gllm-inference-binary 0.5.32b1__cp311-cp311-manylinux_2_31_x86_64.whl → 0.5.34__cp311-cp311-manylinux_2_31_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of gllm-inference-binary might be problematic. Click here for more details.
- gllm_inference/lm_invoker/azure_openai_lm_invoker.pyi +6 -1
- gllm_inference/lm_invoker/openai_lm_invoker.pyi +6 -1
- gllm_inference/schema/__init__.pyi +3 -1
- gllm_inference/schema/activity.pyi +9 -0
- gllm_inference/schema/events.pyi +40 -0
- gllm_inference.cpython-311-x86_64-linux-gnu.so +0 -0
- {gllm_inference_binary-0.5.32b1.dist-info → gllm_inference_binary-0.5.34.dist-info}/METADATA +35 -15
- {gllm_inference_binary-0.5.32b1.dist-info → gllm_inference_binary-0.5.34.dist-info}/RECORD +10 -8
- {gllm_inference_binary-0.5.32b1.dist-info → gllm_inference_binary-0.5.34.dist-info}/WHEEL +0 -0
- {gllm_inference_binary-0.5.32b1.dist-info → gllm_inference_binary-0.5.34.dist-info}/top_level.txt +0 -0
|
@@ -134,7 +134,12 @@ class AzureOpenAILMInvoker(OpenAILMInvoker):
|
|
|
134
134
|
```python
|
|
135
135
|
LMOutput(
|
|
136
136
|
response="Golden retriever is a good dog breed.",
|
|
137
|
-
token_usage=TokenUsage(
|
|
137
|
+
token_usage=TokenUsage(
|
|
138
|
+
input_tokens=1500,
|
|
139
|
+
output_tokens=200,
|
|
140
|
+
input_token_details=InputTokenDetails(cached_tokens=1200, uncached_tokens=300),
|
|
141
|
+
output_token_details=OutputTokenDetails(reasoning_tokens=180, response_tokens=20),
|
|
142
|
+
),
|
|
138
143
|
duration=0.729,
|
|
139
144
|
finish_details={"status": "completed", "incomplete_details": {"reason": None}},
|
|
140
145
|
)
|
|
@@ -137,7 +137,12 @@ class OpenAILMInvoker(BaseLMInvoker):
|
|
|
137
137
|
```python
|
|
138
138
|
LMOutput(
|
|
139
139
|
response="Golden retriever is a good dog breed.",
|
|
140
|
-
token_usage=TokenUsage(
|
|
140
|
+
token_usage=TokenUsage(
|
|
141
|
+
input_tokens=1500,
|
|
142
|
+
output_tokens=200,
|
|
143
|
+
input_token_details=InputTokenDetails(cached_tokens=1200, uncached_tokens=300),
|
|
144
|
+
output_token_details=OutputTokenDetails(reasoning_tokens=180, response_tokens=20),
|
|
145
|
+
),
|
|
141
146
|
duration=0.729,
|
|
142
147
|
finish_details={"status": "completed", "incomplete_details": {"reason": None}},
|
|
143
148
|
)
|
|
@@ -1,7 +1,9 @@
|
|
|
1
|
+
from gllm_inference.schema.activity import Activity as Activity
|
|
1
2
|
from gllm_inference.schema.attachment import Attachment as Attachment
|
|
2
3
|
from gllm_inference.schema.code_exec_result import CodeExecResult as CodeExecResult
|
|
3
4
|
from gllm_inference.schema.config import TruncationConfig as TruncationConfig
|
|
4
5
|
from gllm_inference.schema.enums import AttachmentType as AttachmentType, BatchStatus as BatchStatus, EmitDataType as EmitDataType, MessageRole as MessageRole, TruncateSide as TruncateSide
|
|
6
|
+
from gllm_inference.schema.events import ActivityEvent as ActivityEvent, CodeEvent as CodeEvent, ReasoningEvent as ReasoningEvent
|
|
5
7
|
from gllm_inference.schema.lm_input import LMInput as LMInput
|
|
6
8
|
from gllm_inference.schema.lm_output import LMOutput as LMOutput
|
|
7
9
|
from gllm_inference.schema.mcp import MCPCall as MCPCall, MCPServer as MCPServer
|
|
@@ -13,4 +15,4 @@ from gllm_inference.schema.tool_call import ToolCall as ToolCall
|
|
|
13
15
|
from gllm_inference.schema.tool_result import ToolResult as ToolResult
|
|
14
16
|
from gllm_inference.schema.type_alias import EMContent as EMContent, MessageContent as MessageContent, ResponseSchema as ResponseSchema, Vector as Vector
|
|
15
17
|
|
|
16
|
-
__all__ = ['Attachment', 'AttachmentType', 'BatchStatus', 'CodeExecResult', 'EMContent', 'EmitDataType', 'MCPCall', 'MCPServer', 'InputTokenDetails', 'MessageContent', 'LMInput', 'LMOutput', 'ModelId', 'ModelProvider', 'Message', 'MessageRole', 'OutputTokenDetails', 'Reasoning', 'ResponseSchema', 'TokenUsage', 'ToolCall', 'ToolResult', 'TruncateSide', 'TruncationConfig', 'Vector']
|
|
18
|
+
__all__ = ['Activity', 'ActivityEvent', 'Attachment', 'AttachmentType', 'BatchStatus', 'CodeEvent', 'CodeExecResult', 'EMContent', 'EmitDataType', 'MCPCall', 'MCPServer', 'InputTokenDetails', 'MessageContent', 'LMInput', 'LMOutput', 'ModelId', 'ModelProvider', 'Message', 'MessageRole', 'OutputTokenDetails', 'Reasoning', 'ReasoningEvent', 'ResponseSchema', 'TokenUsage', 'ToolCall', 'ToolResult', 'TruncateSide', 'TruncationConfig', 'Vector']
|
|
@@ -0,0 +1,40 @@
|
|
|
1
|
+
from gllm_core.schema import Event
|
|
2
|
+
from gllm_inference.schema.activity import Activity as Activity
|
|
3
|
+
from gllm_inference.schema.enums import EmitDataType as EmitDataType
|
|
4
|
+
from typing import Literal
|
|
5
|
+
|
|
6
|
+
class ReasoningEvent(Event):
|
|
7
|
+
"""Event schema for model reasoning.
|
|
8
|
+
|
|
9
|
+
Attributes:
|
|
10
|
+
id (str): The unique identifier for the thinking event. Defaults to an UUID string.
|
|
11
|
+
data_type (Literal): The type of thinking event (thinking, thinking_start, or thinking_end).
|
|
12
|
+
data_value (str): The thinking content or message.
|
|
13
|
+
"""
|
|
14
|
+
id: str
|
|
15
|
+
data_type: Literal[EmitDataType.THINKING, EmitDataType.THINKING_START, EmitDataType.THINKING_END]
|
|
16
|
+
data_value: str
|
|
17
|
+
|
|
18
|
+
class ActivityEvent(Event):
|
|
19
|
+
"""Event schema for model-triggered activities (e.g. web search, MCP).
|
|
20
|
+
|
|
21
|
+
Attributes:
|
|
22
|
+
id (str): The unique identifier for the activity event. Defaults to an UUID string.
|
|
23
|
+
data_type (Literal): The type of event, always 'activity'.
|
|
24
|
+
data_value (Activity): The activity data containing message and type.
|
|
25
|
+
"""
|
|
26
|
+
id: str
|
|
27
|
+
data_type: Literal[EmitDataType.ACTIVITY]
|
|
28
|
+
data_value: Activity
|
|
29
|
+
|
|
30
|
+
class CodeEvent(Event):
|
|
31
|
+
"""Event schema for model-triggered code execution.
|
|
32
|
+
|
|
33
|
+
Attributes:
|
|
34
|
+
id (str): The unique identifier for the code event. Defaults to an UUID string.
|
|
35
|
+
data_type (Literal): The type of event (code, code_start, or code_end).
|
|
36
|
+
data_value (str): The code content.
|
|
37
|
+
"""
|
|
38
|
+
id: str
|
|
39
|
+
data_type: Literal[EmitDataType.CODE, EmitDataType.CODE_START, EmitDataType.CODE_END]
|
|
40
|
+
data_value: str
|
|
Binary file
|
{gllm_inference_binary-0.5.32b1.dist-info → gllm_inference_binary-0.5.34.dist-info}/METADATA
RENAMED
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.2
|
|
2
2
|
Name: gllm-inference-binary
|
|
3
|
-
Version: 0.5.
|
|
3
|
+
Version: 0.5.34
|
|
4
4
|
Summary: A library containing components related to model inferences in Gen AI applications.
|
|
5
5
|
Author-email: Henry Wicaksono <henry.wicaksono@gdplabs.id>, Resti Febrina <resti.febrina@gdplabs.id>
|
|
6
6
|
Requires-Python: <3.14,>=3.11
|
|
@@ -57,12 +57,12 @@ A library containing components related to model inferences in Gen AI applicatio
|
|
|
57
57
|
## Installation
|
|
58
58
|
|
|
59
59
|
### Prerequisites
|
|
60
|
-
|
|
61
|
-
|
|
62
|
-
|
|
63
|
-
|
|
64
|
-
-
|
|
65
|
-
|
|
60
|
+
1. Python 3.11+ - [Install here](https://www.python.org/downloads/)
|
|
61
|
+
2. Pip (if using Pip) - [Install here](https://pip.pypa.io/en/stable/installation/)
|
|
62
|
+
3. Poetry (automatically installed via Makefile) - [Install here](https://python-poetry.org/docs/#installation)
|
|
63
|
+
4. Git (if using Git) - [Install here](https://git-scm.com/downloads)
|
|
64
|
+
5. gcloud CLI (for authentication) - [Install here](https://cloud.google.com/sdk/docs/install)
|
|
65
|
+
6. For git installation, access to the [GDP Labs SDK github repository](https://github.com/GDP-ADMIN/gl-sdk)
|
|
66
66
|
|
|
67
67
|
### 1. Installation from Artifact Registry
|
|
68
68
|
Choose one of the following methods to install the package:
|
|
@@ -91,24 +91,44 @@ Available extras:
|
|
|
91
91
|
- `openai`: Install OpenAI models dependencies
|
|
92
92
|
- `twelvelabs`: Install TwelveLabs models dependencies
|
|
93
93
|
|
|
94
|
-
##
|
|
94
|
+
## Local Development Setup
|
|
95
|
+
|
|
96
|
+
### Quick Setup (Recommended)
|
|
97
|
+
For local development with editable gllm packages, use the provided Makefile:
|
|
98
|
+
|
|
99
|
+
```bash
|
|
100
|
+
# Complete setup: installs Poetry, configures auth, installs packages, sets up pre-commit
|
|
101
|
+
make setup
|
|
102
|
+
```
|
|
103
|
+
|
|
104
|
+
The following are the available Makefile targets:
|
|
105
|
+
|
|
106
|
+
1. `make setup` - Complete development setup (recommended for new developers)
|
|
107
|
+
2. `make install-poetry` - Install or upgrade Poetry to the latest version
|
|
108
|
+
3. `make auth` - Configure authentication for internal repositories
|
|
109
|
+
4. `make install` - Install all dependencies
|
|
110
|
+
5. `make install-pre-commit` - Set up pre-commit hooks
|
|
111
|
+
6. `make update` - Update dependencies
|
|
112
|
+
### Manual Development Setup (Legacy)
|
|
113
|
+
If you prefer to manage dependencies manually:
|
|
114
|
+
|
|
95
115
|
1. Go to root folder of `gllm-inference` module, e.g. `cd libs/gllm-inference`.
|
|
96
116
|
2. Run `poetry shell` to create a virtual environment.
|
|
97
117
|
3. Run `poetry lock` to create a lock file if you haven't done it yet.
|
|
98
118
|
4. Run `poetry install` to install the `gllm-inference` requirements for the first time.
|
|
99
119
|
5. Run `poetry update` if you update any dependency module version at `pyproject.toml`.
|
|
100
120
|
|
|
121
|
+
|
|
101
122
|
## Contributing
|
|
102
123
|
Please refer to this [Python Style Guide](https://docs.google.com/document/d/1uRggCrHnVfDPBnG641FyQBwUwLoFw0kTzNqRm92vUwM/edit?usp=sharing)
|
|
103
124
|
to get information about code style, documentation standard, and SCA that you need to use when contributing to this project
|
|
104
125
|
|
|
105
|
-
|
|
106
|
-
|
|
107
|
-
|
|
108
|
-
|
|
109
|
-
|
|
110
|
-
6. Try running the unit test to see if it's working:
|
|
126
|
+
### Getting Started with Development
|
|
127
|
+
1. Clone the repository and navigate to the gllm-inference directory
|
|
128
|
+
2. Run `make setup` to set up your development environment
|
|
129
|
+
3. Run `which python` to get the path to be referenced at Visual Studio Code interpreter path (`Ctrl`+`Shift`+`P` or `Cmd`+`Shift`+`P`)
|
|
130
|
+
4. Try running the unit test to see if it's working:
|
|
111
131
|
```bash
|
|
112
132
|
poetry run pytest -s tests/unit_tests/
|
|
113
133
|
```
|
|
114
|
-
|
|
134
|
+
5. When you want to update the dependencies, run `make update`
|
|
@@ -1,4 +1,4 @@
|
|
|
1
|
-
gllm_inference.cpython-311-x86_64-linux-gnu.so,sha256=
|
|
1
|
+
gllm_inference.cpython-311-x86_64-linux-gnu.so,sha256=0OzoLFSn6LVwerQ1fgNv8dE7UtIZx5qtHU2RU-hwc3k,4470544
|
|
2
2
|
gllm_inference.pyi,sha256=bvMQNMzysfZtXgjW4ZX0KwSOV4uroNakpE0NUHKCMmk,4199
|
|
3
3
|
gllm_inference/__init__.pyi,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
4
4
|
gllm_inference/constants.pyi,sha256=EFVMtK3xDK2yjGoHp8EL3LeRZWhIefVKClI9jvbfQQ0,267
|
|
@@ -37,7 +37,7 @@ gllm_inference/exceptions/exceptions.pyi,sha256=Bv996qLa_vju0Qjf4GewMxdkq8CV9LRZ
|
|
|
37
37
|
gllm_inference/exceptions/provider_error_map.pyi,sha256=P1WnhWkM103FW6hqMfNZBOmYSWOmsJtll3VQV8DGb8E,1210
|
|
38
38
|
gllm_inference/lm_invoker/__init__.pyi,sha256=NmQSqObPjevEP1KbbrNnaz4GMh175EVPERZ19vK5Emc,1202
|
|
39
39
|
gllm_inference/lm_invoker/anthropic_lm_invoker.pyi,sha256=rJeQ9jpUIvcf5z1BB9Lksqf37ZgUzcnFqDMstOl3-kk,17235
|
|
40
|
-
gllm_inference/lm_invoker/azure_openai_lm_invoker.pyi,sha256=
|
|
40
|
+
gllm_inference/lm_invoker/azure_openai_lm_invoker.pyi,sha256=7zF8pj3LbuOwu1QArPX0ra6IrqUq5AkkGbC_wXiGhlA,15027
|
|
41
41
|
gllm_inference/lm_invoker/bedrock_lm_invoker.pyi,sha256=uZ9wpzOKSOvgu1ICMLqEXcrOE3RIbUmqHmgtuwBekPg,12802
|
|
42
42
|
gllm_inference/lm_invoker/datasaur_lm_invoker.pyi,sha256=J_tfnIgVDr-zQ7YE5_TKMyZyA336ly04g1l-ZKnr1As,9315
|
|
43
43
|
gllm_inference/lm_invoker/google_lm_invoker.pyi,sha256=4-3CwfBcDh6thxkidRcYbGVp9bCDkQTemat6VBHsUC8,17164
|
|
@@ -45,7 +45,7 @@ gllm_inference/lm_invoker/langchain_lm_invoker.pyi,sha256=hnQcScOHs31xx4GB6YI-Rn
|
|
|
45
45
|
gllm_inference/lm_invoker/litellm_lm_invoker.pyi,sha256=eEPvDOCj55f9wJ0neNl4O9XQWvSI6YWJgHZMHOaYGRk,13240
|
|
46
46
|
gllm_inference/lm_invoker/lm_invoker.pyi,sha256=hjolpN8BzUrhgy8MSpnYxhrlWPJO1LXeCFGlBhQ-eBw,8152
|
|
47
47
|
gllm_inference/lm_invoker/openai_compatible_lm_invoker.pyi,sha256=XV-KjulVYAhU0e2giqOdHUGCSCrybXRWsrtzZByqOXI,15050
|
|
48
|
-
gllm_inference/lm_invoker/openai_lm_invoker.pyi,sha256=
|
|
48
|
+
gllm_inference/lm_invoker/openai_lm_invoker.pyi,sha256=8U-b2dUcHGHm0uoPcZr3UBNhJsLaNCOHftfkebZP_DU,22098
|
|
49
49
|
gllm_inference/lm_invoker/xai_lm_invoker.pyi,sha256=rV8D3E730OUmwK7jELKSziMUl7MnpbfxMAvMuq8-Aew,15687
|
|
50
50
|
gllm_inference/lm_invoker/batch/__init__.pyi,sha256=W4W-_yfk7lL20alREJai6GnwuQvdlKRfwQCX4mQK4XI,127
|
|
51
51
|
gllm_inference/lm_invoker/batch/batch_operations.pyi,sha256=Oo7hoyPSfPZdy1mXvSdvtRndvq-XTIbPIjEoGvJj5C0,5372
|
|
@@ -83,11 +83,13 @@ gllm_inference/prompt_formatter/prompt_formatter.pyi,sha256=UkcPi5ao98OGJyNRsqfh
|
|
|
83
83
|
gllm_inference/request_processor/__init__.pyi,sha256=hVnfdNZnkTBJHnmLtN3Na4ANP0yK6AstWdIizVr2Apo,227
|
|
84
84
|
gllm_inference/request_processor/lm_request_processor.pyi,sha256=VnYc8E3Iayyhw-rPnGPfTKuO3ohgFsS8HPrZJeyES5I,5889
|
|
85
85
|
gllm_inference/request_processor/uses_lm_mixin.pyi,sha256=Yu0XPNuHxq1tWBviHTPw1oThojneFwGHepvGjBXxKQA,6382
|
|
86
|
-
gllm_inference/schema/__init__.pyi,sha256=
|
|
86
|
+
gllm_inference/schema/__init__.pyi,sha256=BJUDYiIo_jPjR5GjWzpSaZ2yOahUFry3FPhgrv-NjK8,1933
|
|
87
|
+
gllm_inference/schema/activity.pyi,sha256=kcqSAWAdtyAIyKy2hhLtDgDzZzsNOaUAmHpMAVlGI-s,211
|
|
87
88
|
gllm_inference/schema/attachment.pyi,sha256=jApuzjOHJDCz4lr4MlHzBgIndh559nbWu2Xp1fk3hso,3297
|
|
88
89
|
gllm_inference/schema/code_exec_result.pyi,sha256=ZTHh6JtRrPIdQ059P1UAiD2L-tAO1_S5YcMsAXfJ5A0,559
|
|
89
90
|
gllm_inference/schema/config.pyi,sha256=rAL_UeXyQeXVk1P2kqd8vFWOMwmKenfpQLtvMP74t9s,674
|
|
90
91
|
gllm_inference/schema/enums.pyi,sha256=XQpohUC7_9nFdEmSZHj_4YmOAwM_C5jvTWw_RN-JiFk,901
|
|
92
|
+
gllm_inference/schema/events.pyi,sha256=wW14Gb4dS6_YcIus8sBrWvkt_iyw7Xc8E3DrnsQNa08,1566
|
|
91
93
|
gllm_inference/schema/lm_input.pyi,sha256=A5pjz1id6tP9XRNhzQrbmzd66C_q3gzo0UP8rCemz6Q,193
|
|
92
94
|
gllm_inference/schema/lm_output.pyi,sha256=15y-M0lpqM_fSlErPKiN1Pj-ikl5NtFBcWLMYsRidt8,2182
|
|
93
95
|
gllm_inference/schema/mcp.pyi,sha256=Vwu8E2BDl6FvvnI42gIyY3Oki1BdwRE3Uh3aV0rmhQU,1014
|
|
@@ -103,7 +105,7 @@ gllm_inference/utils/io_utils.pyi,sha256=7kUTacHAVRYoemFUOjCH7-Qmw-YsQGd6rGYxjf_
|
|
|
103
105
|
gllm_inference/utils/langchain.pyi,sha256=VluQiHkGigDdqLUbhB6vnXiISCP5hHqV0qokYY6dC1A,1164
|
|
104
106
|
gllm_inference/utils/validation.pyi,sha256=toxBtRp-VItC_X7sNi-GDd7sjibBdWMrR0q01OI2D7k,385
|
|
105
107
|
gllm_inference.build/.gitignore,sha256=aEiIwOuxfzdCmLZe4oB1JsBmCUxwG8x-u-HBCV9JT8E,1
|
|
106
|
-
gllm_inference_binary-0.5.
|
|
107
|
-
gllm_inference_binary-0.5.
|
|
108
|
-
gllm_inference_binary-0.5.
|
|
109
|
-
gllm_inference_binary-0.5.
|
|
108
|
+
gllm_inference_binary-0.5.34.dist-info/METADATA,sha256=SkE5bZYrVBFIp7l6kDi2vk5m6MZtKoRM6vDVtON1_zs,5636
|
|
109
|
+
gllm_inference_binary-0.5.34.dist-info/WHEEL,sha256=WMelAR6z66VnlU3tu68fV-jM5qbG8iPyeTqaBcpU3pI,108
|
|
110
|
+
gllm_inference_binary-0.5.34.dist-info/top_level.txt,sha256=FpOjtN80F-qVNgbScXSEyqa0w09FYn6301iq6qt69IQ,15
|
|
111
|
+
gllm_inference_binary-0.5.34.dist-info/RECORD,,
|
|
File without changes
|
{gllm_inference_binary-0.5.32b1.dist-info → gllm_inference_binary-0.5.34.dist-info}/top_level.txt
RENAMED
|
File without changes
|