference/lm_invoker/openai_compatible_lm_invoker.pyi,sha256=T9sShA_9fgEuaaAuT2gJZq_EYNbEhf3IkWwMCwfszY8,4244
49
- gllm_inference/lm_invoker/openai_lm_invoker.pyi,sha256=ndXAsrnibKc9kk59t7enzteFrMfwinexCRVcDX6OgyA,24735
50
- gllm_inference/lm_invoker/xai_lm_invoker.pyi,sha256=4SnQdkomkIGZFswj2t-dx9yKRVAvs6PKc3MooBYkuxA,15773
49
+ gllm_inference/lm_invoker/openai_lm_invoker.pyi,sha256=JJ-EEoUZVU147UC0oU11EimWuaEhC9p5lBy-PVW60fM,23419
50
+ gllm_inference/lm_invoker/xai_lm_invoker.pyi,sha256=gyi12K7M9HkjNX6pU6NVv5Uq3-aHErixO-PVhHjioo8,14632
51
51
  gllm_inference/lm_invoker/batch/__init__.pyi,sha256=vJOTHRJ83oq8Bq0UsMdID9_HW5JAxr06gUs4aPRZfEE,130
52
52
  gllm_inference/lm_invoker/batch/batch_operations.pyi,sha256=o2U17M41RKVFW6j_oxy-SxU1JqUtVt75pKRxrqXzorE,5499
53
53
  gllm_inference/lm_invoker/schema/__init__.pyi,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -103,7 +103,7 @@ gllm_inference/schema/config.pyi,sha256=NVmjQK6HipIE0dKSfx12hgIC0O-S1HEcAc-TWlXA
103
103
  gllm_inference/schema/enums.pyi,sha256=U30RGvNFcNNJxTZZPt8vK7SFp3W4KSPVFxTZaiF1eLU,1375
104
104
  gllm_inference/schema/events.pyi,sha256=ifF75efM1TaEjw4AQmPkoQJUSl8d3Gt9PsBhTwSGsJ4,4020
105
105
  gllm_inference/schema/lm_input.pyi,sha256=HxQiZgY7zcXh_Dw8nK8LSeBTZEHMPZVwmPmnfgSsAbs,197
106
- gllm_inference/schema/lm_output.pyi,sha256=xafvq38SJkon0QfkuhswCX8ql777el5dUmzbbhLyOvA,2222
106
+ gllm_inference/schema/lm_output.pyi,sha256=DIV8BiIOPaSnMKxzKzH_Mp7j7-MScWCvmllegJDLqFg,2479
107
107
  gllm_inference/schema/mcp.pyi,sha256=4SgQ83pEowfWm2p-w9lupV4NayqqVBOy7SuYxIFeWRs,1045
108
108
  gllm_inference/schema/message.pyi,sha256=jJV6A0ihEcun2OhzyMtNkiHnf7d6v5R-GdpTBGfJ0AQ,2272
109
109
  gllm_inference/schema/model_id.pyi,sha256=NuaS4XlKDRJJezj45CEzn8reDDeII9XeRARmM5SZPqA,5408
@@ -117,7 +117,7 @@ gllm_inference/utils/io_utils.pyi,sha256=Eg7dvHWdXslTKdjh1j3dG50i7r35XG2zTmJ9XXv
117
117
  gllm_inference/utils/langchain.pyi,sha256=4AwFiVAO0ZpdgmqeC4Pb5NJwBt8vVr0MSUqLeCdTscc,1194
118
118
  gllm_inference/utils/validation.pyi,sha256=-RdMmb8afH7F7q4Ao7x6FbwaDfxUHn3hA3WiOgzB-3s,397
119
119
  gllm_inference.build/.gitignore,sha256=aEiIwOuxfzdCmLZe4oB1JsBmCUxwG8x-u-HBCV9JT8E,1
120
- gllm_inference_binary-0.5.39.dist-info/METADATA,sha256=fclPfv4h7mJziMKUfIgKXJJVXnT-OpvX8Aqnbg7m0go,5770
121
- gllm_inference_binary-0.5.39.dist-info/WHEEL,sha256=O_u6PJIQ2pIcyIInxVQ9r-yArMuUZbBIaF1kpYVkYxA,96
122
- gllm_inference_binary-0.5.39.dist-info/top_level.txt,sha256=FpOjtN80F-qVNgbScXSEyqa0w09FYn6301iq6qt69IQ,15
123
- gllm_inference_binary-0.5.39.dist-info/RECORD,,
120
+ gllm_inference_binary-0.5.40.dist-info/METADATA,sha256=nB6jb13Rpa3SqeBaMsTuF6mTdRMKSkBwzDzuSONeHJc,5770
121
+ gllm_inference_binary-0.5.40.dist-info/WHEEL,sha256=O_u6PJIQ2pIcyIInxVQ9r-yArMuUZbBIaF1kpYVkYxA,96
122
+ gllm_inference_binary-0.5.40.dist-info/top_level.txt,sha256=FpOjtN80F-qVNgbScXSEyqa0w09FYn6301iq6qt69IQ,15
123
+ gllm_inference_binary-0.5.40.dist-info/RECORD,,