gllm-inference-binary 0.5.38__cp312-cp312-win_amd64.whl → 0.5.41__cp312-cp312-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of gllm-inference-binary might be problematic. Click here for more details.

Files changed (26) hide show
  1. gllm_inference/em_invoker/azure_openai_em_invoker.pyi +2 -2
  2. gllm_inference/em_invoker/bedrock_em_invoker.pyi +2 -2
  3. gllm_inference/em_invoker/google_em_invoker.pyi +2 -2
  4. gllm_inference/em_invoker/openai_em_invoker.pyi +2 -2
  5. gllm_inference/em_invoker/twelevelabs_em_invoker.pyi +2 -2
  6. gllm_inference/em_invoker/voyage_em_invoker.pyi +2 -2
  7. gllm_inference/lm_invoker/anthropic_lm_invoker.pyi +22 -28
  8. gllm_inference/lm_invoker/azure_openai_lm_invoker.pyi +24 -29
  9. gllm_inference/lm_invoker/bedrock_lm_invoker.pyi +10 -20
  10. gllm_inference/lm_invoker/datasaur_lm_invoker.pyi +11 -21
  11. gllm_inference/lm_invoker/google_lm_invoker.pyi +46 -28
  12. gllm_inference/lm_invoker/langchain_lm_invoker.pyi +10 -20
  13. gllm_inference/lm_invoker/litellm_lm_invoker.pyi +25 -30
  14. gllm_inference/lm_invoker/lm_invoker.pyi +4 -1
  15. gllm_inference/lm_invoker/openai_chat_completions_lm_invoker.pyi +22 -28
  16. gllm_inference/lm_invoker/openai_compatible_lm_invoker.pyi +4 -1
  17. gllm_inference/lm_invoker/openai_lm_invoker.pyi +45 -50
  18. gllm_inference/lm_invoker/xai_lm_invoker.pyi +26 -42
  19. gllm_inference/schema/events.pyi +15 -15
  20. gllm_inference/schema/lm_output.pyi +4 -0
  21. gllm_inference.cp312-win_amd64.pyd +0 -0
  22. gllm_inference.pyi +1 -1
  23. {gllm_inference_binary-0.5.38.dist-info → gllm_inference_binary-0.5.41.dist-info}/METADATA +1 -1
  24. {gllm_inference_binary-0.5.38.dist-info → gllm_inference_binary-0.5.41.dist-info}/RECORD +26 -26
  25. {gllm_inference_binary-0.5.38.dist-info → gllm_inference_binary-0.5.41.dist-info}/WHEEL +0 -0
  26. {gllm_inference_binary-0.5.38.dist-info → gllm_inference_binary-0.5.41.dist-info}/top_level.txt +0 -0
@@ -57,9 +57,9 @@ class AzureOpenAIEMInvoker(OpenAIEMInvoker):
57
57
 
58
58
  Retry config examples:
59
59
  ```python
60
- retry_config = RetryConfig(max_retries=0, timeout=0.0) # No retry, no timeout
60
+ retry_config = RetryConfig(max_retries=0, timeout=None) # No retry, no timeout
61
61
  retry_config = RetryConfig(max_retries=0, timeout=10.0) # No retry, 10.0 seconds timeout
62
- retry_config = RetryConfig(max_retries=5, timeout=0.0) # 5 max retries, no timeout
62
+ retry_config = RetryConfig(max_retries=5, timeout=None) # 5 max retries, no timeout
63
63
  retry_config = RetryConfig(max_retries=5, timeout=10.0) # 5 max retries, 10.0 seconds timeout
64
64
  ```
65
65
 
@@ -67,9 +67,9 @@ class BedrockEMInvoker(BaseEMInvoker):
67
67
 
68
68
  Retry config examples:
69
69
  ```python
70
- retry_config = RetryConfig(max_retries=0, timeout=0.0) # No retry, no timeout
70
+ retry_config = RetryConfig(max_retries=0, timeout=None) # No retry, no timeout
71
71
  retry_config = RetryConfig(max_retries=0, timeout=10.0) # No retry, 10.0 seconds timeout
72
- retry_config = RetryConfig(max_retries=5, timeout=0.0) # 5 max retries, no timeout
72
+ retry_config = RetryConfig(max_retries=5, timeout=None) # 5 max retries, no timeout
73
73
  retry_config = RetryConfig(max_retries=5, timeout=10.0) # 5 max retries, 10.0 seconds timeout
74
74
  ```
75
75
 
@@ -89,9 +89,9 @@ class GoogleEMInvoker(BaseEMInvoker):
89
89
 
90
90
  Retry config examples:
91
91
  ```python
92
- retry_config = RetryConfig(max_retries=0, timeout=0.0) # No retry, no timeout
92
+ retry_config = RetryConfig(max_retries=0, timeout=None) # No retry, no timeout
93
93
  retry_config = RetryConfig(max_retries=0, timeout=10.0) # No retry, 10.0 seconds timeout
94
- retry_config = RetryConfig(max_retries=5, timeout=0.0) # 5 max retries, no timeout
94
+ retry_config = RetryConfig(max_retries=5, timeout=None) # 5 max retries, no timeout
95
95
  retry_config = RetryConfig(max_retries=5, timeout=10.0) # 5 max retries, 10.0 seconds timeout
96
96
  ```
97
97
 
@@ -85,9 +85,9 @@ class OpenAIEMInvoker(BaseEMInvoker):
85
85
 
86
86
  Retry config examples:
87
87
  ```python
88
- retry_config = RetryConfig(max_retries=0, timeout=0.0) # No retry, no timeout
88
+ retry_config = RetryConfig(max_retries=0, timeout=None) # No retry, no timeout
89
89
  retry_config = RetryConfig(max_retries=0, timeout=10.0) # No retry, 10.0 seconds timeout
90
- retry_config = RetryConfig(max_retries=5, timeout=0.0) # 5 max retries, no timeout
90
+ retry_config = RetryConfig(max_retries=5, timeout=None) # 5 max retries, no timeout
91
91
  retry_config = RetryConfig(max_retries=5, timeout=10.0) # 5 max retries, 10.0 seconds timeout
92
92
  ```
93
93
 
@@ -71,9 +71,9 @@ class TwelveLabsEMInvoker(BaseEMInvoker):
71
71
 
72
72
  Retry config examples:
73
73
  ```python
74
- retry_config = RetryConfig(max_retries=0, timeout=0.0) # No retry, no timeout
74
+ retry_config = RetryConfig(max_retries=0, timeout=None) # No retry, no timeout
75
75
  retry_config = RetryConfig(max_retries=0, timeout=10.0) # No retry, 10.0 seconds timeout
76
- retry_config = RetryConfig(max_retries=5, timeout=0.0) # 5 max retries, no timeout
76
+ retry_config = RetryConfig(max_retries=5, timeout=None) # 5 max retries, no timeout
77
77
  retry_config = RetryConfig(max_retries=5, timeout=10.0) # 5 max retries, 10.0 seconds timeout
78
78
  ```
79
79
 
@@ -74,9 +74,9 @@ class VoyageEMInvoker(BaseEMInvoker):
74
74
 
75
75
  Retry config examples:
76
76
  ```python
77
- retry_config = RetryConfig(max_retries=0, timeout=0.0) # No retry, no timeout
77
+ retry_config = RetryConfig(max_retries=0, timeout=None) # No retry, no timeout
78
78
  retry_config = RetryConfig(max_retries=0, timeout=10.0) # No retry, 10.0 seconds timeout
79
- retry_config = RetryConfig(max_retries=5, timeout=0.0) # 5 max retries, no timeout
79
+ retry_config = RetryConfig(max_retries=5, timeout=None) # 5 max retries, no timeout
80
80
  retry_config = RetryConfig(max_retries=5, timeout=10.0) # 5 max retries, 10.0 seconds timeout
81
81
  ```
82
82
 
@@ -149,9 +149,9 @@ class AnthropicLMInvoker(BaseLMInvoker):
149
149
 
150
150
  Retry config examples:
151
151
  ```python
152
- retry_config = RetryConfig(max_retries=0, timeout=0.0) # No retry, no timeout
152
+ retry_config = RetryConfig(max_retries=0, timeout=None) # No retry, no timeout
153
153
  retry_config = RetryConfig(max_retries=0, timeout=10.0) # No retry, 10.0 seconds timeout
154
- retry_config = RetryConfig(max_retries=5, timeout=0.0) # 5 max retries, no timeout
154
+ retry_config = RetryConfig(max_retries=5, timeout=None) # 5 max retries, no timeout
155
155
  retry_config = RetryConfig(max_retries=5, timeout=10.0) # 5 max retries, 10.0 seconds timeout
156
156
  ```
157
157
 
@@ -188,17 +188,18 @@ class AnthropicLMInvoker(BaseLMInvoker):
188
188
  )
189
189
  ```
190
190
 
191
- When streaming is enabled, the thinking token will be streamed with the `EventType.DATA` event type.
192
-
193
191
  Streaming output example:
194
192
  ```python
195
- {"type": "data", "value": \'{"data_type": "thinking_start", "data_value": ""}\', ...}
196
- {"type": "data", "value": \'{"data_type": "thinking", "data_value": "Let me think "}\', ...}
197
- {"type": "data", "value": \'{"data_type": "thinking", "data_value": "about it..."}\', ...}
198
- {"type": "data", "value": \'{"data_type": "thinking_end", "data_value": ""}\', ...}
193
+ {"type": "thinking_start", "value": "", ...}
194
+ {"type": "thinking", "value": "Let me think "\', ...}
195
+ {"type": "thinking", "value": "about it..."}\', ...}
196
+ {"type": "thinking_end", "value": ""}\', ...}
199
197
  {"type": "response", "value": "Golden retriever ", ...}
200
198
  {"type": "response", "value": "is a good dog breed.", ...}
201
199
  ```
200
+ Note: By default, the thinking token will be streamed with the legacy `EventType.DATA` event type.
201
+ To use the new simplified streamed event format, set the `simplify_events` parameter to `True` during
202
+ LM invoker initialization. The legacy event format support will be removed in v0.6.
202
203
 
203
204
  Batch processing:
204
205
  The `AnthropicLMInvoker` supports batch processing, which allows the language model to process multiple
@@ -265,30 +266,20 @@ class AnthropicLMInvoker(BaseLMInvoker):
265
266
 
266
267
  Output types:
267
268
  The output of the `AnthropicLMInvoker` can either be:
268
- 1. `str`: The text response if no additional output is needed.
269
- 2. `LMOutput`: A Pydantic model with the following attributes if any additional output is needed:
270
- 2.1. response (str): The text response.
271
- 2.2. tool_calls (list[ToolCall]): The tool calls, if the `tools` parameter is defined and the language
272
- model decides to invoke tools. Defaults to an empty list.
273
- 2.3. structured_output (dict[str, Any] | BaseModel | None): The structured output, if the `response_schema`
274
- parameter is defined. Defaults to None.
275
- 2.4. token_usage (TokenUsage | None): The token usage information, if the `output_analytics` parameter is
276
- set to `True`. Defaults to None.
277
- 2.5. duration (float | None): The duration of the invocation in seconds, if the `output_analytics`
278
- parameter is set to `True`. Defaults to None.
279
- 2.6. finish_details (dict[str, Any]): The details about how the generation finished, if the
280
- `output_analytics` parameter is set to `True`. Defaults to an empty dictionary.
281
- 2.7. reasoning (list[Reasoning]): The reasoning objects, if the `thinking` parameter is set to `True`.
282
- Defaults to an empty list.
283
- 2.8. citations (list[Chunk]): The citations. Currently not supported. Defaults to an empty list.
284
- 2.9. code_exec_results (list[CodeExecResult]): The code execution results. Currently not supported.
285
- Defaults to an empty list.
286
- 2.10. mcp_calls (list[MCPCall]): The MCP calls. Currently not supported. Defaults to an empty list.
269
+ 1. `str`: A text response.
270
+ 2. `LMOutput`: A Pydantic model that may contain the following attributes:
271
+ 2.1. response (str)
272
+ 2.2. tool_calls (list[ToolCall])
273
+ 2.3. structured_output (dict[str, Any] | BaseModel | None)
274
+ 2.4. token_usage (TokenUsage | None)
275
+ 2.5. duration (float | None)
276
+ 2.6. finish_details (dict[str, Any])
277
+ 2.7. reasoning (list[Reasoning])
287
278
  '''
288
279
  client: Incomplete
289
280
  thinking: Incomplete
290
281
  thinking_budget: Incomplete
291
- def __init__(self, model_name: str, api_key: str | None = None, model_kwargs: dict[str, Any] | None = None, default_hyperparameters: dict[str, Any] | None = None, tools: list[Tool | LangChainTool] | None = None, response_schema: ResponseSchema | None = None, output_analytics: bool = False, retry_config: RetryConfig | None = None, thinking: bool = False, thinking_budget: int = ...) -> None:
282
+ def __init__(self, model_name: str, api_key: str | None = None, model_kwargs: dict[str, Any] | None = None, default_hyperparameters: dict[str, Any] | None = None, tools: list[Tool | LangChainTool] | None = None, response_schema: ResponseSchema | None = None, output_analytics: bool = False, retry_config: RetryConfig | None = None, thinking: bool = False, thinking_budget: int = ..., simplify_events: bool = False) -> None:
292
283
  """Initializes the AnthropicLmInvoker instance.
293
284
 
294
285
  Args:
@@ -309,6 +300,9 @@ class AnthropicLMInvoker(BaseLMInvoker):
309
300
  thinking (bool, optional): Whether to enable thinking. Only allowed for thinking models. Defaults to False.
310
301
  thinking_budget (int, optional): The tokens allocated for the thinking process. Must be greater than or
311
302
  equal to 1024. Only allowed for thinking models. Defaults to DEFAULT_THINKING_BUDGET.
303
+ simplify_events (bool, optional): Temporary parameter to control the streamed events format.
304
+ When True, uses the simplified events format. When False, uses the legacy events format for
305
+ backward compatibility. Will be removed in v0.6. Defaults to False.
312
306
 
313
307
  Raises:
314
308
  ValueError:
@@ -152,9 +152,9 @@ class AzureOpenAILMInvoker(OpenAILMInvoker):
152
152
 
153
153
  Retry config examples:
154
154
  ```python
155
- retry_config = RetryConfig(max_retries=0, timeout=0.0) # No retry, no timeout
155
+ retry_config = RetryConfig(max_retries=0, timeout=None) # No retry, no timeout
156
156
  retry_config = RetryConfig(max_retries=0, timeout=10.0) # No retry, 10.0 seconds timeout
157
- retry_config = RetryConfig(max_retries=5, timeout=0.0) # 5 max retries, no timeout
157
+ retry_config = RetryConfig(max_retries=5, timeout=None) # 5 max retries, no timeout
158
158
  retry_config = RetryConfig(max_retries=5, timeout=10.0) # 5 max retries, 10.0 seconds timeout
159
159
  ```
160
160
 
@@ -191,43 +191,35 @@ class AzureOpenAILMInvoker(OpenAILMInvoker):
191
191
  )
192
192
  ```
193
193
 
194
- When streaming is enabled along with reasoning summary, the reasoning summary token will be streamed with the
195
- `EventType.DATA` event type.
196
-
197
194
  Streaming output example:
198
195
  ```python
199
- {"type": "data", "value": "Let me think ", ...} # Reasoning summary token
200
- {"type": "data", "value": "about it...", ...} # Reasoning summary token
201
- {"type": "response", "value": "Golden retriever ", ...} # Response token
202
- {"type": "response", "value": "is a good dog breed.", ...} # Response token
196
+ {"type": "thinking_start", "value": ""}\', ...}
197
+ {"type": "thinking", "value": "Let me think "}\', ...}
198
+ {"type": "thinking", "value": "about it..."}\', ...}
199
+ {"type": "thinking_end", "value": ""}\', ...}
200
+ {"type": "response", "value": "Golden retriever ", ...}
201
+ {"type": "response", "value": "is a good dog breed.", ...}
203
202
  ```
203
+ Note: By default, the thinking token will be streamed with the legacy `EventType.DATA` event type.
204
+ To use the new simplified streamed event format, set the `simplify_events` parameter to `True` during
205
+ LM invoker initialization. The legacy event format support will be removed in v0.6.
204
206
 
205
207
  Setting reasoning-related parameters for non-reasoning models will raise an error.
206
208
 
207
209
  Output types:
208
210
  The output of the `AzureOpenAILMInvoker` can either be:
209
- 1. `str`: The text response if no additional output is needed.
210
- 2. `LMOutput`: A Pydantic model with the following attributes if any additional output is needed:
211
- 2.1. response (str): The text response.
212
- 2.2. tool_calls (list[ToolCall]): The tool calls, if the `tools` parameter is defined and the language
213
- model decides to invoke tools. Defaults to an empty list.
214
- 2.3. structured_output (dict[str, Any] | BaseModel | None): The structured output, if the `response_schema`
215
- parameter is defined. Defaults to None.
216
- 2.4. token_usage (TokenUsage | None): The token usage analytics, if the `output_analytics` parameter is
217
- set to `True`. Defaults to None.
218
- 2.5. duration (float | None): The duration of the invocation in seconds, if the `output_analytics`
219
- parameter is set to `True`. Defaults to None.
220
- 2.6. finish_details (dict[str, Any] | None): The details about how the generation finished, if the
221
- `output_analytics` parameter is set to `True`. Defaults to None.
222
- 2.7. reasoning (list[Reasoning]): The reasoning objects, if the `reasoning_summary` parameter is provided
223
- for reasoning models. Defaults to an empty list.
224
- 2.8. citations (list[Chunk]): The citations. Currently not supported. Defaults to an empty list.
225
- 2.9. code_exec_results (list[CodeExecResult]): The code execution results. Currently not supported.
226
- Defaults to an empty list.
227
- 2.10. mcp_calls (list[MCPCall]): The MCP calls. Currently not supported. Defaults to an empty list.
211
+ 1. `str`: A text response.
212
+ 2. `LMOutput`: A Pydantic model that may contain the following attributes:
213
+ 2.1. response (str)
214
+ 2.2. tool_calls (list[ToolCall])
215
+ 2.3. structured_output (dict[str, Any] | BaseModel | None)
216
+ 2.4. token_usage (TokenUsage | None)
217
+ 2.5. duration (float | None)
218
+ 2.6. finish_details (dict[str, Any] | None)
219
+ 2.7. reasoning (list[Reasoning])
228
220
  '''
229
221
  client_kwargs: Incomplete
230
- def __init__(self, azure_endpoint: str, azure_deployment: str, api_key: str | None = None, api_version: str | None = None, model_kwargs: dict[str, Any] | None = None, default_hyperparameters: dict[str, Any] | None = None, tools: list[Tool | LangChainTool] | None = None, response_schema: ResponseSchema | None = None, output_analytics: bool = False, retry_config: RetryConfig | None = None, reasoning_effort: ReasoningEffort | None = None, reasoning_summary: ReasoningSummary | None = None) -> None:
222
+ def __init__(self, azure_endpoint: str, azure_deployment: str, api_key: str | None = None, api_version: str | None = None, model_kwargs: dict[str, Any] | None = None, default_hyperparameters: dict[str, Any] | None = None, tools: list[Tool | LangChainTool] | None = None, response_schema: ResponseSchema | None = None, output_analytics: bool = False, retry_config: RetryConfig | None = None, reasoning_effort: ReasoningEffort | None = None, reasoning_summary: ReasoningSummary | None = None, simplify_events: bool = False) -> None:
231
223
  """Initializes a new instance of the AzureOpenAILMInvoker class.
232
224
 
233
225
  Args:
@@ -251,6 +243,9 @@ class AzureOpenAILMInvoker(OpenAILMInvoker):
251
243
  for non-reasoning models. If None, the model will perform medium reasoning effort. Defaults to None.
252
244
  reasoning_summary (ReasoningSummary | None, optional): The reasoning summary level for reasoning models.
253
245
  Not allowed for non-reasoning models. If None, no summary will be generated. Defaults to None.
246
+ simplify_events (bool, optional): Temporary parameter to control the streamed events format.
247
+ When True, uses the simplified events format. When False, uses the legacy events format for
248
+ backward compatibility. Will be removed in v0.6. Defaults to False.
254
249
 
255
250
  Raises:
256
251
  ValueError:
@@ -149,9 +149,9 @@ class BedrockLMInvoker(BaseLMInvoker):
149
149
 
150
150
  Retry config examples:
151
151
  ```python
152
- retry_config = RetryConfig(max_retries=0, timeout=0.0) # No retry, no timeout
152
+ retry_config = RetryConfig(max_retries=0, timeout=None) # No retry, no timeout
153
153
  retry_config = RetryConfig(max_retries=0, timeout=10.0) # No retry, 10.0 seconds timeout
154
- retry_config = RetryConfig(max_retries=5, timeout=0.0) # 5 max retries, no timeout
154
+ retry_config = RetryConfig(max_retries=5, timeout=None) # 5 max retries, no timeout
155
155
  retry_config = RetryConfig(max_retries=5, timeout=10.0) # 5 max retries, 10.0 seconds timeout
156
156
  ```
157
157
 
@@ -162,24 +162,14 @@ class BedrockLMInvoker(BaseLMInvoker):
162
162
 
163
163
  Output types:
164
164
  The output of the `BedrockLMInvoker` can either be:
165
- 1. `str`: The text response if no additional output is needed.
166
- 2. `LMOutput`: A Pydantic model with the following attributes if any additional output is needed:
167
- 2.1. response (str): The text response.
168
- 2.2. tool_calls (list[ToolCall]): The tool calls, if the `tools` parameter is defined and the language
169
- model decides to invoke tools. Defaults to an empty list.
170
- 2.3. structured_output (dict[str, Any] | BaseModel | None): The structured output, if the `response_schema`
171
- parameter is defined. Defaults to None.
172
- 2.4. token_usage (TokenUsage | None): The token usage information, if the `output_analytics` parameter is
173
- set to `True`. Defaults to None.
174
- 2.5. duration (float | None): The duration of the invocation in seconds, if the `output_analytics`
175
- parameter is set to `True`. Defaults to None.
176
- 2.6. finish_details (dict[str, Any]): The details about how the generation finished, if the
177
- `output_analytics` parameter is set to `True`. Defaults to an empty dictionary.
178
- 2.7. reasoning (list[Reasoning]): The reasoning objects. Currently not supported. Defaults to an empty list.
179
- 2.8. citations (list[Chunk]): The citations. Currently not supported. Defaults to an empty list.
180
- 2.9. code_exec_results (list[CodeExecResult]): The code execution results. Currently not supported.
181
- Defaults to an empty list.
182
- 2.10. mcp_calls (list[MCPCall]): The MCP calls. Currently not supported. Defaults to an empty list.
165
+ 1. `str`: A text response.
166
+ 2. `LMOutput`: A Pydantic model that may contain the following attributes:
167
+ 2.1. response (str)
168
+ 2.2. tool_calls (list[ToolCall])
169
+ 2.3. structured_output (dict[str, Any] | BaseModel | None)
170
+ 2.4. token_usage (TokenUsage | None)
171
+ 2.5. duration (float | None)
172
+ 2.6. finish_details (dict[str, Any] | None)
183
173
  '''
184
174
  session: Incomplete
185
175
  client_kwargs: Incomplete
@@ -3,7 +3,7 @@ from gllm_core.event import EventEmitter as EventEmitter
3
3
  from gllm_core.schema.tool import Tool as Tool
4
4
  from gllm_core.utils.retry import RetryConfig as RetryConfig
5
5
  from gllm_inference.constants import DOCUMENT_MIME_TYPES as DOCUMENT_MIME_TYPES, INVOKER_PROPAGATED_MAX_RETRIES as INVOKER_PROPAGATED_MAX_RETRIES
6
- from gllm_inference.lm_invoker.openai_compatible_lm_invoker import OpenAICompatibleLMInvoker as OpenAICompatibleLMInvoker
6
+ from gllm_inference.lm_invoker.openai_chat_completions_lm_invoker import OpenAIChatCompletionsLMInvoker as OpenAIChatCompletionsLMInvoker
7
7
  from gllm_inference.lm_invoker.schema.datasaur import InputType as InputType, Key as Key
8
8
  from gllm_inference.schema import Attachment as Attachment, AttachmentType as AttachmentType, LMOutput as LMOutput, Message as Message, ModelId as ModelId, ModelProvider as ModelProvider, ResponseSchema as ResponseSchema, ToolCall as ToolCall, ToolResult as ToolResult
9
9
  from langchain_core.tools import Tool as LangChainTool
@@ -11,7 +11,7 @@ from typing import Any
11
11
 
12
12
  SUPPORTED_ATTACHMENTS: Incomplete
13
13
 
14
- class DatasaurLMInvoker(OpenAICompatibleLMInvoker):
14
+ class DatasaurLMInvoker(OpenAIChatCompletionsLMInvoker):
15
15
  '''A language model invoker to interact with Datasaur LLM Projects Deployment API.
16
16
 
17
17
  Attributes:
@@ -72,9 +72,9 @@ class DatasaurLMInvoker(OpenAICompatibleLMInvoker):
72
72
 
73
73
  Retry config examples:
74
74
  ```python
75
- retry_config = RetryConfig(max_retries=0, timeout=0.0) # No retry, no timeout
75
+ retry_config = RetryConfig(max_retries=0, timeout=None) # No retry, no timeout
76
76
  retry_config = RetryConfig(max_retries=0, timeout=10.0) # No retry, 10.0 seconds timeout
77
- retry_config = RetryConfig(max_retries=5, timeout=0.0) # 5 max retries, no timeout
77
+ retry_config = RetryConfig(max_retries=5, timeout=None) # 5 max retries, no timeout
78
78
  retry_config = RetryConfig(max_retries=5, timeout=10.0) # 5 max retries, 10.0 seconds timeout
79
79
  ```
80
80
 
@@ -103,23 +103,13 @@ class DatasaurLMInvoker(OpenAICompatibleLMInvoker):
103
103
 
104
104
  Output types:
105
105
  The output of the `DatasaurLMInvoker` can either be:
106
- 1. `str`: The text response if no additional output is needed.
107
- 2. `LMOutput`: A Pydantic model with the following attributes if any additional output is needed:
108
- 2.1. response (str): The text response.
109
- 2.2. tool_calls (list[ToolCall]): The tool calls. Currently not supported. Defaults to an empty list.
110
- 2.3. structured_output (dict[str, Any] | BaseModel | None): The structured output. Currently not supported.
111
- Defaults to None.
112
- 2.4. token_usage (TokenUsage | None): The token usage analytics, if the `output_analytics` parameter is
113
- set to `True`. Defaults to None.
114
- 2.5. duration (float | None): The duration of the invocation in seconds, if the `output_analytics`
115
- parameter is set to `True`. Defaults to None.
116
- 2.6. finish_details (dict[str, Any] | None): The details about how the generation finished, if the
117
- `output_analytics` parameter is set to `True`. Defaults to None.
118
- 2.7. reasoning (list[Reasoning]): The reasoning objects. Currently not supported. Defaults to an empty list.
119
- 2.8. citations (list[Chunk]): The citations. Currently not supported. Defaults to an empty list.
120
- 2.9. code_exec_results (list[CodeExecResult]): The code execution results. Currently not supported.
121
- Defaults to an empty list.
122
- 2.10. mcp_calls (list[MCPCall]): The MCP calls. Currently not supported. Defaults to an empty list.
106
+ 1. `str`: A text response.
107
+ 2. `LMOutput`: A Pydantic model that may contain the following attributes:
108
+ 2.1. response (str)
109
+ 2.2. token_usage (TokenUsage | None)
110
+ 2.3. duration (float | None)
111
+ 2.4. finish_details (dict[str, Any] | None)
112
+ 2.5. citations (list[Chunk])
123
113
  '''
124
114
  client_kwargs: Incomplete
125
115
  citations: Incomplete
@@ -14,6 +14,7 @@ from typing import Any
14
14
  SUPPORTED_ATTACHMENTS: Incomplete
15
15
  DEFAULT_THINKING_BUDGET: int
16
16
  REQUIRE_THINKING_MODEL_PREFIX: Incomplete
17
+ IMAGE_GENERATION_MODELS: Incomplete
17
18
  YOUTUBE_URL_PATTERN: Incomplete
18
19
 
19
20
  class GoogleLMInvoker(BaseLMInvoker):
@@ -30,6 +31,7 @@ class GoogleLMInvoker(BaseLMInvoker):
30
31
  structured response as defined by the schema. Supports both Pydantic BaseModel and JSON schema dictionary.
31
32
  output_analytics (bool): Whether to output the invocation analytics.
32
33
  retry_config (RetryConfig | None): The retry configuration for the language model.
34
+ generate_image (bool): Whether to generate image. Only allowed for image generation models.
33
35
  thinking (bool): Whether to enable thinking. Only allowed for thinking models.
34
36
  thinking_budget (int): The tokens allowed for thinking process. Only allowed for thinking models.
35
37
  If set to -1, the model will control the budget automatically.
@@ -80,6 +82,26 @@ class GoogleLMInvoker(BaseLMInvoker):
80
82
  result = await lm_invoker.invoke([text, image])
81
83
  ```
82
84
 
85
+ Image generation:
86
+ The `GoogleLMInvoker` supports image generation. This can be done by using an image generation model,
87
+ such as `gemini-2.5-flash-image`. Streaming is disabled for image generation models.
88
+ The generated image will be stored in the `attachments` attribute in the output.
89
+
90
+ Usage example:
91
+ ```python
92
+ lm_invoker = GoogleLMInvoker("gemini-2.5-flash-image")
93
+ result = await lm_invoker.invoke("Create a picture...")
94
+ result.attachments[0].write_to_file("path/to/local/image.png")
95
+ ```
96
+
97
+ Output example:
98
+ ```python
99
+ LMOutput(
100
+ response="Let me call the tools...",
101
+ attachments=[Attachment(filename="image.png", mime_type="image/png", data=b"...")],
102
+ )
103
+ ```
104
+
83
105
  Tool calling:
84
106
  Tool calling is a feature that allows the language model to call tools to perform tasks.
85
107
  Tools can be passed to the via the `tools` parameter as a list of `Tool` objects.
@@ -182,9 +204,9 @@ class GoogleLMInvoker(BaseLMInvoker):
182
204
 
183
205
  Retry config examples:
184
206
  ```python
185
- retry_config = RetryConfig(max_retries=0, timeout=0.0) # No retry, no timeout
207
+ retry_config = RetryConfig(max_retries=0, timeout=None) # No retry, no timeout
186
208
  retry_config = RetryConfig(max_retries=0, timeout=10.0) # No retry, 10.0 seconds timeout
187
- retry_config = RetryConfig(max_retries=5, timeout=0.0) # 5 max retries, no timeout
209
+ retry_config = RetryConfig(max_retries=5, timeout=None) # 5 max retries, no timeout
188
210
  retry_config = RetryConfig(max_retries=5, timeout=10.0) # 5 max retries, 10.0 seconds timeout
189
211
  ```
190
212
 
@@ -216,17 +238,18 @@ class GoogleLMInvoker(BaseLMInvoker):
216
238
  )
217
239
  ```
218
240
 
219
- When streaming is enabled, the thinking token will be streamed with the `EventType.DATA` event type.
220
-
221
241
  Streaming output example:
222
242
  ```python
223
- {"type": "data", "value": \'{"data_type": "thinking_start", "data_value": ""}\', ...}
224
- {"type": "data", "value": \'{"data_type": "thinking", "data_value": "Let me think "}\', ...}
225
- {"type": "data", "value": \'{"data_type": "thinking", "data_value": "about it..."}\', ...}
226
- {"type": "data", "value": \'{"data_type": "thinking_end", "data_value": ""}\', ...}
243
+ {"type": "thinking_start", "value": "", ...}
244
+ {"type": "thinking", "value": "Let me think "\', ...}
245
+ {"type": "thinking", "value": "about it...", ...}
246
+ {"type": "thinking_end", "value": ""}\', ...}
227
247
  {"type": "response", "value": "Golden retriever ", ...}
228
248
  {"type": "response", "value": "is a good dog breed.", ...}
229
249
  ```
250
+ Note: By default, the thinking token will be streamed with the legacy `EventType.DATA` event type.
251
+ To use the new simplified streamed event format, set the `simplify_events` parameter to `True` during
252
+ LM invoker initialization. The legacy event format support will be removed in v0.6.
230
253
 
231
254
  When thinking is enabled, the amount of tokens allocated for the thinking process can be set via the
232
255
  `thinking_budget` parameter. The `thinking_budget`:
@@ -236,30 +259,22 @@ class GoogleLMInvoker(BaseLMInvoker):
236
259
 
237
260
  Output types:
238
261
  The output of the `GoogleLMInvoker` can either be:
239
- 1. `str`: The text response if no additional output is needed.
240
- 2. `LMOutput`: A Pydantic model with the following attributes if any additional output is needed:
241
- 2.1. response (str): The text response.
242
- 2.2. tool_calls (list[ToolCall]): The tool calls, if the `tools` parameter is defined and the language
243
- model decides to invoke tools. Defaults to an empty list.
244
- 2.3. structured_output (dict[str, Any] | BaseModel | None): The structured output, if the `response_schema`
245
- parameter is defined. Defaults to None.
246
- 2.4. token_usage (TokenUsage | None): The token usage analytics, if the `output_analytics` parameter is
247
- set to `True`. Defaults to None.
248
- 2.5. duration (float | None): The duration of the invocation in seconds, if the `output_analytics`
249
- parameter is set to `True`. Defaults to None.
250
- 2.6. finish_details (dict[str, Any] | None): The details about how the generation finished, if the
251
- `output_analytics` parameter is set to `True`. Defaults to None.
252
- 2.7. reasoning (list[Reasoning]): The reasoning objects, if the `thinking` parameter is set to `True`.
253
- Defaults to an empty list.
254
- 2.8. citations (list[Chunk]): The citations. Currently not supported. Defaults to an empty list.
255
- 2.9. code_exec_results (list[CodeExecResult]): The code execution results. Currently not supported.
256
- Defaults to an empty list.
257
- 2.10. mcp_calls (list[MCPCall]): The MCP calls. Currently not supported. Defaults to an empty list.
262
+ 1. `str`: A text response.
263
+ 2. `LMOutput`: A Pydantic model that may contain the following attributes:
264
+ 2.1. response (str)
265
+ 2.2. attachments (list[Attachment])
266
+ 2.3. tool_calls (list[ToolCall])
267
+ 2.4. structured_output (dict[str, Any] | BaseModel | None)
268
+ 2.5. token_usage (TokenUsage | None)
269
+ 2.6. duration (float | None)
270
+ 2.7. finish_details (dict[str, Any])
271
+ 2.8. reasoning (list[Reasoning])
258
272
  '''
259
273
  client_params: Incomplete
274
+ generate_image: Incomplete
260
275
  thinking: Incomplete
261
276
  thinking_budget: Incomplete
262
- def __init__(self, model_name: str, api_key: str | None = None, credentials_path: str | None = None, project_id: str | None = None, location: str = 'us-central1', model_kwargs: dict[str, Any] | None = None, default_hyperparameters: dict[str, Any] | None = None, tools: list[Tool | LangChainTool] | None = None, response_schema: ResponseSchema | None = None, output_analytics: bool = False, retry_config: RetryConfig | None = None, thinking: bool | None = None, thinking_budget: int = ...) -> None:
277
+ def __init__(self, model_name: str, api_key: str | None = None, credentials_path: str | None = None, project_id: str | None = None, location: str = 'us-central1', model_kwargs: dict[str, Any] | None = None, default_hyperparameters: dict[str, Any] | None = None, tools: list[Tool | LangChainTool] | None = None, response_schema: ResponseSchema | None = None, output_analytics: bool = False, retry_config: RetryConfig | None = None, thinking: bool | None = None, thinking_budget: int = ..., simplify_events: bool = False) -> None:
263
278
  '''Initializes a new instance of the GoogleLMInvoker class.
264
279
 
265
280
  Args:
@@ -288,6 +303,9 @@ class GoogleLMInvoker(BaseLMInvoker):
288
303
  Defaults to True for Gemini 2.5 Pro models and False for other models.
289
304
  thinking_budget (int, optional): The tokens allowed for thinking process. Only allowed for thinking models.
290
305
  Defaults to -1, in which case the model will control the budget automatically.
306
+ simplify_events (bool, optional): Temporary parameter to control the streamed events format.
307
+ When True, uses the simplified events format. When False, uses the legacy events format for
308
+ backward compatibility. Will be removed in v0.6. Defaults to False.
291
309
 
292
310
  Note:
293
311
  If neither `api_key` nor `credentials_path` is provided, Google Gen AI will be used by default.
@@ -175,9 +175,9 @@ class LangChainLMInvoker(BaseLMInvoker):
175
175
 
176
176
  Retry config examples:
177
177
  ```python
178
- retry_config = RetryConfig(max_retries=0, timeout=0.0) # No retry, no timeout
178
+ retry_config = RetryConfig(max_retries=0, timeout=None) # No retry, no timeout
179
179
  retry_config = RetryConfig(max_retries=0, timeout=10.0) # No retry, 10.0 seconds timeout
180
- retry_config = RetryConfig(max_retries=5, timeout=0.0) # 5 max retries, no timeout
180
+ retry_config = RetryConfig(max_retries=5, timeout=None) # 5 max retries, no timeout
181
181
  retry_config = RetryConfig(max_retries=5, timeout=10.0) # 5 max retries, 10.0 seconds timeout
182
182
  ```
183
183
 
@@ -188,24 +188,14 @@ class LangChainLMInvoker(BaseLMInvoker):
188
188
 
189
189
  Output types:
190
190
  The output of the `LangChainLMInvoker` can either be:
191
- 1. `str`: The text response if no additional output is needed.
192
- 2. `LMOutput`: A Pydantic model with the following attributes if any additional output is needed:
193
- 2.1. response (str): The text response.
194
- 2.2. tool_calls (list[ToolCall]): The tool calls, if the `tools` parameter is defined and the language
195
- model decides to invoke tools. Defaults to an empty list.
196
- 2.3. structured_output (dict[str, Any] | BaseModel | None): The structured output, if the `response_schema`
197
- parameter is defined. Defaults to None.
198
- 2.4. token_usage (TokenUsage | None): The token usage analytics, if the `output_analytics` parameter is
199
- set to `True`. Defaults to None.
200
- 2.5. duration (float | None): The duration of the invocation in seconds, if the `output_analytics`
201
- parameter is set to `True`. Defaults to None.
202
- 2.6. finish_details (dict[str, Any] | None): The details about how the generation finished, if the
203
- `output_analytics` parameter is set to `True`. Defaults to None.
204
- 2.7. reasoning (list[Reasoning]): The reasoning objects. Currently not supported. Defaults to an empty list.
205
- 2.8. citations (list[Chunk]): The citations. Currently not supported. Defaults to an empty list.
206
- 2.9. code_exec_results (list[CodeExecResult]): The code execution results. Currently not supported.
207
- Defaults to an empty list.
208
- 2.10. mcp_calls (list[MCPCall]): The MCP calls. Currently not supported. Defaults to an empty list.
191
+ 1. `str`: A text response.
192
+ 2. `LMOutput`: A Pydantic model that may contain the following attributes:
193
+ 2.1. response (str)
194
+ 2.2. tool_calls (list[ToolCall])
195
+ 2.3. structured_output (dict[str, Any] | BaseModel | None)
196
+ 2.4. token_usage (TokenUsage | None)
197
+ 2.5. duration (float | None)
198
+ 2.6. finish_details (dict[str, Any])
209
199
  '''
210
200
  model: Incomplete
211
201
  def __init__(self, model: BaseChatModel | None = None, model_class_path: str | None = None, model_name: str | None = None, model_kwargs: dict[str, Any] | None = None, default_hyperparameters: dict[str, Any] | None = None, tools: list[Tool | LangChainTool] | None = None, response_schema: ResponseSchema | None = None, output_analytics: bool = False, retry_config: RetryConfig | None = None) -> None: