gllm-inference-binary 0.5.39__cp312-cp312-win_amd64.whl → 0.5.40__cp312-cp312-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of gllm-inference-binary might be problematic. Click here for more details.
- gllm_inference/em_invoker/azure_openai_em_invoker.pyi +2 -2
- gllm_inference/em_invoker/bedrock_em_invoker.pyi +2 -2
- gllm_inference/em_invoker/google_em_invoker.pyi +2 -2
- gllm_inference/em_invoker/openai_em_invoker.pyi +2 -2
- gllm_inference/em_invoker/twelevelabs_em_invoker.pyi +2 -2
- gllm_inference/em_invoker/voyage_em_invoker.pyi +2 -2
- gllm_inference/lm_invoker/anthropic_lm_invoker.pyi +11 -21
- gllm_inference/lm_invoker/azure_openai_lm_invoker.pyi +11 -21
- gllm_inference/lm_invoker/bedrock_lm_invoker.pyi +10 -20
- gllm_inference/lm_invoker/datasaur_lm_invoker.pyi +9 -19
- gllm_inference/lm_invoker/google_lm_invoker.pyi +35 -21
- gllm_inference/lm_invoker/langchain_lm_invoker.pyi +10 -20
- gllm_inference/lm_invoker/litellm_lm_invoker.pyi +11 -20
- gllm_inference/lm_invoker/openai_chat_completions_lm_invoker.pyi +11 -20
- gllm_inference/lm_invoker/openai_lm_invoker.pyi +14 -23
- gllm_inference/lm_invoker/xai_lm_invoker.pyi +12 -21
- gllm_inference/schema/lm_output.pyi +4 -0
- gllm_inference.cp312-win_amd64.pyd +0 -0
- {gllm_inference_binary-0.5.39.dist-info → gllm_inference_binary-0.5.40.dist-info}/METADATA +1 -1
- {gllm_inference_binary-0.5.39.dist-info → gllm_inference_binary-0.5.40.dist-info}/RECORD +22 -22
- {gllm_inference_binary-0.5.39.dist-info → gllm_inference_binary-0.5.40.dist-info}/WHEEL +0 -0
- {gllm_inference_binary-0.5.39.dist-info → gllm_inference_binary-0.5.40.dist-info}/top_level.txt +0 -0
|
@@ -57,9 +57,9 @@ class AzureOpenAIEMInvoker(OpenAIEMInvoker):
|
|
|
57
57
|
|
|
58
58
|
Retry config examples:
|
|
59
59
|
```python
|
|
60
|
-
retry_config = RetryConfig(max_retries=0, timeout=
|
|
60
|
+
retry_config = RetryConfig(max_retries=0, timeout=None) # No retry, no timeout
|
|
61
61
|
retry_config = RetryConfig(max_retries=0, timeout=10.0) # No retry, 10.0 seconds timeout
|
|
62
|
-
retry_config = RetryConfig(max_retries=5, timeout=
|
|
62
|
+
retry_config = RetryConfig(max_retries=5, timeout=None) # 5 max retries, no timeout
|
|
63
63
|
retry_config = RetryConfig(max_retries=5, timeout=10.0) # 5 max retries, 10.0 seconds timeout
|
|
64
64
|
```
|
|
65
65
|
|
|
@@ -67,9 +67,9 @@ class BedrockEMInvoker(BaseEMInvoker):
|
|
|
67
67
|
|
|
68
68
|
Retry config examples:
|
|
69
69
|
```python
|
|
70
|
-
retry_config = RetryConfig(max_retries=0, timeout=
|
|
70
|
+
retry_config = RetryConfig(max_retries=0, timeout=None) # No retry, no timeout
|
|
71
71
|
retry_config = RetryConfig(max_retries=0, timeout=10.0) # No retry, 10.0 seconds timeout
|
|
72
|
-
retry_config = RetryConfig(max_retries=5, timeout=
|
|
72
|
+
retry_config = RetryConfig(max_retries=5, timeout=None) # 5 max retries, no timeout
|
|
73
73
|
retry_config = RetryConfig(max_retries=5, timeout=10.0) # 5 max retries, 10.0 seconds timeout
|
|
74
74
|
```
|
|
75
75
|
|
|
@@ -89,9 +89,9 @@ class GoogleEMInvoker(BaseEMInvoker):
|
|
|
89
89
|
|
|
90
90
|
Retry config examples:
|
|
91
91
|
```python
|
|
92
|
-
retry_config = RetryConfig(max_retries=0, timeout=
|
|
92
|
+
retry_config = RetryConfig(max_retries=0, timeout=None) # No retry, no timeout
|
|
93
93
|
retry_config = RetryConfig(max_retries=0, timeout=10.0) # No retry, 10.0 seconds timeout
|
|
94
|
-
retry_config = RetryConfig(max_retries=5, timeout=
|
|
94
|
+
retry_config = RetryConfig(max_retries=5, timeout=None) # 5 max retries, no timeout
|
|
95
95
|
retry_config = RetryConfig(max_retries=5, timeout=10.0) # 5 max retries, 10.0 seconds timeout
|
|
96
96
|
```
|
|
97
97
|
|
|
@@ -85,9 +85,9 @@ class OpenAIEMInvoker(BaseEMInvoker):
|
|
|
85
85
|
|
|
86
86
|
Retry config examples:
|
|
87
87
|
```python
|
|
88
|
-
retry_config = RetryConfig(max_retries=0, timeout=
|
|
88
|
+
retry_config = RetryConfig(max_retries=0, timeout=None) # No retry, no timeout
|
|
89
89
|
retry_config = RetryConfig(max_retries=0, timeout=10.0) # No retry, 10.0 seconds timeout
|
|
90
|
-
retry_config = RetryConfig(max_retries=5, timeout=
|
|
90
|
+
retry_config = RetryConfig(max_retries=5, timeout=None) # 5 max retries, no timeout
|
|
91
91
|
retry_config = RetryConfig(max_retries=5, timeout=10.0) # 5 max retries, 10.0 seconds timeout
|
|
92
92
|
```
|
|
93
93
|
|
|
@@ -71,9 +71,9 @@ class TwelveLabsEMInvoker(BaseEMInvoker):
|
|
|
71
71
|
|
|
72
72
|
Retry config examples:
|
|
73
73
|
```python
|
|
74
|
-
retry_config = RetryConfig(max_retries=0, timeout=
|
|
74
|
+
retry_config = RetryConfig(max_retries=0, timeout=None) # No retry, no timeout
|
|
75
75
|
retry_config = RetryConfig(max_retries=0, timeout=10.0) # No retry, 10.0 seconds timeout
|
|
76
|
-
retry_config = RetryConfig(max_retries=5, timeout=
|
|
76
|
+
retry_config = RetryConfig(max_retries=5, timeout=None) # 5 max retries, no timeout
|
|
77
77
|
retry_config = RetryConfig(max_retries=5, timeout=10.0) # 5 max retries, 10.0 seconds timeout
|
|
78
78
|
```
|
|
79
79
|
|
|
@@ -74,9 +74,9 @@ class VoyageEMInvoker(BaseEMInvoker):
|
|
|
74
74
|
|
|
75
75
|
Retry config examples:
|
|
76
76
|
```python
|
|
77
|
-
retry_config = RetryConfig(max_retries=0, timeout=
|
|
77
|
+
retry_config = RetryConfig(max_retries=0, timeout=None) # No retry, no timeout
|
|
78
78
|
retry_config = RetryConfig(max_retries=0, timeout=10.0) # No retry, 10.0 seconds timeout
|
|
79
|
-
retry_config = RetryConfig(max_retries=5, timeout=
|
|
79
|
+
retry_config = RetryConfig(max_retries=5, timeout=None) # 5 max retries, no timeout
|
|
80
80
|
retry_config = RetryConfig(max_retries=5, timeout=10.0) # 5 max retries, 10.0 seconds timeout
|
|
81
81
|
```
|
|
82
82
|
|
|
@@ -149,9 +149,9 @@ class AnthropicLMInvoker(BaseLMInvoker):
|
|
|
149
149
|
|
|
150
150
|
Retry config examples:
|
|
151
151
|
```python
|
|
152
|
-
retry_config = RetryConfig(max_retries=0, timeout=
|
|
152
|
+
retry_config = RetryConfig(max_retries=0, timeout=None) # No retry, no timeout
|
|
153
153
|
retry_config = RetryConfig(max_retries=0, timeout=10.0) # No retry, 10.0 seconds timeout
|
|
154
|
-
retry_config = RetryConfig(max_retries=5, timeout=
|
|
154
|
+
retry_config = RetryConfig(max_retries=5, timeout=None) # 5 max retries, no timeout
|
|
155
155
|
retry_config = RetryConfig(max_retries=5, timeout=10.0) # 5 max retries, 10.0 seconds timeout
|
|
156
156
|
```
|
|
157
157
|
|
|
@@ -266,25 +266,15 @@ class AnthropicLMInvoker(BaseLMInvoker):
|
|
|
266
266
|
|
|
267
267
|
Output types:
|
|
268
268
|
The output of the `AnthropicLMInvoker` can either be:
|
|
269
|
-
1. `str`:
|
|
270
|
-
2. `LMOutput`: A Pydantic model
|
|
271
|
-
2.1. response (str)
|
|
272
|
-
2.2. tool_calls (list[ToolCall])
|
|
273
|
-
|
|
274
|
-
2.
|
|
275
|
-
|
|
276
|
-
2.
|
|
277
|
-
|
|
278
|
-
2.5. duration (float | None): The duration of the invocation in seconds, if the `output_analytics`
|
|
279
|
-
parameter is set to `True`. Defaults to None.
|
|
280
|
-
2.6. finish_details (dict[str, Any]): The details about how the generation finished, if the
|
|
281
|
-
`output_analytics` parameter is set to `True`. Defaults to an empty dictionary.
|
|
282
|
-
2.7. reasoning (list[Reasoning]): The reasoning objects, if the `thinking` parameter is set to `True`.
|
|
283
|
-
Defaults to an empty list.
|
|
284
|
-
2.8. citations (list[Chunk]): The citations. Currently not supported. Defaults to an empty list.
|
|
285
|
-
2.9. code_exec_results (list[CodeExecResult]): The code execution results. Currently not supported.
|
|
286
|
-
Defaults to an empty list.
|
|
287
|
-
2.10. mcp_calls (list[MCPCall]): The MCP calls. Currently not supported. Defaults to an empty list.
|
|
269
|
+
1. `str`: A text response.
|
|
270
|
+
2. `LMOutput`: A Pydantic model that may contain the following attributes:
|
|
271
|
+
2.1. response (str)
|
|
272
|
+
2.2. tool_calls (list[ToolCall])
|
|
273
|
+
2.3. structured_output (dict[str, Any] | BaseModel | None)
|
|
274
|
+
2.4. token_usage (TokenUsage | None)
|
|
275
|
+
2.5. duration (float | None)
|
|
276
|
+
2.6. finish_details (dict[str, Any])
|
|
277
|
+
2.7. reasoning (list[Reasoning])
|
|
288
278
|
'''
|
|
289
279
|
client: Incomplete
|
|
290
280
|
thinking: Incomplete
|
|
@@ -152,9 +152,9 @@ class AzureOpenAILMInvoker(OpenAILMInvoker):
|
|
|
152
152
|
|
|
153
153
|
Retry config examples:
|
|
154
154
|
```python
|
|
155
|
-
retry_config = RetryConfig(max_retries=0, timeout=
|
|
155
|
+
retry_config = RetryConfig(max_retries=0, timeout=None) # No retry, no timeout
|
|
156
156
|
retry_config = RetryConfig(max_retries=0, timeout=10.0) # No retry, 10.0 seconds timeout
|
|
157
|
-
retry_config = RetryConfig(max_retries=5, timeout=
|
|
157
|
+
retry_config = RetryConfig(max_retries=5, timeout=None) # 5 max retries, no timeout
|
|
158
158
|
retry_config = RetryConfig(max_retries=5, timeout=10.0) # 5 max retries, 10.0 seconds timeout
|
|
159
159
|
```
|
|
160
160
|
|
|
@@ -208,25 +208,15 @@ class AzureOpenAILMInvoker(OpenAILMInvoker):
|
|
|
208
208
|
|
|
209
209
|
Output types:
|
|
210
210
|
The output of the `AzureOpenAILMInvoker` can either be:
|
|
211
|
-
1. `str`:
|
|
212
|
-
2. `LMOutput`: A Pydantic model
|
|
213
|
-
2.1. response (str)
|
|
214
|
-
2.2. tool_calls (list[ToolCall])
|
|
215
|
-
|
|
216
|
-
2.
|
|
217
|
-
|
|
218
|
-
2.
|
|
219
|
-
|
|
220
|
-
2.5. duration (float | None): The duration of the invocation in seconds, if the `output_analytics`
|
|
221
|
-
parameter is set to `True`. Defaults to None.
|
|
222
|
-
2.6. finish_details (dict[str, Any] | None): The details about how the generation finished, if the
|
|
223
|
-
`output_analytics` parameter is set to `True`. Defaults to None.
|
|
224
|
-
2.7. reasoning (list[Reasoning]): The reasoning objects, if the `reasoning_summary` parameter is provided
|
|
225
|
-
for reasoning models. Defaults to an empty list.
|
|
226
|
-
2.8. citations (list[Chunk]): The citations. Currently not supported. Defaults to an empty list.
|
|
227
|
-
2.9. code_exec_results (list[CodeExecResult]): The code execution results. Currently not supported.
|
|
228
|
-
Defaults to an empty list.
|
|
229
|
-
2.10. mcp_calls (list[MCPCall]): The MCP calls. Currently not supported. Defaults to an empty list.
|
|
211
|
+
1. `str`: A text response.
|
|
212
|
+
2. `LMOutput`: A Pydantic model that may contain the following attributes:
|
|
213
|
+
2.1. response (str)
|
|
214
|
+
2.2. tool_calls (list[ToolCall])
|
|
215
|
+
2.3. structured_output (dict[str, Any] | BaseModel | None)
|
|
216
|
+
2.4. token_usage (TokenUsage | None)
|
|
217
|
+
2.5. duration (float | None)
|
|
218
|
+
2.6. finish_details (dict[str, Any] | None)
|
|
219
|
+
2.7. reasoning (list[Reasoning])
|
|
230
220
|
'''
|
|
231
221
|
client_kwargs: Incomplete
|
|
232
222
|
def __init__(self, azure_endpoint: str, azure_deployment: str, api_key: str | None = None, api_version: str | None = None, model_kwargs: dict[str, Any] | None = None, default_hyperparameters: dict[str, Any] | None = None, tools: list[Tool | LangChainTool] | None = None, response_schema: ResponseSchema | None = None, output_analytics: bool = False, retry_config: RetryConfig | None = None, reasoning_effort: ReasoningEffort | None = None, reasoning_summary: ReasoningSummary | None = None, simplify_events: bool = False) -> None:
|
|
@@ -149,9 +149,9 @@ class BedrockLMInvoker(BaseLMInvoker):
|
|
|
149
149
|
|
|
150
150
|
Retry config examples:
|
|
151
151
|
```python
|
|
152
|
-
retry_config = RetryConfig(max_retries=0, timeout=
|
|
152
|
+
retry_config = RetryConfig(max_retries=0, timeout=None) # No retry, no timeout
|
|
153
153
|
retry_config = RetryConfig(max_retries=0, timeout=10.0) # No retry, 10.0 seconds timeout
|
|
154
|
-
retry_config = RetryConfig(max_retries=5, timeout=
|
|
154
|
+
retry_config = RetryConfig(max_retries=5, timeout=None) # 5 max retries, no timeout
|
|
155
155
|
retry_config = RetryConfig(max_retries=5, timeout=10.0) # 5 max retries, 10.0 seconds timeout
|
|
156
156
|
```
|
|
157
157
|
|
|
@@ -162,24 +162,14 @@ class BedrockLMInvoker(BaseLMInvoker):
|
|
|
162
162
|
|
|
163
163
|
Output types:
|
|
164
164
|
The output of the `BedrockLMInvoker` can either be:
|
|
165
|
-
1. `str`:
|
|
166
|
-
2. `LMOutput`: A Pydantic model
|
|
167
|
-
2.1. response (str)
|
|
168
|
-
2.2. tool_calls (list[ToolCall])
|
|
169
|
-
|
|
170
|
-
2.
|
|
171
|
-
|
|
172
|
-
2.
|
|
173
|
-
set to `True`. Defaults to None.
|
|
174
|
-
2.5. duration (float | None): The duration of the invocation in seconds, if the `output_analytics`
|
|
175
|
-
parameter is set to `True`. Defaults to None.
|
|
176
|
-
2.6. finish_details (dict[str, Any]): The details about how the generation finished, if the
|
|
177
|
-
`output_analytics` parameter is set to `True`. Defaults to an empty dictionary.
|
|
178
|
-
2.7. reasoning (list[Reasoning]): The reasoning objects. Currently not supported. Defaults to an empty list.
|
|
179
|
-
2.8. citations (list[Chunk]): The citations. Currently not supported. Defaults to an empty list.
|
|
180
|
-
2.9. code_exec_results (list[CodeExecResult]): The code execution results. Currently not supported.
|
|
181
|
-
Defaults to an empty list.
|
|
182
|
-
2.10. mcp_calls (list[MCPCall]): The MCP calls. Currently not supported. Defaults to an empty list.
|
|
165
|
+
1. `str`: A text response.
|
|
166
|
+
2. `LMOutput`: A Pydantic model that may contain the following attributes:
|
|
167
|
+
2.1. response (str)
|
|
168
|
+
2.2. tool_calls (list[ToolCall])
|
|
169
|
+
2.3. structured_output (dict[str, Any] | BaseModel | None)
|
|
170
|
+
2.4. token_usage (TokenUsage | None)
|
|
171
|
+
2.5. duration (float | None)
|
|
172
|
+
2.6. finish_details (dict[str, Any] | None)
|
|
183
173
|
'''
|
|
184
174
|
session: Incomplete
|
|
185
175
|
client_kwargs: Incomplete
|
|
@@ -72,9 +72,9 @@ class DatasaurLMInvoker(OpenAIChatCompletionsLMInvoker):
|
|
|
72
72
|
|
|
73
73
|
Retry config examples:
|
|
74
74
|
```python
|
|
75
|
-
retry_config = RetryConfig(max_retries=0, timeout=
|
|
75
|
+
retry_config = RetryConfig(max_retries=0, timeout=None) # No retry, no timeout
|
|
76
76
|
retry_config = RetryConfig(max_retries=0, timeout=10.0) # No retry, 10.0 seconds timeout
|
|
77
|
-
retry_config = RetryConfig(max_retries=5, timeout=
|
|
77
|
+
retry_config = RetryConfig(max_retries=5, timeout=None) # 5 max retries, no timeout
|
|
78
78
|
retry_config = RetryConfig(max_retries=5, timeout=10.0) # 5 max retries, 10.0 seconds timeout
|
|
79
79
|
```
|
|
80
80
|
|
|
@@ -103,23 +103,13 @@ class DatasaurLMInvoker(OpenAIChatCompletionsLMInvoker):
|
|
|
103
103
|
|
|
104
104
|
Output types:
|
|
105
105
|
The output of the `DatasaurLMInvoker` can either be:
|
|
106
|
-
1. `str`:
|
|
107
|
-
2. `LMOutput`: A Pydantic model
|
|
108
|
-
2.1. response (str)
|
|
109
|
-
2.2.
|
|
110
|
-
2.3.
|
|
111
|
-
|
|
112
|
-
2.
|
|
113
|
-
set to `True`. Defaults to None.
|
|
114
|
-
2.5. duration (float | None): The duration of the invocation in seconds, if the `output_analytics`
|
|
115
|
-
parameter is set to `True`. Defaults to None.
|
|
116
|
-
2.6. finish_details (dict[str, Any] | None): The details about how the generation finished, if the
|
|
117
|
-
`output_analytics` parameter is set to `True`. Defaults to None.
|
|
118
|
-
2.7. reasoning (list[Reasoning]): The reasoning objects. Currently not supported. Defaults to an empty list.
|
|
119
|
-
2.8. citations (list[Chunk]): The citations. Currently not supported. Defaults to an empty list.
|
|
120
|
-
2.9. code_exec_results (list[CodeExecResult]): The code execution results. Currently not supported.
|
|
121
|
-
Defaults to an empty list.
|
|
122
|
-
2.10. mcp_calls (list[MCPCall]): The MCP calls. Currently not supported. Defaults to an empty list.
|
|
106
|
+
1. `str`: A text response.
|
|
107
|
+
2. `LMOutput`: A Pydantic model that may contain the following attributes:
|
|
108
|
+
2.1. response (str)
|
|
109
|
+
2.2. token_usage (TokenUsage | None)
|
|
110
|
+
2.3. duration (float | None)
|
|
111
|
+
2.4. finish_details (dict[str, Any] | None)
|
|
112
|
+
2.5. citations (list[Chunk])
|
|
123
113
|
'''
|
|
124
114
|
client_kwargs: Incomplete
|
|
125
115
|
citations: Incomplete
|
|
@@ -14,6 +14,7 @@ from typing import Any
|
|
|
14
14
|
SUPPORTED_ATTACHMENTS: Incomplete
|
|
15
15
|
DEFAULT_THINKING_BUDGET: int
|
|
16
16
|
REQUIRE_THINKING_MODEL_PREFIX: Incomplete
|
|
17
|
+
IMAGE_GENERATION_MODELS: Incomplete
|
|
17
18
|
YOUTUBE_URL_PATTERN: Incomplete
|
|
18
19
|
|
|
19
20
|
class GoogleLMInvoker(BaseLMInvoker):
|
|
@@ -30,6 +31,7 @@ class GoogleLMInvoker(BaseLMInvoker):
|
|
|
30
31
|
structured response as defined by the schema. Supports both Pydantic BaseModel and JSON schema dictionary.
|
|
31
32
|
output_analytics (bool): Whether to output the invocation analytics.
|
|
32
33
|
retry_config (RetryConfig | None): The retry configuration for the language model.
|
|
34
|
+
generate_image (bool): Whether to generate image. Only allowed for image generation models.
|
|
33
35
|
thinking (bool): Whether to enable thinking. Only allowed for thinking models.
|
|
34
36
|
thinking_budget (int): The tokens allowed for thinking process. Only allowed for thinking models.
|
|
35
37
|
If set to -1, the model will control the budget automatically.
|
|
@@ -80,6 +82,26 @@ class GoogleLMInvoker(BaseLMInvoker):
|
|
|
80
82
|
result = await lm_invoker.invoke([text, image])
|
|
81
83
|
```
|
|
82
84
|
|
|
85
|
+
Image generation:
|
|
86
|
+
The `GoogleLMInvoker` supports image generation. This can be done by using an image generation model,
|
|
87
|
+
such as `gemini-2.5-flash-image`. Streaming is disabled for image generation models.
|
|
88
|
+
The generated image will be stored in the `attachments` attribute in the output.
|
|
89
|
+
|
|
90
|
+
Usage example:
|
|
91
|
+
```python
|
|
92
|
+
lm_invoker = GoogleLMInvoker("gemini-2.5-flash-image")
|
|
93
|
+
result = await lm_invoker.invoke("Create a picture...")
|
|
94
|
+
result.attachments[0].write_to_file("path/to/local/image.png")
|
|
95
|
+
```
|
|
96
|
+
|
|
97
|
+
Output example:
|
|
98
|
+
```python
|
|
99
|
+
LMOutput(
|
|
100
|
+
response="Let me call the tools...",
|
|
101
|
+
attachments=[Attachment(filename="image.png", mime_type="image/png", data=b"...")],
|
|
102
|
+
)
|
|
103
|
+
```
|
|
104
|
+
|
|
83
105
|
Tool calling:
|
|
84
106
|
Tool calling is a feature that allows the language model to call tools to perform tasks.
|
|
85
107
|
Tools can be passed to the via the `tools` parameter as a list of `Tool` objects.
|
|
@@ -182,9 +204,9 @@ class GoogleLMInvoker(BaseLMInvoker):
|
|
|
182
204
|
|
|
183
205
|
Retry config examples:
|
|
184
206
|
```python
|
|
185
|
-
retry_config = RetryConfig(max_retries=0, timeout=
|
|
207
|
+
retry_config = RetryConfig(max_retries=0, timeout=None) # No retry, no timeout
|
|
186
208
|
retry_config = RetryConfig(max_retries=0, timeout=10.0) # No retry, 10.0 seconds timeout
|
|
187
|
-
retry_config = RetryConfig(max_retries=5, timeout=
|
|
209
|
+
retry_config = RetryConfig(max_retries=5, timeout=None) # 5 max retries, no timeout
|
|
188
210
|
retry_config = RetryConfig(max_retries=5, timeout=10.0) # 5 max retries, 10.0 seconds timeout
|
|
189
211
|
```
|
|
190
212
|
|
|
@@ -237,27 +259,19 @@ class GoogleLMInvoker(BaseLMInvoker):
|
|
|
237
259
|
|
|
238
260
|
Output types:
|
|
239
261
|
The output of the `GoogleLMInvoker` can either be:
|
|
240
|
-
1. `str`:
|
|
241
|
-
2. `LMOutput`: A Pydantic model
|
|
242
|
-
2.1. response (str)
|
|
243
|
-
2.2.
|
|
244
|
-
|
|
245
|
-
2.
|
|
246
|
-
|
|
247
|
-
2.
|
|
248
|
-
|
|
249
|
-
2.
|
|
250
|
-
parameter is set to `True`. Defaults to None.
|
|
251
|
-
2.6. finish_details (dict[str, Any] | None): The details about how the generation finished, if the
|
|
252
|
-
`output_analytics` parameter is set to `True`. Defaults to None.
|
|
253
|
-
2.7. reasoning (list[Reasoning]): The reasoning objects, if the `thinking` parameter is set to `True`.
|
|
254
|
-
Defaults to an empty list.
|
|
255
|
-
2.8. citations (list[Chunk]): The citations. Currently not supported. Defaults to an empty list.
|
|
256
|
-
2.9. code_exec_results (list[CodeExecResult]): The code execution results. Currently not supported.
|
|
257
|
-
Defaults to an empty list.
|
|
258
|
-
2.10. mcp_calls (list[MCPCall]): The MCP calls. Currently not supported. Defaults to an empty list.
|
|
262
|
+
1. `str`: A text response.
|
|
263
|
+
2. `LMOutput`: A Pydantic model that may contain the following attributes:
|
|
264
|
+
2.1. response (str)
|
|
265
|
+
2.2. attachments (list[Attachment])
|
|
266
|
+
2.3. tool_calls (list[ToolCall])
|
|
267
|
+
2.4. structured_output (dict[str, Any] | BaseModel | None)
|
|
268
|
+
2.5. token_usage (TokenUsage | None)
|
|
269
|
+
2.6. duration (float | None)
|
|
270
|
+
2.7. finish_details (dict[str, Any])
|
|
271
|
+
2.8. reasoning (list[Reasoning])
|
|
259
272
|
'''
|
|
260
273
|
client_params: Incomplete
|
|
274
|
+
generate_image: Incomplete
|
|
261
275
|
thinking: Incomplete
|
|
262
276
|
thinking_budget: Incomplete
|
|
263
277
|
def __init__(self, model_name: str, api_key: str | None = None, credentials_path: str | None = None, project_id: str | None = None, location: str = 'us-central1', model_kwargs: dict[str, Any] | None = None, default_hyperparameters: dict[str, Any] | None = None, tools: list[Tool | LangChainTool] | None = None, response_schema: ResponseSchema | None = None, output_analytics: bool = False, retry_config: RetryConfig | None = None, thinking: bool | None = None, thinking_budget: int = ..., simplify_events: bool = False) -> None:
|
|
@@ -175,9 +175,9 @@ class LangChainLMInvoker(BaseLMInvoker):
|
|
|
175
175
|
|
|
176
176
|
Retry config examples:
|
|
177
177
|
```python
|
|
178
|
-
retry_config = RetryConfig(max_retries=0, timeout=
|
|
178
|
+
retry_config = RetryConfig(max_retries=0, timeout=None) # No retry, no timeout
|
|
179
179
|
retry_config = RetryConfig(max_retries=0, timeout=10.0) # No retry, 10.0 seconds timeout
|
|
180
|
-
retry_config = RetryConfig(max_retries=5, timeout=
|
|
180
|
+
retry_config = RetryConfig(max_retries=5, timeout=None) # 5 max retries, no timeout
|
|
181
181
|
retry_config = RetryConfig(max_retries=5, timeout=10.0) # 5 max retries, 10.0 seconds timeout
|
|
182
182
|
```
|
|
183
183
|
|
|
@@ -188,24 +188,14 @@ class LangChainLMInvoker(BaseLMInvoker):
|
|
|
188
188
|
|
|
189
189
|
Output types:
|
|
190
190
|
The output of the `LangChainLMInvoker` can either be:
|
|
191
|
-
1. `str`:
|
|
192
|
-
2. `LMOutput`: A Pydantic model
|
|
193
|
-
2.1. response (str)
|
|
194
|
-
2.2. tool_calls (list[ToolCall])
|
|
195
|
-
|
|
196
|
-
2.
|
|
197
|
-
|
|
198
|
-
2.
|
|
199
|
-
set to `True`. Defaults to None.
|
|
200
|
-
2.5. duration (float | None): The duration of the invocation in seconds, if the `output_analytics`
|
|
201
|
-
parameter is set to `True`. Defaults to None.
|
|
202
|
-
2.6. finish_details (dict[str, Any] | None): The details about how the generation finished, if the
|
|
203
|
-
`output_analytics` parameter is set to `True`. Defaults to None.
|
|
204
|
-
2.7. reasoning (list[Reasoning]): The reasoning objects. Currently not supported. Defaults to an empty list.
|
|
205
|
-
2.8. citations (list[Chunk]): The citations. Currently not supported. Defaults to an empty list.
|
|
206
|
-
2.9. code_exec_results (list[CodeExecResult]): The code execution results. Currently not supported.
|
|
207
|
-
Defaults to an empty list.
|
|
208
|
-
2.10. mcp_calls (list[MCPCall]): The MCP calls. Currently not supported. Defaults to an empty list.
|
|
191
|
+
1. `str`: A text response.
|
|
192
|
+
2. `LMOutput`: A Pydantic model that may contain the following attributes:
|
|
193
|
+
2.1. response (str)
|
|
194
|
+
2.2. tool_calls (list[ToolCall])
|
|
195
|
+
2.3. structured_output (dict[str, Any] | BaseModel | None)
|
|
196
|
+
2.4. token_usage (TokenUsage | None)
|
|
197
|
+
2.5. duration (float | None)
|
|
198
|
+
2.6. finish_details (dict[str, Any])
|
|
209
199
|
'''
|
|
210
200
|
model: Incomplete
|
|
211
201
|
def __init__(self, model: BaseChatModel | None = None, model_class_path: str | None = None, model_name: str | None = None, model_kwargs: dict[str, Any] | None = None, default_hyperparameters: dict[str, Any] | None = None, tools: list[Tool | LangChainTool] | None = None, response_schema: ResponseSchema | None = None, output_analytics: bool = False, retry_config: RetryConfig | None = None) -> None:
|
|
@@ -156,9 +156,9 @@ class LiteLLMLMInvoker(OpenAIChatCompletionsLMInvoker):
|
|
|
156
156
|
|
|
157
157
|
Retry config examples:
|
|
158
158
|
```python
|
|
159
|
-
retry_config = RetryConfig(max_retries=0, timeout=
|
|
159
|
+
retry_config = RetryConfig(max_retries=0, timeout=None) # No retry, no timeout
|
|
160
160
|
retry_config = RetryConfig(max_retries=0, timeout=10.0) # No retry, 10.0 seconds timeout
|
|
161
|
-
retry_config = RetryConfig(max_retries=5, timeout=
|
|
161
|
+
retry_config = RetryConfig(max_retries=5, timeout=None) # 5 max retries, no timeout
|
|
162
162
|
retry_config = RetryConfig(max_retries=5, timeout=10.0) # 5 max retries, 10.0 seconds timeout
|
|
163
163
|
```
|
|
164
164
|
|
|
@@ -210,24 +210,15 @@ class LiteLLMLMInvoker(OpenAIChatCompletionsLMInvoker):
|
|
|
210
210
|
|
|
211
211
|
Output types:
|
|
212
212
|
The output of the `LiteLLMLMInvoker` can either be:
|
|
213
|
-
1. `str`:
|
|
214
|
-
2. `LMOutput`: A Pydantic model
|
|
215
|
-
2.1. response (str)
|
|
216
|
-
2.2. tool_calls (list[ToolCall])
|
|
217
|
-
|
|
218
|
-
2.
|
|
219
|
-
|
|
220
|
-
2.
|
|
221
|
-
|
|
222
|
-
2.5. duration (float | None): The duration of the invocation in seconds, if the `output_analytics`
|
|
223
|
-
parameter is set to `True`. Defaults to None.
|
|
224
|
-
2.6. finish_details (dict[str, Any] | None): The details about how the generation finished, if the
|
|
225
|
-
`output_analytics` parameter is set to `True`. Defaults to None.
|
|
226
|
-
2.7. reasoning (list[Reasoning]): The reasoning objects. Currently not supported. Defaults to an empty list.
|
|
227
|
-
2.8. citations (list[Chunk]): The citations. Currently not supported. Defaults to an empty list.
|
|
228
|
-
2.9. code_exec_results (list[CodeExecResult]): The code execution results. Currently not supported.
|
|
229
|
-
Defaults to an empty list.
|
|
230
|
-
2.10. mcp_calls (list[MCPCall]): The MCP calls. Currently not supported. Defaults to an empty list.
|
|
213
|
+
1. `str`: A text response.
|
|
214
|
+
2. `LMOutput`: A Pydantic model that may contain the following attributes:
|
|
215
|
+
2.1. response (str)
|
|
216
|
+
2.2. tool_calls (list[ToolCall])
|
|
217
|
+
2.3. structured_output (dict[str, Any] | BaseModel | None)
|
|
218
|
+
2.4. token_usage (TokenUsage | None)
|
|
219
|
+
2.5. duration (float | None)
|
|
220
|
+
2.6. finish_details (dict[str, Any])
|
|
221
|
+
2.7. reasoning (list[Reasoning])
|
|
231
222
|
'''
|
|
232
223
|
completion: Incomplete
|
|
233
224
|
def __init__(self, model_id: str, default_hyperparameters: dict[str, Any] | None = None, tools: list[Tool | LangChainTool] | None = None, response_schema: ResponseSchema | None = None, output_analytics: bool = False, retry_config: RetryConfig | None = None, reasoning_effort: ReasoningEffort | None = None, simplify_events: bool = False) -> None:
|
|
@@ -171,9 +171,9 @@ class OpenAIChatCompletionsLMInvoker(BaseLMInvoker):
|
|
|
171
171
|
|
|
172
172
|
Retry config examples:
|
|
173
173
|
```python
|
|
174
|
-
retry_config = RetryConfig(max_retries=0, timeout=
|
|
174
|
+
retry_config = RetryConfig(max_retries=0, timeout=None) # No retry, no timeout
|
|
175
175
|
retry_config = RetryConfig(max_retries=0, timeout=10.0) # No retry, 10.0 seconds timeout
|
|
176
|
-
retry_config = RetryConfig(max_retries=5, timeout=
|
|
176
|
+
retry_config = RetryConfig(max_retries=5, timeout=None) # 5 max retries, no timeout
|
|
177
177
|
retry_config = RetryConfig(max_retries=5, timeout=10.0) # 5 max retries, 10.0 seconds timeout
|
|
178
178
|
```
|
|
179
179
|
|
|
@@ -224,24 +224,15 @@ class OpenAIChatCompletionsLMInvoker(BaseLMInvoker):
|
|
|
224
224
|
|
|
225
225
|
Output types:
|
|
226
226
|
The output of the `OpenAIChatCompletionsLMInvoker` can either be:
|
|
227
|
-
1. `str`:
|
|
228
|
-
2. `LMOutput`: A Pydantic model
|
|
229
|
-
2.1. response (str)
|
|
230
|
-
2.2. tool_calls (list[ToolCall])
|
|
231
|
-
|
|
232
|
-
2.
|
|
233
|
-
|
|
234
|
-
2.
|
|
235
|
-
|
|
236
|
-
2.5. duration (float | None): The duration of the invocation in seconds, if the `output_analytics`
|
|
237
|
-
parameter is set to `True`. Defaults to None.
|
|
238
|
-
2.6. finish_details (dict[str, Any] | None): The details about how the generation finished, if the
|
|
239
|
-
`output_analytics` parameter is set to `True`. Defaults to None.
|
|
240
|
-
2.7. reasoning (list[Reasoning]): The reasoning objects. Currently not supported. Defaults to an empty list.
|
|
241
|
-
2.8. citations (list[Chunk]): The citations. Currently not supported. Defaults to an empty list.
|
|
242
|
-
2.9. code_exec_results (list[CodeExecResult]): The code execution results. Currently not supported.
|
|
243
|
-
Defaults to an empty list.
|
|
244
|
-
2.10. mcp_calls (list[MCPCall]): The MCP calls. Currently not supported. Defaults to an empty list.
|
|
227
|
+
1. `str`: A text response.
|
|
228
|
+
2. `LMOutput`: A Pydantic model that may contain the following attributes:
|
|
229
|
+
2.1. response (str)
|
|
230
|
+
2.2. tool_calls (list[ToolCall])
|
|
231
|
+
2.3. structured_output (dict[str, Any] | BaseModel | None)
|
|
232
|
+
2.4. token_usage (TokenUsage | None)
|
|
233
|
+
2.5. duration (float | None)
|
|
234
|
+
2.6. finish_details (dict[str, Any])
|
|
235
|
+
2.7. reasoning (list[Reasoning])
|
|
245
236
|
'''
|
|
246
237
|
client_kwargs: Incomplete
|
|
247
238
|
def __init__(self, model_name: str, api_key: str | None = None, base_url: str = ..., model_kwargs: dict[str, Any] | None = None, default_hyperparameters: dict[str, Any] | None = None, tools: list[Tool | LangChainTool] | None = None, response_schema: ResponseSchema | None = None, output_analytics: bool = False, retry_config: RetryConfig | None = None, reasoning_effort: ReasoningEffort | None = None, simplify_events: bool = False) -> None:
|
|
@@ -176,9 +176,9 @@ class OpenAILMInvoker(BaseLMInvoker):
|
|
|
176
176
|
|
|
177
177
|
Retry config examples:
|
|
178
178
|
```python
|
|
179
|
-
retry_config = RetryConfig(max_retries=0, timeout=
|
|
179
|
+
retry_config = RetryConfig(max_retries=0, timeout=None) # No retry, no timeout
|
|
180
180
|
retry_config = RetryConfig(max_retries=0, timeout=10.0) # No retry, 10.0 seconds timeout
|
|
181
|
-
retry_config = RetryConfig(max_retries=5, timeout=
|
|
181
|
+
retry_config = RetryConfig(max_retries=5, timeout=None) # 5 max retries, no timeout
|
|
182
182
|
retry_config = RetryConfig(max_retries=5, timeout=10.0) # 5 max retries, 10.0 seconds timeout
|
|
183
183
|
```
|
|
184
184
|
|
|
@@ -369,27 +369,18 @@ class OpenAILMInvoker(BaseLMInvoker):
|
|
|
369
369
|
|
|
370
370
|
Output types:
|
|
371
371
|
The output of the `OpenAILMInvoker` can either be:
|
|
372
|
-
1. `str`:
|
|
373
|
-
2. `LMOutput`: A Pydantic model
|
|
374
|
-
2.1. response (str)
|
|
375
|
-
2.2. tool_calls (list[ToolCall])
|
|
376
|
-
|
|
377
|
-
2.
|
|
378
|
-
|
|
379
|
-
2.
|
|
380
|
-
|
|
381
|
-
2.
|
|
382
|
-
|
|
383
|
-
2.
|
|
384
|
-
`output_analytics` parameter is set to `True`. Defaults to None.
|
|
385
|
-
2.7. reasoning (list[Reasoning]): The reasoning objects, if the `reasoning_summary` parameter is provided
|
|
386
|
-
for reasoning models. Defaults to an empty list.
|
|
387
|
-
2.8. citations (list[Chunk]): The citations, if the web_search is enabled and the language model decides
|
|
388
|
-
to cite the relevant sources. Defaults to an empty list.
|
|
389
|
-
2.9. code_exec_results (list[CodeExecResult]): The code execution results, if the code interpreter is
|
|
390
|
-
enabled and the language model decides to execute any codes. Defaults to an empty list.
|
|
391
|
-
2.10. mcp_calls (list[MCPCall]): The MCP calls, if the MCP servers are provided and the language model
|
|
392
|
-
decides to invoke MCP tools. Defaults to an empty list.
|
|
372
|
+
1. `str`: A text response.
|
|
373
|
+
2. `LMOutput`: A Pydantic model that may contain the following attributes:
|
|
374
|
+
2.1. response (str)
|
|
375
|
+
2.2. tool_calls (list[ToolCall])
|
|
376
|
+
2.3. structured_output (dict[str, Any] | BaseModel | None)
|
|
377
|
+
2.4. token_usage (TokenUsage | None)
|
|
378
|
+
2.5. duration (float | None)
|
|
379
|
+
2.6. finish_details (dict[str, Any])
|
|
380
|
+
2.7. reasoning (list[Reasoning])
|
|
381
|
+
2.8. citations (list[Chunk])
|
|
382
|
+
2.9. code_exec_results (list[CodeExecResult])
|
|
383
|
+
2.10. mcp_calls (list[MCPCall])
|
|
393
384
|
'''
|
|
394
385
|
client_kwargs: Incomplete
|
|
395
386
|
def __init__(self, model_name: str, api_key: str | None = None, base_url: str = ..., model_kwargs: dict[str, Any] | None = None, default_hyperparameters: dict[str, Any] | None = None, tools: list[Tool | LangChainTool] | None = None, response_schema: ResponseSchema | None = None, output_analytics: bool = False, retry_config: RetryConfig | None = None, reasoning_effort: ReasoningEffort | None = None, reasoning_summary: ReasoningSummary | None = None, mcp_servers: list[MCPServer] | None = None, code_interpreter: bool = False, web_search: bool = False, simplify_events: bool = False) -> None:
|
|
@@ -194,9 +194,9 @@ class XAILMInvoker(BaseLMInvoker):
|
|
|
194
194
|
|
|
195
195
|
Retry config examples:
|
|
196
196
|
```python
|
|
197
|
-
retry_config = RetryConfig(max_retries=0, timeout=
|
|
197
|
+
retry_config = RetryConfig(max_retries=0, timeout=None) # No retry, no timeout
|
|
198
198
|
retry_config = RetryConfig(max_retries=0, timeout=10.0) # No retry, 10.0 seconds timeout
|
|
199
|
-
retry_config = RetryConfig(max_retries=5, timeout=
|
|
199
|
+
retry_config = RetryConfig(max_retries=5, timeout=None) # 5 max retries, no timeout
|
|
200
200
|
retry_config = RetryConfig(max_retries=5, timeout=10.0) # 5 max retries, 10.0 seconds timeout
|
|
201
201
|
```
|
|
202
202
|
|
|
@@ -243,25 +243,16 @@ class XAILMInvoker(BaseLMInvoker):
|
|
|
243
243
|
|
|
244
244
|
Output types:
|
|
245
245
|
The output of the `XAILMInvoker` can either be:
|
|
246
|
-
1. `str`:
|
|
247
|
-
2. `LMOutput`: A Pydantic model
|
|
248
|
-
2.1. response (str)
|
|
249
|
-
2.2. tool_calls (list[ToolCall])
|
|
250
|
-
|
|
251
|
-
2.
|
|
252
|
-
|
|
253
|
-
2.
|
|
254
|
-
|
|
255
|
-
2.
|
|
256
|
-
parameter is set to `True`. Defaults to None.
|
|
257
|
-
2.6. finish_details (dict[str, Any] | None): The details about how the generation finished, if the
|
|
258
|
-
`output_analytics` parameter is set to `True`. Defaults to None.
|
|
259
|
-
2.7. reasoning (list[Reasoning]): The reasoning objects, if the `reasoning_effort` parameter is set.
|
|
260
|
-
Defaults to an empty list.
|
|
261
|
-
2.8. citations (list[Chunk]): The citations, if the web_search is enabled and the language model decides
|
|
262
|
-
to cite the relevant sources. Defaults to an empty list.
|
|
263
|
-
2.9. code_exec_results (list[CodeExecResult]): The code execution results. Currently not supported.
|
|
264
|
-
Defaults to an empty list.
|
|
246
|
+
1. `str`: A text response.
|
|
247
|
+
2. `LMOutput`: A Pydantic model that may contain the following attributes:
|
|
248
|
+
2.1. response (str)
|
|
249
|
+
2.2. tool_calls (list[ToolCall])
|
|
250
|
+
2.3. structured_output (dict[str, Any] | BaseModel | None)
|
|
251
|
+
2.4. token_usage (TokenUsage | None)
|
|
252
|
+
2.5. duration (float | None)
|
|
253
|
+
2.6. finish_details (dict[str, Any])
|
|
254
|
+
2.7. reasoning (list[Reasoning])
|
|
255
|
+
2.8. citations (list[Chunk])
|
|
265
256
|
'''
|
|
266
257
|
reasoning_effort: Incomplete
|
|
267
258
|
web_search: Incomplete
|
|
@@ -1,4 +1,5 @@
|
|
|
1
1
|
from gllm_core.schema import Chunk as Chunk
|
|
2
|
+
from gllm_inference.schema.attachment import Attachment as Attachment
|
|
2
3
|
from gllm_inference.schema.code_exec_result import CodeExecResult as CodeExecResult
|
|
3
4
|
from gllm_inference.schema.mcp import MCPCall as MCPCall
|
|
4
5
|
from gllm_inference.schema.reasoning import Reasoning as Reasoning
|
|
@@ -12,6 +13,8 @@ class LMOutput(BaseModel):
|
|
|
12
13
|
|
|
13
14
|
Attributes:
|
|
14
15
|
response (str): The text response. Defaults to an empty string.
|
|
16
|
+
attachments (list[Attachment]): The attachments, if the language model decides to output attachments.
|
|
17
|
+
Defaults to an empty list.
|
|
15
18
|
tool_calls (list[ToolCall]): The tool calls, if the language model decides to invoke tools.
|
|
16
19
|
Defaults to an empty list.
|
|
17
20
|
structured_output (dict[str, Any] | BaseModel | None): The structured output, if a response schema is defined
|
|
@@ -29,6 +32,7 @@ class LMOutput(BaseModel):
|
|
|
29
32
|
Defaults to an empty list.
|
|
30
33
|
"""
|
|
31
34
|
response: str
|
|
35
|
+
attachments: list[Attachment]
|
|
32
36
|
tool_calls: list[ToolCall]
|
|
33
37
|
structured_output: dict[str, Any] | BaseModel | None
|
|
34
38
|
token_usage: TokenUsage | None
|
|
Binary file
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.2
|
|
2
2
|
Name: gllm-inference-binary
|
|
3
|
-
Version: 0.5.
|
|
3
|
+
Version: 0.5.40
|
|
4
4
|
Summary: A library containing components related to model inferences in Gen AI applications.
|
|
5
5
|
Author-email: Henry Wicaksono <henry.wicaksono@gdplabs.id>, Resti Febrina <resti.febrina@gdplabs.id>
|
|
6
6
|
Requires-Python: <3.14,>=3.11
|
|
@@ -1,4 +1,4 @@
|
|
|
1
|
-
gllm_inference.cp312-win_amd64.pyd,sha256=
|
|
1
|
+
gllm_inference.cp312-win_amd64.pyd,sha256=AGt79blJKANQQxSngapyRiRRux6FA5Z_S8Iv4YjJe8s,3553280
|
|
2
2
|
gllm_inference.pyi,sha256=esCvmd7d4XUM_kXqLmlXmHAm_wrcKJuNu30Yx1UCPQo,4730
|
|
3
3
|
gllm_inference/__init__.pyi,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
4
4
|
gllm_inference/constants.pyi,sha256=1OBoHfeWfW9bXH9kStNEH__MGnGp--jLfyheAeQnogY,302
|
|
@@ -12,15 +12,15 @@ gllm_inference/catalog/catalog.pyi,sha256=eWPqgQKi-SJGHabi_XOTEKpAj96OSRypKsb5ZE
|
|
|
12
12
|
gllm_inference/catalog/lm_request_processor_catalog.pyi,sha256=FiveqPDkV58XbDO2znXL-Ix5tFbZwNiVnitlEa90YOY,5536
|
|
13
13
|
gllm_inference/catalog/prompt_builder_catalog.pyi,sha256=iViWB4SaezzjQY4UY1YxeoXUNxqxa2cTJGaD9JSx4Q8,3279
|
|
14
14
|
gllm_inference/em_invoker/__init__.pyi,sha256=pmbsjmsqXwfe4WPykMnrmasKrYuylJWnf2s0pbo0ioM,997
|
|
15
|
-
gllm_inference/em_invoker/azure_openai_em_invoker.pyi,sha256=
|
|
16
|
-
gllm_inference/em_invoker/bedrock_em_invoker.pyi,sha256=
|
|
15
|
+
gllm_inference/em_invoker/azure_openai_em_invoker.pyi,sha256=TXC5Kgf1eZqK2FHKAyeG3LB1SEsSEStnbk9bI1mjC5k,5049
|
|
16
|
+
gllm_inference/em_invoker/bedrock_em_invoker.pyi,sha256=kQETh2r-WR_H3APtt4QavmfwGOR3KB4k6USNYvFateY,5831
|
|
17
17
|
gllm_inference/em_invoker/em_invoker.pyi,sha256=YDYJ8TGScsz5Gg-OBnEENN1tI1RYvwoddypxUr6SAWw,5191
|
|
18
|
-
gllm_inference/em_invoker/google_em_invoker.pyi,sha256=
|
|
18
|
+
gllm_inference/em_invoker/google_em_invoker.pyi,sha256=zZYjeLp9ncwIVM4UHqDJSVOFn1eXiaz9Ba24-_fCF2c,6953
|
|
19
19
|
gllm_inference/em_invoker/langchain_em_invoker.pyi,sha256=nhX6LynrjhfySEt_44OlLoSBd15hoz3giWyNM9CYLKY,3544
|
|
20
20
|
gllm_inference/em_invoker/openai_compatible_em_invoker.pyi,sha256=SbvCbOhdpkq6IyPhGd_IlxD8hbXDZID2rIehY6mJOIs,2923
|
|
21
|
-
gllm_inference/em_invoker/openai_em_invoker.pyi,sha256=
|
|
22
|
-
gllm_inference/em_invoker/twelevelabs_em_invoker.pyi,sha256=
|
|
23
|
-
gllm_inference/em_invoker/voyage_em_invoker.pyi,sha256=
|
|
21
|
+
gllm_inference/em_invoker/openai_em_invoker.pyi,sha256=dwZr9rjrjm060HEnyaPR9-jFJpxSi7fWx7i9ZB4aEY4,6313
|
|
22
|
+
gllm_inference/em_invoker/twelevelabs_em_invoker.pyi,sha256=4E-xCtkkiry_tuMiI9jUk6l6iwy6iPQNxaq67AqHvjk,5448
|
|
23
|
+
gllm_inference/em_invoker/voyage_em_invoker.pyi,sha256=nlcyjYnd3JvKy8UCGzjfXQLR4UmQIJnRbnNwnDK3xng,5621
|
|
24
24
|
gllm_inference/em_invoker/langchain/__init__.pyi,sha256=aOTlRvS9aG1tBErjsmhe75s4Sq-g2z9ArfGqNW7QyEs,151
|
|
25
25
|
gllm_inference/em_invoker/langchain/em_invoker_embeddings.pyi,sha256=BBSDazMOckO9Aw17tC3LGUTPqLb01my1xUZLtKZlwJY,3388
|
|
26
26
|
gllm_inference/em_invoker/schema/__init__.pyi,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
@@ -36,18 +36,18 @@ gllm_inference/exceptions/error_parser.pyi,sha256=4aiJZhBzBOqlhdmpvaCvildGy7_Xxl
|
|
|
36
36
|
gllm_inference/exceptions/exceptions.pyi,sha256=6y3ECgHAStqMGgQv8Dv-Ui-5PDD07mSj6qaRZeSWea4,5857
|
|
37
37
|
gllm_inference/exceptions/provider_error_map.pyi,sha256=4AsAgbXAh91mxEW2YiomEuhBoeSNeAIo9WbT9WK8gQk,1233
|
|
38
38
|
gllm_inference/lm_invoker/__init__.pyi,sha256=jG1xc5fTOeIgeKKVYSnsMzQThKk9kTW38yO_MYtv540,1387
|
|
39
|
-
gllm_inference/lm_invoker/anthropic_lm_invoker.pyi,sha256=
|
|
40
|
-
gllm_inference/lm_invoker/azure_openai_lm_invoker.pyi,sha256=
|
|
41
|
-
gllm_inference/lm_invoker/bedrock_lm_invoker.pyi,sha256=
|
|
42
|
-
gllm_inference/lm_invoker/datasaur_lm_invoker.pyi,sha256=
|
|
43
|
-
gllm_inference/lm_invoker/google_lm_invoker.pyi,sha256=
|
|
44
|
-
gllm_inference/lm_invoker/langchain_lm_invoker.pyi,sha256=
|
|
45
|
-
gllm_inference/lm_invoker/litellm_lm_invoker.pyi,sha256=
|
|
39
|
+
gllm_inference/lm_invoker/anthropic_lm_invoker.pyi,sha256=JSgKUk9d1ZHlitv_ZjHlAk2hIW-J7u6yslVHflIeUro,16726
|
|
40
|
+
gllm_inference/lm_invoker/azure_openai_lm_invoker.pyi,sha256=FYfRNPG-oD4wIfitjTHnGib1uMZL7Pid0gbrRsymAHU,14601
|
|
41
|
+
gllm_inference/lm_invoker/bedrock_lm_invoker.pyi,sha256=dsNxj3ZfHxUplg6nBLgxVGooGYq1QP89gYzCnmRCz3g,11810
|
|
42
|
+
gllm_inference/lm_invoker/datasaur_lm_invoker.pyi,sha256=LR0EM4vTfufq9OWk8JVIwLyFeJFTguPNmPgJBUooSq4,8342
|
|
43
|
+
gllm_inference/lm_invoker/google_lm_invoker.pyi,sha256=aSmEgoYj_V72Nb6erDResphw9RaHfbE5C6PhqpMfEeQ,17674
|
|
44
|
+
gllm_inference/lm_invoker/langchain_lm_invoker.pyi,sha256=tJIxkFUKjLF-yz0niaDjN3L0QNCbn4sT8hmPKtERpog,12742
|
|
45
|
+
gllm_inference/lm_invoker/litellm_lm_invoker.pyi,sha256=IJxRUkmgXY8oQwS7tJoskO8fiESB7M4pyvpE64pyXDo,12648
|
|
46
46
|
gllm_inference/lm_invoker/lm_invoker.pyi,sha256=vUmMNEl7F__PavQJ42scoYGyWdEvZOw2Bwxhoqv_gKE,8659
|
|
47
|
-
gllm_inference/lm_invoker/openai_chat_completions_lm_invoker.pyi,sha256=
|
|
47
|
+
gllm_inference/lm_invoker/openai_chat_completions_lm_invoker.pyi,sha256=uYJFgi4tJGab77232IC1gdoU9h9AqoClIUj6tM6O47s,15177
|
|
48
48
|
gllm_inference/lm_invoker/openai_compatible_lm_invoker.pyi,sha256=T9sShA_9fgEuaaAuT2gJZq_EYNbEhf3IkWwMCwfszY8,4244
|
|
49
|
-
gllm_inference/lm_invoker/openai_lm_invoker.pyi,sha256=
|
|
50
|
-
gllm_inference/lm_invoker/xai_lm_invoker.pyi,sha256=
|
|
49
|
+
gllm_inference/lm_invoker/openai_lm_invoker.pyi,sha256=JJ-EEoUZVU147UC0oU11EimWuaEhC9p5lBy-PVW60fM,23419
|
|
50
|
+
gllm_inference/lm_invoker/xai_lm_invoker.pyi,sha256=gyi12K7M9HkjNX6pU6NVv5Uq3-aHErixO-PVhHjioo8,14632
|
|
51
51
|
gllm_inference/lm_invoker/batch/__init__.pyi,sha256=vJOTHRJ83oq8Bq0UsMdID9_HW5JAxr06gUs4aPRZfEE,130
|
|
52
52
|
gllm_inference/lm_invoker/batch/batch_operations.pyi,sha256=o2U17M41RKVFW6j_oxy-SxU1JqUtVt75pKRxrqXzorE,5499
|
|
53
53
|
gllm_inference/lm_invoker/schema/__init__.pyi,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
@@ -103,7 +103,7 @@ gllm_inference/schema/config.pyi,sha256=NVmjQK6HipIE0dKSfx12hgIC0O-S1HEcAc-TWlXA
|
|
|
103
103
|
gllm_inference/schema/enums.pyi,sha256=U30RGvNFcNNJxTZZPt8vK7SFp3W4KSPVFxTZaiF1eLU,1375
|
|
104
104
|
gllm_inference/schema/events.pyi,sha256=ifF75efM1TaEjw4AQmPkoQJUSl8d3Gt9PsBhTwSGsJ4,4020
|
|
105
105
|
gllm_inference/schema/lm_input.pyi,sha256=HxQiZgY7zcXh_Dw8nK8LSeBTZEHMPZVwmPmnfgSsAbs,197
|
|
106
|
-
gllm_inference/schema/lm_output.pyi,sha256=
|
|
106
|
+
gllm_inference/schema/lm_output.pyi,sha256=DIV8BiIOPaSnMKxzKzH_Mp7j7-MScWCvmllegJDLqFg,2479
|
|
107
107
|
gllm_inference/schema/mcp.pyi,sha256=4SgQ83pEowfWm2p-w9lupV4NayqqVBOy7SuYxIFeWRs,1045
|
|
108
108
|
gllm_inference/schema/message.pyi,sha256=jJV6A0ihEcun2OhzyMtNkiHnf7d6v5R-GdpTBGfJ0AQ,2272
|
|
109
109
|
gllm_inference/schema/model_id.pyi,sha256=NuaS4XlKDRJJezj45CEzn8reDDeII9XeRARmM5SZPqA,5408
|
|
@@ -117,7 +117,7 @@ gllm_inference/utils/io_utils.pyi,sha256=Eg7dvHWdXslTKdjh1j3dG50i7r35XG2zTmJ9XXv
|
|
|
117
117
|
gllm_inference/utils/langchain.pyi,sha256=4AwFiVAO0ZpdgmqeC4Pb5NJwBt8vVr0MSUqLeCdTscc,1194
|
|
118
118
|
gllm_inference/utils/validation.pyi,sha256=-RdMmb8afH7F7q4Ao7x6FbwaDfxUHn3hA3WiOgzB-3s,397
|
|
119
119
|
gllm_inference.build/.gitignore,sha256=aEiIwOuxfzdCmLZe4oB1JsBmCUxwG8x-u-HBCV9JT8E,1
|
|
120
|
-
gllm_inference_binary-0.5.
|
|
121
|
-
gllm_inference_binary-0.5.
|
|
122
|
-
gllm_inference_binary-0.5.
|
|
123
|
-
gllm_inference_binary-0.5.
|
|
120
|
+
gllm_inference_binary-0.5.40.dist-info/METADATA,sha256=nB6jb13Rpa3SqeBaMsTuF6mTdRMKSkBwzDzuSONeHJc,5770
|
|
121
|
+
gllm_inference_binary-0.5.40.dist-info/WHEEL,sha256=x5rgv--I0NI0IT1Lh9tN1VG2cI637p3deednwYLKnxc,96
|
|
122
|
+
gllm_inference_binary-0.5.40.dist-info/top_level.txt,sha256=FpOjtN80F-qVNgbScXSEyqa0w09FYn6301iq6qt69IQ,15
|
|
123
|
+
gllm_inference_binary-0.5.40.dist-info/RECORD,,
|
|
File without changes
|
{gllm_inference_binary-0.5.39.dist-info → gllm_inference_binary-0.5.40.dist-info}/top_level.txt
RENAMED
|
File without changes
|