gllm-inference-binary 0.5.33__cp311-cp311-manylinux_2_31_x86_64.whl → 0.5.35__cp311-cp311-manylinux_2_31_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of gllm-inference-binary might be problematic. Click here for more details.

Files changed (24) hide show
  1. gllm_inference/builder/build_em_invoker.pyi +10 -13
  2. gllm_inference/builder/build_lm_invoker.pyi +30 -17
  3. gllm_inference/builder/build_lm_request_processor.pyi +2 -7
  4. gllm_inference/catalog/lm_request_processor_catalog.pyi +2 -2
  5. gllm_inference/constants.pyi +1 -0
  6. gllm_inference/em_invoker/openai_compatible_em_invoker.pyi +5 -60
  7. gllm_inference/em_invoker/openai_em_invoker.pyi +34 -6
  8. gllm_inference/lm_invoker/__init__.pyi +2 -1
  9. gllm_inference/lm_invoker/langchain_lm_invoker.pyi +3 -3
  10. gllm_inference/lm_invoker/litellm_lm_invoker.pyi +1 -1
  11. gllm_inference/lm_invoker/openai_chat_completions_lm_invoker.pyi +278 -0
  12. gllm_inference/lm_invoker/openai_compatible_lm_invoker.pyi +9 -226
  13. gllm_inference/lm_invoker/openai_lm_invoker.pyi +30 -6
  14. gllm_inference/lm_invoker/schema/{openai_compatible.pyi → openai_chat_completions.pyi} +2 -2
  15. gllm_inference/schema/__init__.pyi +3 -1
  16. gllm_inference/schema/activity.pyi +9 -0
  17. gllm_inference/schema/events.pyi +40 -0
  18. gllm_inference/schema/model_id.pyi +30 -25
  19. gllm_inference.cpython-311-x86_64-linux-gnu.so +0 -0
  20. gllm_inference.pyi +1 -0
  21. {gllm_inference_binary-0.5.33.dist-info → gllm_inference_binary-0.5.35.dist-info}/METADATA +35 -15
  22. {gllm_inference_binary-0.5.33.dist-info → gllm_inference_binary-0.5.35.dist-info}/RECORD +24 -21
  23. {gllm_inference_binary-0.5.33.dist-info → gllm_inference_binary-0.5.35.dist-info}/WHEEL +0 -0
  24. {gllm_inference_binary-0.5.33.dist-info → gllm_inference_binary-0.5.35.dist-info}/top_level.txt +0 -0
@@ -24,11 +24,8 @@ def build_em_invoker(model_id: str | ModelId, credentials: str | dict[str, Any]
24
24
  '''Build an embedding model invoker based on the provided configurations.
25
25
 
26
26
  Args:
27
- model_id (str | ModelId): The model id, can either be a ModelId instance or a string in the following format:
28
- 1. For `azure-openai` provider: `azure-openai/azure-endpoint:azure-deployment`.
29
- 2. For `openai-compatible` provider: `openai-compatible/base-url:model-name`.
30
- 3. For `langchain` provider: `langchain/<package>.<class>:model-name`.
31
- 4. For other providers: `provider/model-name`.
27
+ model_id (str | ModelId): The model id, can either be a ModelId instance or a string in a format defined
28
+ in the following page: https://gdplabs.gitbook.io/sdk/resources/supported-models#embedding-models-ems
32
29
  credentials (str | dict[str, Any] | None, optional): The credentials for the language model. Can either be:
33
30
  1. An API key.
34
31
  2. A path to a credentials JSON file, currently only supported for Google Vertex AI.
@@ -83,23 +80,23 @@ def build_em_invoker(model_id: str | ModelId, credentials: str | dict[str, Any]
83
80
  ```
84
81
  The credentials can also be provided through the `OPENAI_API_KEY` environment variable.
85
82
 
86
- # Using Azure OpenAI
83
+ # Using OpenAI Embeddings API-compatible endpoints (e.g. vLLM)
87
84
  ```python
88
85
  em_invoker = build_em_invoker(
89
- model_id="azure-openai/https://my-resource.openai.azure.com/openai/v1:my-deployment",
90
- credentials="azure-api-key"
86
+ model_id="openai/https://my-vllm-url:8000/v1:my-model-name",
87
+ credentials="sk-..."
91
88
  )
92
89
  ```
93
- The credentials can also be provided through the `AZURE_OPENAI_API_KEY` environment variable.
90
+ The credentials can also be provided through the `OPENAI_API_KEY` environment variable.
94
91
 
95
- # Using OpenAI Compatible endpoint (e.g. Text Embeddings Inference)
92
+ # Using Azure OpenAI
96
93
  ```python
97
94
  em_invoker = build_em_invoker(
98
- model_id="openai-compatible/https://my-text-embeddings-inference-endpoint.com:model-name",
99
- credentials="tei-api-key"
95
+ model_id="azure-openai/https://my-resource.openai.azure.com/openai/v1:my-deployment",
96
+ credentials="azure-api-key"
100
97
  )
101
98
  ```
102
- The credentials can also be provided through the `OPENAI_API_KEY` environment variable.
99
+ The credentials can also be provided through the `AZURE_OPENAI_API_KEY` environment variable.
103
100
 
104
101
  # Using TwelveLabs
105
102
  ```python
@@ -1,5 +1,5 @@
1
1
  from _typeshed import Incomplete
2
- from gllm_inference.lm_invoker import AnthropicLMInvoker as AnthropicLMInvoker, AzureOpenAILMInvoker as AzureOpenAILMInvoker, BedrockLMInvoker as BedrockLMInvoker, DatasaurLMInvoker as DatasaurLMInvoker, GoogleLMInvoker as GoogleLMInvoker, LangChainLMInvoker as LangChainLMInvoker, LiteLLMLMInvoker as LiteLLMLMInvoker, OpenAICompatibleLMInvoker as OpenAICompatibleLMInvoker, OpenAILMInvoker as OpenAILMInvoker, XAILMInvoker as XAILMInvoker
2
+ from gllm_inference.lm_invoker import AnthropicLMInvoker as AnthropicLMInvoker, AzureOpenAILMInvoker as AzureOpenAILMInvoker, BedrockLMInvoker as BedrockLMInvoker, DatasaurLMInvoker as DatasaurLMInvoker, GoogleLMInvoker as GoogleLMInvoker, LangChainLMInvoker as LangChainLMInvoker, LiteLLMLMInvoker as LiteLLMLMInvoker, OpenAIChatCompletionsLMInvoker as OpenAIChatCompletionsLMInvoker, OpenAICompatibleLMInvoker as OpenAICompatibleLMInvoker, OpenAILMInvoker as OpenAILMInvoker, XAILMInvoker as XAILMInvoker
3
3
  from gllm_inference.lm_invoker.lm_invoker import BaseLMInvoker as BaseLMInvoker
4
4
  from gllm_inference.schema.model_id import ModelId as ModelId, ModelProvider as ModelProvider
5
5
  from typing import Any
@@ -25,13 +25,8 @@ def build_lm_invoker(model_id: str | ModelId, credentials: str | dict[str, Any]
25
25
  '''Build a language model invoker based on the provided configurations.
26
26
 
27
27
  Args:
28
- model_id (str | ModelId): The model id, can either be a ModelId instance or a string in the following format:
29
- 1. For `azure-openai` provider: `azure-openai/azure-endpoint:azure-deployment`.
30
- 2. For `openai-compatible` provider: `openai-compatible/base-url:model-name`.
31
- 3. For `langchain` provider: `langchain/<package>.<class>:model-name`.
32
- 4. For `litellm` provider: `litellm/provider/model-name`.
33
- 5. For `datasaur` provider: `datasaur/deployment-id:model-name`.
34
- 6. For other providers: `provider/model-name`.
28
+ model_id (str | ModelId): The model id, can either be a ModelId instance or a string in a format defined
29
+ in the following page: https://gdplabs.gitbook.io/sdk/resources/supported-models#language-models-lms
35
30
  credentials (str | dict[str, Any] | None, optional): The credentials for the language model. Can either be:
36
31
  1. An API key.
37
32
  2. A path to a credentials JSON file, currently only supported for Google Vertex AI.
@@ -80,7 +75,7 @@ def build_lm_invoker(model_id: str | ModelId, credentials: str | dict[str, Any]
80
75
  # Using Google Gen AI (via API key)
81
76
  ```python
82
77
  lm_invoker = build_lm_invoker(
83
- model_id="google/gemini-1.5-flash-latest",
78
+ model_id="google/gemini-2.5-flash-lite",
84
79
  credentials="AIzaSyD..."
85
80
  )
86
81
  ```
@@ -89,7 +84,7 @@ def build_lm_invoker(model_id: str | ModelId, credentials: str | dict[str, Any]
89
84
  # Using Google Vertex AI (via service account)
90
85
  ```python
91
86
  lm_invoker = build_lm_invoker(
92
- model_id="google/gemini-1.5-flash",
87
+ model_id="google/gemini-2.5-flash-lite",
93
88
  credentials="/path/to/google-credentials.json"
94
89
  )
95
90
  ```
@@ -98,30 +93,48 @@ def build_lm_invoker(model_id: str | ModelId, credentials: str | dict[str, Any]
98
93
  # Using OpenAI
99
94
  ```python
100
95
  lm_invoker = build_lm_invoker(
101
- model_id="openai/gpt-4o-mini",
96
+ model_id="openai/gpt-5-nano",
102
97
  credentials="sk-..."
103
98
  )
104
99
  ```
105
100
  The credentials can also be provided through the `OPENAI_API_KEY` environment variable.
106
101
 
107
- # Using Azure OpenAI
102
+ # Using OpenAI with Chat Completions API
108
103
  ```python
109
104
  lm_invoker = build_lm_invoker(
110
- model_id="azure-openai/https://my-resource.openai.azure.com/openai/v1:my-deployment",
111
- credentials="azure-api-key"
105
+ model_id="openai-chat-completions/gpt-5-nano",
106
+ credentials="sk-..."
112
107
  )
113
108
  ```
114
- The credentials can also be provided through the `AZURE_OPENAI_API_KEY` environment variable.
109
+ The credentials can also be provided through the `OPENAI_API_KEY` environment variable.
110
+
111
+ # Using OpenAI Responses API-compatible endpoints (e.g. SGLang)
112
+ ```python
113
+ lm_invoker = build_lm_invoker(
114
+ model_id="openai/https://my-sglang-url:8000/v1:my-model-name",
115
+ credentials="sk-..."
116
+ )
117
+ ```
118
+ The credentials can also be provided through the `OPENAI_API_KEY` environment variable.
115
119
 
116
- # Using OpenAI Compatible endpoint (e.g. Groq)
120
+ # Using OpenAI Chat Completions API-compatible endpoints (e.g. Groq)
117
121
  ```python
118
122
  lm_invoker = build_lm_invoker(
119
- model_id="openai-compatible/https://api.groq.com/openai/v1:llama3-8b-8192",
123
+ model_id="openai-chat-completions/https://api.groq.com/openai/v1:llama3-8b-8192",
120
124
  credentials="gsk_..."
121
125
  )
122
126
  ```
123
127
  The credentials can also be provided through the `OPENAI_API_KEY` environment variable.
124
128
 
129
+ # Using Azure OpenAI
130
+ ```python
131
+ lm_invoker = build_lm_invoker(
132
+ model_id="azure-openai/https://my-resource.openai.azure.com/openai/v1:my-deployment",
133
+ credentials="azure-api-key"
134
+ )
135
+ ```
136
+ The credentials can also be provided through the `AZURE_OPENAI_API_KEY` environment variable.
137
+
125
138
  # Using LangChain
126
139
  ```python
127
140
  lm_invoker = build_lm_invoker(
@@ -12,13 +12,8 @@ def build_lm_request_processor(model_id: str | ModelId, credentials: str | dict[
12
12
  '''Build a language model invoker based on the provided configurations.
13
13
 
14
14
  Args:
15
- model_id (str | ModelId): The model id, can either be a ModelId instance or a string in the following format:
16
- 1. For `azure-openai` provider: `azure-openai/azure-endpoint:azure-deployment`.
17
- 2. For `openai-compatible` provider: `openai-compatible/base-url:model-name`.
18
- 3. For `langchain` provider: `langchain/<package>.<class>:model-name`.
19
- 4. For `litellm` provider: `litellm/provider/model-name`.
20
- 5. For `datasaur` provider: `datasaur/base-url`.
21
- 6. For other providers: `provider/model-name`.
15
+ model_id (str | ModelId): The model id, can either be a ModelId instance or a string in a format defined
16
+ in the following page: https://gdplabs.gitbook.io/sdk/resources/supported-models#language-models-lms
22
17
  credentials (str | dict[str, Any] | None, optional): The credentials for the language model. Can either be:
23
18
  1. An API key.
24
19
  2. A path to a credentials JSON file, currently only supported for Google Vertex AI.
@@ -57,7 +57,7 @@ class LMRequestProcessorCatalog(BaseCatalog[LMRequestProcessor]):
57
57
  ),
58
58
  "user_template": "{query}",
59
59
  "key_defaults": \'{"context": "<default context>"}\',
60
- "model_id": "openai/gpt-4.1-nano",
60
+ "model_id": "openai/gpt-5-nano",
61
61
  "credentials": "OPENAI_API_KEY",
62
62
  "config": "",
63
63
  "output_parser_type": "none",
@@ -93,7 +93,7 @@ class LMRequestProcessorCatalog(BaseCatalog[LMRequestProcessor]):
93
93
  prompt template keys. These default values will be applied when the corresponding keys are not provided
94
94
  in the runtime input. If it is empty, the prompt template keys will not have default values.
95
95
  3. The `model_id`:
96
- 3.1. Must be filled with the model ID of the LM invoker, e.g. "openai/gpt-4.1-nano".
96
+ 3.1. Must be filled with the model ID of the LM invoker, e.g. "openai/gpt-5-nano".
97
97
  3.2. Can be partially loaded from the environment variable using the "${ENV_VAR_KEY}" syntax,
98
98
  e.g. "azure-openai/${AZURE_ENDPOINT}/${AZURE_DEPLOYMENT}".
99
99
  3.3. For the available model ID formats, see: https://gdplabs.gitbook.io/sdk/resources/supported-models
@@ -7,4 +7,5 @@ GRPC_ENABLE_RETRIES_KEY: str
7
7
  INVOKER_PROPAGATED_MAX_RETRIES: int
8
8
  INVOKER_DEFAULT_TIMEOUT: float
9
9
  HEX_REPR_LENGTH: int
10
+ OPENAI_DEFAULT_URL: str
10
11
  SECONDS_TO_MILLISECONDS: int
@@ -6,8 +6,10 @@ from gllm_inference.em_invoker.schema.openai_compatible import Key as Key
6
6
  from gllm_inference.schema import ModelId as ModelId, ModelProvider as ModelProvider, TruncationConfig as TruncationConfig
7
7
  from typing import Any
8
8
 
9
+ DEPRECATION_MESSAGE: str
10
+
9
11
  class OpenAICompatibleEMInvoker(OpenAIEMInvoker):
10
- '''An embedding model invoker to interact with endpoints compatible with OpenAI\'s embedding API contract.
12
+ """An embedding model invoker to interact with endpoints compatible with OpenAI's embedding API contract.
11
13
 
12
14
  Attributes:
13
15
  model_id (str): The model ID of the embedding model.
@@ -18,65 +20,8 @@ class OpenAICompatibleEMInvoker(OpenAIEMInvoker):
18
20
  retry_config (RetryConfig): The retry configuration for the embedding model.
19
21
  truncation_config (TruncationConfig | None): The truncation configuration for the embedding model.
20
22
 
21
-
22
- When to use:
23
- The `OpenAICompatibleEMInvoker` is designed to interact with endpoints that are compatible with OpenAI\'s
24
- embedding API contract. This includes but are not limited to:
25
- 1. Text Embeddings Inference (https://github.com/huggingface/text-embeddings-inference)
26
- 2. vLLM (https://vllm.ai/)
27
- When using this invoker, please note that the supported features and capabilities may vary between different
28
- endpoints and language models. Using features that are not supported by the endpoint will result in an error.
29
-
30
- Input types:
31
- The `OpenAICompatibleEMInvoker` only supports text inputs.
32
-
33
- Output format:
34
- The `OpenAICompatibleEMInvoker` can embed either:
35
- 1. A single content.
36
- 1. A single content is a single text.
37
- 2. The output will be a `Vector`, representing the embedding of the content.
38
-
39
- # Example 1: Embedding a text content.
40
- ```python
41
- text = "This is a text"
42
- result = await em_invoker.invoke(text)
43
- ```
44
-
45
- The above examples will return a `Vector` with a size of (embedding_size,).
46
-
47
- 2. A list of contents.
48
- 1. A list of contents is a list of texts.
49
- 2. The output will be a `list[Vector]`, where each element is a `Vector` representing the
50
- embedding of each single content.
51
-
52
- # Example: Embedding a list of contents.
53
- ```python
54
- text1 = "This is a text"
55
- text2 = "This is another text"
56
- text3 = "This is yet another text"
57
- result = await em_invoker.invoke([text1, text2, text3])
58
- ```
59
-
60
- The above examples will return a `list[Vector]` with a size of (3, embedding_size).
61
-
62
- Retry and timeout:
63
- The `OpenAICompatibleEMInvoker` supports retry and timeout configuration.
64
- By default, the max retries is set to 0 and the timeout is set to 30.0 seconds.
65
- They can be customized by providing a custom `RetryConfig` object to the `retry_config` parameter.
66
-
67
- Retry config examples:
68
- ```python
69
- retry_config = RetryConfig(max_retries=0, timeout=0.0) # No retry, no timeout
70
- retry_config = RetryConfig(max_retries=0, timeout=10.0) # No retry, 10.0 seconds timeout
71
- retry_config = RetryConfig(max_retries=5, timeout=0.0) # 5 max retries, no timeout
72
- retry_config = RetryConfig(max_retries=5, timeout=10.0) # 5 max retries, 10.0 seconds timeout
73
- ```
74
-
75
- Usage example:
76
- ```python
77
- em_invoker = OpenAICompatibleEMInvoker(..., retry_config=retry_config)
78
- ```
79
- '''
23
+ This class is deprecated and will be removed in v0.6. Please use the `OpenAIEMInvoker` class instead.
24
+ """
80
25
  client: Incomplete
81
26
  def __init__(self, model_name: str, base_url: str, api_key: str | None = None, model_kwargs: dict[str, Any] | None = None, default_hyperparameters: dict[str, Any] | None = None, retry_config: RetryConfig | None = None, truncation_config: TruncationConfig | None = None) -> None:
82
27
  """Initializes a new instance of the OpenAICompatibleEMInvoker class.
@@ -1,6 +1,6 @@
1
1
  from _typeshed import Incomplete
2
2
  from gllm_core.utils.retry import RetryConfig as RetryConfig
3
- from gllm_inference.constants import INVOKER_PROPAGATED_MAX_RETRIES as INVOKER_PROPAGATED_MAX_RETRIES
3
+ from gllm_inference.constants import INVOKER_PROPAGATED_MAX_RETRIES as INVOKER_PROPAGATED_MAX_RETRIES, OPENAI_DEFAULT_URL as OPENAI_DEFAULT_URL
4
4
  from gllm_inference.em_invoker.em_invoker import BaseEMInvoker as BaseEMInvoker
5
5
  from gllm_inference.em_invoker.schema.openai import Key as Key
6
6
  from gllm_inference.schema import ModelId as ModelId, ModelProvider as ModelProvider, Vector as Vector
@@ -21,6 +21,31 @@ class OpenAIEMInvoker(BaseEMInvoker):
21
21
  retry_config (RetryConfig): The retry configuration for the embedding model.
22
22
  truncation_config (TruncationConfig | None): The truncation configuration for the embedding model.
23
23
 
24
+ Basic usage:
25
+ The `OpenAIEMInvoker` can be used as follows:
26
+ ```python
27
+ em_invoker = OpenAIEMInvoker(model_name="text-embedding-3-small")
28
+ result = await em_invoker.invoke("Hi there!")
29
+ ```
30
+
31
+ OpenAI compatible endpoints:
32
+ The `OpenAIEMInvoker` can also be used to interact with endpoints that are compatible with
33
+ OpenAI\'s Embeddings API schema. This includes but are not limited to:
34
+ 1. Text Embeddings Inference (https://github.com/huggingface/text-embeddings-inference)
35
+ 2. vLLM (https://vllm.ai/)
36
+ Please note that the supported features and capabilities may vary between different endpoints and
37
+ language models. Using features that are not supported by the endpoint will result in an error.
38
+
39
+ This customization can be done by setting the `base_url` parameter to the base URL of the endpoint:
40
+ ```python
41
+ em_invoker = OpenAIEMInvoker(
42
+ model_name="<model-name>",
43
+ api_key="<your-api-key>",
44
+ base_url="<https://base-url>",
45
+ )
46
+ result = await em_invoker.invoke("Hi there!")
47
+ ```
48
+
24
49
  Input types:
25
50
  The `OpenAIEMInvoker` only supports text inputs.
26
51
 
@@ -72,13 +97,16 @@ class OpenAIEMInvoker(BaseEMInvoker):
72
97
  ```
73
98
  '''
74
99
  client: Incomplete
75
- def __init__(self, model_name: str, api_key: str | None = None, model_kwargs: dict[str, Any] | None = None, default_hyperparameters: dict[str, Any] | None = None, retry_config: RetryConfig | None = None, truncation_config: TruncationConfig | None = None) -> None:
76
- """Initializes a new instance of the OpenAIEMInvoker class.
100
+ def __init__(self, model_name: str, api_key: str | None = None, base_url: str = ..., model_kwargs: dict[str, Any] | None = None, default_hyperparameters: dict[str, Any] | None = None, retry_config: RetryConfig | None = None, truncation_config: TruncationConfig | None = None) -> None:
101
+ '''Initializes a new instance of the OpenAIEMInvoker class.
77
102
 
78
103
  Args:
79
104
  model_name (str): The name of the OpenAI embedding model to be used.
80
- api_key (str | None, optional): The API key for the OpenAI API. Defaults to None, in which
81
- case the `OPENAI_API_KEY` environment variable will be used.
105
+ api_key (str | None, optional): The API key for authenticating with OpenAI. Defaults to None, in which
106
+ case the `OPENAI_API_KEY` environment variable will be used. If the endpoint does not require an
107
+ API key, a dummy value can be passed (e.g. "<empty>").
108
+ base_url (str, optional): The base URL of a custom endpoint that is compatible with OpenAI\'s
109
+ Embeddings API schema. Defaults to OpenAI\'s default URL.
82
110
  model_kwargs (dict[str, Any] | None, optional): Additional keyword arguments for the OpenAI client.
83
111
  Defaults to None.
84
112
  default_hyperparameters (dict[str, Any] | None, optional): Default hyperparameters for invoking the model.
@@ -87,4 +115,4 @@ class OpenAIEMInvoker(BaseEMInvoker):
87
115
  Defaults to None, in which case a default config with no retry and 30.0 seconds timeout will be used.
88
116
  truncation_config (TruncationConfig | None, optional): Configuration for text truncation behavior.
89
117
  Defaults to None, in which case no truncation is applied.
90
- """
118
+ '''
@@ -5,8 +5,9 @@ from gllm_inference.lm_invoker.datasaur_lm_invoker import DatasaurLMInvoker as D
5
5
  from gllm_inference.lm_invoker.google_lm_invoker import GoogleLMInvoker as GoogleLMInvoker
6
6
  from gllm_inference.lm_invoker.langchain_lm_invoker import LangChainLMInvoker as LangChainLMInvoker
7
7
  from gllm_inference.lm_invoker.litellm_lm_invoker import LiteLLMLMInvoker as LiteLLMLMInvoker
8
+ from gllm_inference.lm_invoker.openai_chat_completions_lm_invoker import OpenAIChatCompletionsLMInvoker as OpenAIChatCompletionsLMInvoker
8
9
  from gllm_inference.lm_invoker.openai_compatible_lm_invoker import OpenAICompatibleLMInvoker as OpenAICompatibleLMInvoker
9
10
  from gllm_inference.lm_invoker.openai_lm_invoker import OpenAILMInvoker as OpenAILMInvoker
10
11
  from gllm_inference.lm_invoker.xai_lm_invoker import XAILMInvoker as XAILMInvoker
11
12
 
12
- __all__ = ['AnthropicLMInvoker', 'AzureOpenAILMInvoker', 'BedrockLMInvoker', 'DatasaurLMInvoker', 'GoogleLMInvoker', 'LangChainLMInvoker', 'LiteLLMLMInvoker', 'OpenAICompatibleLMInvoker', 'OpenAILMInvoker', 'XAILMInvoker']
13
+ __all__ = ['AnthropicLMInvoker', 'AzureOpenAILMInvoker', 'BedrockLMInvoker', 'DatasaurLMInvoker', 'GoogleLMInvoker', 'LangChainLMInvoker', 'LiteLLMLMInvoker', 'OpenAIChatCompletionsLMInvoker', 'OpenAICompatibleLMInvoker', 'OpenAILMInvoker', 'XAILMInvoker']
@@ -37,7 +37,7 @@ class LangChainLMInvoker(BaseLMInvoker):
37
37
  ```python
38
38
  lm_invoker = LangChainLMInvoker(
39
39
  model_class_path="langchain_openai.ChatOpenAI",
40
- model_name="gpt-4.1-nano",
40
+ model_name="gpt-5-nano",
41
41
  )
42
42
  result = await lm_invoker.invoke("Hi there!")
43
43
  ```
@@ -50,7 +50,7 @@ class LangChainLMInvoker(BaseLMInvoker):
50
50
  ```python
51
51
  from langchain_openai import ChatOpenAI
52
52
 
53
- model = ChatOpenAI(model="gpt-4.1-nano", api_key="your_api_key")
53
+ model = ChatOpenAI(model="gpt-5-nano", api_key="your_api_key")
54
54
  lm_invoker = LangChainLMInvoker(model=model)
55
55
  ```
56
56
 
@@ -59,7 +59,7 @@ class LangChainLMInvoker(BaseLMInvoker):
59
59
  ```python
60
60
  lm_invoker = LangChainLMInvoker(
61
61
  model_class_path="langchain_openai.ChatOpenAI",
62
- model_name="gpt-4.1-nano",
62
+ model_name="gpt-5-nano",
63
63
  model_kwargs={"api_key": "your_api_key"}
64
64
  )
65
65
  ```
@@ -27,7 +27,7 @@ class LiteLLMLMInvoker(OpenAICompatibleLMInvoker):
27
27
  Basic usage:
28
28
  The `LiteLLMLMInvoker` can be used as follows:
29
29
  ```python
30
- lm_invoker = LiteLLMLMInvoker(model_id="openai/gpt-4.1-nano")
30
+ lm_invoker = LiteLLMLMInvoker(model_id="openai/gpt-5-nano")
31
31
  result = await lm_invoker.invoke("Hi there!")
32
32
  ```
33
33