gllm-inference-binary 0.5.30__cp312-cp312-macosx_13_0_x86_64.whl → 0.5.32__cp312-cp312-macosx_13_0_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -5,7 +5,7 @@ from gllm_core.utils.retry import RetryConfig as RetryConfig
5
5
  from gllm_inference.constants import INVOKER_PROPAGATED_MAX_RETRIES as INVOKER_PROPAGATED_MAX_RETRIES
6
6
  from gllm_inference.lm_invoker.lm_invoker import BaseLMInvoker as BaseLMInvoker
7
7
  from gllm_inference.lm_invoker.schema.anthropic import InputType as InputType, Key as Key, OutputType as OutputType
8
- from gllm_inference.schema import Attachment as Attachment, AttachmentType as AttachmentType, BatchStatus as BatchStatus, EmitDataType as EmitDataType, LMOutput as LMOutput, Message as Message, MessageContent as MessageContent, ModelId as ModelId, ModelProvider as ModelProvider, Reasoning as Reasoning, ResponseSchema as ResponseSchema, TokenUsage as TokenUsage, ToolCall as ToolCall, ToolResult as ToolResult
8
+ from gllm_inference.schema import Attachment as Attachment, AttachmentType as AttachmentType, BatchStatus as BatchStatus, EmitDataType as EmitDataType, LMInput as LMInput, LMOutput as LMOutput, Message as Message, ModelId as ModelId, ModelProvider as ModelProvider, Reasoning as Reasoning, ResponseSchema as ResponseSchema, TokenUsage as TokenUsage, ToolCall as ToolCall, ToolResult as ToolResult
9
9
  from langchain_core.tools import Tool as LangChainTool
10
10
  from typing import Any
11
11
 
@@ -202,38 +202,66 @@ class AnthropicLMInvoker(BaseLMInvoker):
202
202
 
203
203
  Batch processing:
204
204
  The `AnthropicLMInvoker` supports batch processing, which allows the language model to process multiple
205
- requests in a single call. The batch processing operations include:
205
+ requests in a single call. Batch processing is supported through the `batch` attribute.
206
+
207
+ Usage example:
208
+ ```python
209
+ requests = {"request_1": "What color is the sky?", "request_2": "What color is the grass?"}
210
+ results = await lm_invoker.batch.invoke(requests)
211
+ ```
212
+
213
+ Output example:
214
+ ```python
215
+ {
216
+ "request_1": LMOutput(response="The sky is blue."),
217
+ "request_2": LMOutput(finish_details={"type": "error", "error": {"message": "...", ...}, ...}),
218
+ }
219
+ ```
220
+
221
+ The `AnthropicLMInvoker` also supports the following standalone batch processing operations:
206
222
 
207
223
  1. Create a batch job:
208
- >>> requests = {"request_1": "What color is the sky?", "request_2": "What color is the grass?"}
209
- >>> batch_id = await lm_invoker.batch.create(requests)
210
- >>> print(batch_id)
211
- "batch_123"
224
+ ```python
225
+ requests = {"request_1": "What color is the sky?", "request_2": "What color is the grass?"}
226
+ batch_id = await lm_invoker.batch.create(requests)
227
+ ```
212
228
 
213
229
  2. Get the status of a batch job:
214
- >>> status = await lm_invoker.batch.status(batch_id)
215
- >>> print(status)
216
- "finished"
230
+ ```python
231
+ status = await lm_invoker.batch.status(batch_id)
232
+ ```
217
233
 
218
234
  3. Retrieve the results of a batch job:
219
- >>> results = await lm_invoker.batch.retrieve(batch_id)
220
- >>> print(results)
235
+ ```python
236
+ results = await lm_invoker.batch.retrieve(batch_id)
237
+ ```
238
+
239
+ Output example:
240
+ ```python
221
241
  {
222
242
  "request_1": LMOutput(response="The sky is blue."),
223
243
  "request_2": LMOutput(finish_details={"type": "error", "error": {"message": "...", ...}, ...}),
224
244
  }
245
+ ```
225
246
 
226
247
  4. List the batch jobs:
227
- >>> batch_jobs = await lm_invoker.batch.list()
228
- >>> print(batch_jobs)
248
+ ```python
249
+ batch_jobs = await lm_invoker.batch.list()
250
+ ```
251
+
252
+ Output example:
253
+ ```python
229
254
  [
230
255
  {"id": "batch_123", "status": "finished"},
231
256
  {"id": "batch_456", "status": "in_progress"},
232
257
  {"id": "batch_789", "status": "canceling"},
233
258
  ]
259
+ ```
234
260
 
235
261
  5. Cancel a batch job:
236
- >>> await lm_invoker.batch.cancel(batch_id)
262
+ ```python
263
+ await lm_invoker.batch.cancel(batch_id)
264
+ ```
237
265
 
238
266
  Output types:
239
267
  The output of the `AnthropicLMInvoker` can either be:
@@ -1,28 +1,44 @@
1
- from gllm_inference.schema import BatchStatus as BatchStatus, LMOutput as LMOutput, Message as Message, MessageContent as MessageContent
1
+ from gllm_inference.exceptions import InvokerRuntimeError as InvokerRuntimeError
2
+ from gllm_inference.schema import BatchStatus as BatchStatus, LMInput as LMInput, LMOutput as LMOutput
2
3
  from typing import Any
3
4
 
5
+ DEFAULT_STATUS_CHECK_INTERVAL: float
6
+
4
7
  class BatchOperations:
5
8
  """Handles batch operations for an LM invoker.
6
9
 
7
10
  This class provides a wrapper around the batch operations of an LM invoker.
8
- It provides a simple interface for creating, retrieving, and canceling batch jobs.
9
-
10
- This enables LM invokers to support the following batch operations:
11
-
12
- Create a batch job:
13
- >>> batch_id = await lm_invoker.batch.create(...)
14
-
15
- Get the status of a batch job:
16
- >>> status = await lm_invoker.batch.status(batch_id)
17
-
18
- Retrieve the results of a batch job:
19
- >>> results = await lm_invoker.batch.retrieve(batch_id)
20
-
21
- List the batch jobs:
22
- >>> batch_jobs = await lm_invoker.batch.list()
23
-
24
- Cancel a batch job:
25
- >>> await lm_invoker.batch.cancel(batch_id)
11
+ It provides a simple interface to perform batch invocation:
12
+ ```python
13
+ results = await lm_invoker.batch.invoke(...)
14
+ ```
15
+
16
+ Additionally, it also supports the following standalone batch operations:
17
+
18
+ 1. Create a batch job:
19
+ ```python
20
+ batch_id = await lm_invoker.batch.create(...)
21
+ ```
22
+
23
+ 2. Get the status of a batch job:
24
+ ```python
25
+ status = await lm_invoker.batch.status(batch_id)
26
+ ```
27
+
28
+ 3. Retrieve the results of a batch job:
29
+ ```python
30
+ results = await lm_invoker.batch.retrieve(batch_id)
31
+ ```
32
+
33
+ 4. List the batch jobs:
34
+ ```python
35
+ batch_jobs = await lm_invoker.batch.list()
36
+ ```
37
+
38
+ 5. Cancel a batch job:
39
+ ```python
40
+ await lm_invoker.batch.cancel(batch_id)
41
+ ```
26
42
  """
27
43
  def __init__(self, invoker: BaseLMInvoker) -> None:
28
44
  """Initializes the batch operations.
@@ -30,12 +46,47 @@ class BatchOperations:
30
46
  Args:
31
47
  invoker (BaseLMInvoker): The LM invoker to use for the batch operations.
32
48
  """
33
- async def create(self, requests: dict[str, list[Message] | list[MessageContent] | str], hyperparameters: dict[str, Any] | None = None) -> str:
49
+ async def invoke(self, requests: dict[str, LMInput], hyperparameters: dict[str, Any] | None = None, status_check_interval: float = ..., max_iterations: int | None = None) -> dict[str, LMOutput]:
50
+ """Invokes the language model in batch mode.
51
+
52
+ This method orchestrates the entire batch invocation process, including;
53
+ 1. Creating a batch job.
54
+ 2. Iteratively checking the status of the batch job until it is finished.
55
+ 3. Retrieving the results of the batch job.
56
+ The method includes retry logic with exponential backoff for transient failures.
57
+
58
+ Args:
59
+ requests (dict[str, LMInput]): The dictionary of requests that maps request ID to the request.
60
+ Each request must be a valid input for the language model.
61
+ 1. If the request is a list of Message objects, it is used as is.
62
+ 2. If the request is a list of MessageContent or a string, it is converted into a user message.
63
+ hyperparameters (dict[str, Any] | None, optional): A dictionary of hyperparameters for the language model.
64
+ Defaults to None, in which case the default hyperparameters are used.
65
+ status_check_interval (float, optional): The interval in seconds to check the status of the batch job.
66
+ Defaults to DEFAULT_STATUS_CHECK_INTERVAL.
67
+ max_iterations (int | None, optional): The maximum number of iterations to check the status of the batch
68
+ job. Defaults to None, in which case the number of iterations is infinite.
69
+
70
+ Returns:
71
+ dict[str, LMOutput]: The results of the batch job.
72
+
73
+ Raises:
74
+ CancelledError: If the invocation is cancelled.
75
+ ModelNotFoundError: If the model is not found.
76
+ ProviderAuthError: If the model authentication fails.
77
+ ProviderInternalError: If the model internal error occurs.
78
+ ProviderInvalidArgsError: If the model parameters are invalid.
79
+ ProviderOverloadedError: If the model is overloaded.
80
+ ProviderRateLimitError: If the model rate limit is exceeded.
81
+ TimeoutError: If the invocation times out.
82
+ ValueError: If the messages are not in the correct format.
83
+ """
84
+ async def create(self, requests: dict[str, LMInput], hyperparameters: dict[str, Any] | None = None) -> str:
34
85
  """Creates a new batch job.
35
86
 
36
87
  Args:
37
- requests (dict[str, list[Message] | list[MessageContent] | str]): The dictionary of requests that maps
38
- request ID to the request. Each request must be a valid input for the language model.
88
+ requests (dict[str, LMInput]): The dictionary of requests that maps request ID to the request.
89
+ Each request must be a valid input for the language model.
39
90
  1. If the request is a list of Message objects, it is used as is.
40
91
  2. If the request is a list of MessageContent or a string, it is converted into a user message.
41
92
  hyperparameters (dict[str, Any] | None, optional): A dictionary of hyperparameters for the language model.
@@ -7,7 +7,7 @@ from gllm_core.utils import RetryConfig
7
7
  from gllm_inference.constants import DOCUMENT_MIME_TYPES as DOCUMENT_MIME_TYPES, INVOKER_DEFAULT_TIMEOUT as INVOKER_DEFAULT_TIMEOUT
8
8
  from gllm_inference.exceptions import BaseInvokerError as BaseInvokerError, convert_to_base_invoker_error as convert_to_base_invoker_error
9
9
  from gllm_inference.lm_invoker.batch import BatchOperations as BatchOperations
10
- from gllm_inference.schema import Attachment as Attachment, AttachmentType as AttachmentType, BatchStatus as BatchStatus, EmitDataType as EmitDataType, LMOutput as LMOutput, Message as Message, MessageContent as MessageContent, MessageRole as MessageRole, ModelId as ModelId, Reasoning as Reasoning, ResponseSchema as ResponseSchema, ToolCall as ToolCall, ToolResult as ToolResult
10
+ from gllm_inference.schema import Attachment as Attachment, AttachmentType as AttachmentType, BatchStatus as BatchStatus, EmitDataType as EmitDataType, LMInput as LMInput, LMOutput as LMOutput, Message as Message, MessageContent as MessageContent, MessageRole as MessageRole, ModelId as ModelId, Reasoning as Reasoning, ResponseSchema as ResponseSchema, ToolCall as ToolCall, ToolResult as ToolResult
11
11
  from langchain_core.tools import Tool as LangChainTool
12
12
  from typing import Any
13
13
 
@@ -128,7 +128,7 @@ class BaseLMInvoker(ABC, metaclass=abc.ABCMeta):
128
128
  This method clears the response schema for the language model by calling the `set_response_schema` method with
129
129
  None.
130
130
  """
131
- async def invoke(self, messages: list[Message] | list[MessageContent] | str, hyperparameters: dict[str, Any] | None = None, event_emitter: EventEmitter | None = None) -> str | LMOutput:
131
+ async def invoke(self, messages: LMInput, hyperparameters: dict[str, Any] | None = None, event_emitter: EventEmitter | None = None) -> str | LMOutput:
132
132
  """Invokes the language model.
133
133
 
134
134
  This method validates the messages and invokes the language model. It handles both standard
@@ -136,7 +136,7 @@ class BaseLMInvoker(ABC, metaclass=abc.ABCMeta):
136
136
  The method includes retry logic with exponential backoff for transient failures.
137
137
 
138
138
  Args:
139
- messages (list[Message] | list[MessageContent] | str): The input messages for the language model.
139
+ messages (LMInput): The input messages for the language model.
140
140
  1. If a list of Message objects is provided, it is used as is.
141
141
  2. If a list of MessageContent or a string is provided, it is converted into a user message.
142
142
  hyperparameters (dict[str, Any] | None, optional): A dictionary of hyperparameters for the language model.
@@ -11,6 +11,8 @@ from langchain_core.tools import Tool as LangChainTool
11
11
  from typing import Any
12
12
 
13
13
  SUPPORTED_ATTACHMENTS: Incomplete
14
+ STREAM_DATA_TRANSITION_TYPE_MAP: Incomplete
15
+ STREAM_DATA_CONTENT_TYPE_MAP: Incomplete
14
16
 
15
17
  class OpenAILMInvoker(BaseLMInvoker):
16
18
  '''A language model invoker to interact with OpenAI language models.
@@ -2,6 +2,7 @@ from gllm_inference.schema.attachment import Attachment as Attachment
2
2
  from gllm_inference.schema.code_exec_result import CodeExecResult as CodeExecResult
3
3
  from gllm_inference.schema.config import TruncationConfig as TruncationConfig
4
4
  from gllm_inference.schema.enums import AttachmentType as AttachmentType, BatchStatus as BatchStatus, EmitDataType as EmitDataType, MessageRole as MessageRole, TruncateSide as TruncateSide
5
+ from gllm_inference.schema.lm_input import LMInput as LMInput
5
6
  from gllm_inference.schema.lm_output import LMOutput as LMOutput
6
7
  from gllm_inference.schema.mcp import MCPCall as MCPCall, MCPServer as MCPServer
7
8
  from gllm_inference.schema.message import Message as Message
@@ -12,4 +13,4 @@ from gllm_inference.schema.tool_call import ToolCall as ToolCall
12
13
  from gllm_inference.schema.tool_result import ToolResult as ToolResult
13
14
  from gllm_inference.schema.type_alias import EMContent as EMContent, MessageContent as MessageContent, ResponseSchema as ResponseSchema, Vector as Vector
14
15
 
15
- __all__ = ['Attachment', 'AttachmentType', 'BatchStatus', 'CodeExecResult', 'EMContent', 'EmitDataType', 'MCPCall', 'MCPServer', 'InputTokenDetails', 'MessageContent', 'LMOutput', 'ModelId', 'ModelProvider', 'Message', 'MessageRole', 'OutputTokenDetails', 'Reasoning', 'ResponseSchema', 'TokenUsage', 'ToolCall', 'ToolResult', 'TruncateSide', 'TruncationConfig', 'Vector']
16
+ __all__ = ['Attachment', 'AttachmentType', 'BatchStatus', 'CodeExecResult', 'EMContent', 'EmitDataType', 'MCPCall', 'MCPServer', 'InputTokenDetails', 'MessageContent', 'LMInput', 'LMOutput', 'ModelId', 'ModelProvider', 'Message', 'MessageRole', 'OutputTokenDetails', 'Reasoning', 'ResponseSchema', 'TokenUsage', 'ToolCall', 'ToolResult', 'TruncateSide', 'TruncationConfig', 'Vector']
@@ -0,0 +1,4 @@
1
+ from gllm_inference.schema.message import Message as Message
2
+ from gllm_inference.schema.type_alias import MessageContent as MessageContent
3
+
4
+ LMInput = list[Message] | list[MessageContent] | str
Binary file
gllm_inference.pyi CHANGED
@@ -85,9 +85,9 @@ import gllm_core.schema.tool
85
85
  import langchain_core.tools
86
86
  import gllm_inference.schema.BatchStatus
87
87
  import gllm_inference.schema.EmitDataType
88
+ import gllm_inference.schema.LMInput
88
89
  import gllm_inference.schema.LMOutput
89
90
  import gllm_inference.schema.Message
90
- import gllm_inference.schema.MessageContent
91
91
  import gllm_inference.schema.Reasoning
92
92
  import gllm_inference.schema.ResponseSchema
93
93
  import gllm_inference.schema.TokenUsage
@@ -107,7 +107,9 @@ import inspect
107
107
  import time
108
108
  import jsonschema
109
109
  import gllm_inference.lm_invoker.batch.BatchOperations
110
+ import gllm_inference.schema.MessageContent
110
111
  import gllm_inference.utils.validate_string_enum
112
+ import __future__
111
113
  import gllm_inference.schema.CodeExecResult
112
114
  import gllm_inference.schema.MCPCall
113
115
  import gllm_inference.schema.MCPServer
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: gllm-inference-binary
3
- Version: 0.5.30
3
+ Version: 0.5.32
4
4
  Summary: A library containing components related to model inferences in Gen AI applications.
5
5
  Author-email: Henry Wicaksono <henry.wicaksono@gdplabs.id>, Resti Febrina <resti.febrina@gdplabs.id>
6
6
  Requires-Python: <3.14,>=3.11
@@ -1,5 +1,5 @@
1
- gllm_inference.cpython-312-darwin.so,sha256=oIORF-Jxog3x5s8Jyc7gVHLNKREEqSRCfCzmPjX5fCk,4477768
2
- gllm_inference.pyi,sha256=F3Sng0iliny70Fkn-isyrhVcB2lsiNMSPxu_BQqnDwQ,4144
1
+ gllm_inference.cpython-312-darwin.so,sha256=rMB6UQfepzqk-q0GFaXozYjxZPuH0QgtCoPdKML-7rY,4462456
2
+ gllm_inference.pyi,sha256=bvMQNMzysfZtXgjW4ZX0KwSOV4uroNakpE0NUHKCMmk,4199
3
3
  gllm_inference/__init__.pyi,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
4
4
  gllm_inference/constants.pyi,sha256=EFVMtK3xDK2yjGoHp8EL3LeRZWhIefVKClI9jvbfQQ0,267
5
5
  gllm_inference/builder/__init__.pyi,sha256=usz2lvfwO4Yk-ZGKXbCWG1cEr3nlQXxMNDNC-2yc1NM,500
@@ -36,19 +36,19 @@ gllm_inference/exceptions/error_parser.pyi,sha256=IOfa--NpLUW5E9Qq0mwWi6ZpTAbUyy
36
36
  gllm_inference/exceptions/exceptions.pyi,sha256=Bv996qLa_vju0Qjf4GewMxdkq8CV9LRZb0S6289DldA,5725
37
37
  gllm_inference/exceptions/provider_error_map.pyi,sha256=P1WnhWkM103FW6hqMfNZBOmYSWOmsJtll3VQV8DGb8E,1210
38
38
  gllm_inference/lm_invoker/__init__.pyi,sha256=NmQSqObPjevEP1KbbrNnaz4GMh175EVPERZ19vK5Emc,1202
39
- gllm_inference/lm_invoker/anthropic_lm_invoker.pyi,sha256=MXvopJfqv-lBhnFFn01yW-D9Hh3JYL3PiFf3cg-dfp0,16542
39
+ gllm_inference/lm_invoker/anthropic_lm_invoker.pyi,sha256=rJeQ9jpUIvcf5z1BB9Lksqf37ZgUzcnFqDMstOl3-kk,17235
40
40
  gllm_inference/lm_invoker/azure_openai_lm_invoker.pyi,sha256=EXPFTsPwUk42B12MVDhh98maCFSkdPWfqJeht5Wjpq4,14783
41
41
  gllm_inference/lm_invoker/bedrock_lm_invoker.pyi,sha256=uZ9wpzOKSOvgu1ICMLqEXcrOE3RIbUmqHmgtuwBekPg,12802
42
42
  gllm_inference/lm_invoker/datasaur_lm_invoker.pyi,sha256=J_tfnIgVDr-zQ7YE5_TKMyZyA336ly04g1l-ZKnr1As,9315
43
43
  gllm_inference/lm_invoker/google_lm_invoker.pyi,sha256=4-3CwfBcDh6thxkidRcYbGVp9bCDkQTemat6VBHsUC8,17164
44
44
  gllm_inference/lm_invoker/langchain_lm_invoker.pyi,sha256=hnQcScOHs31xx4GB6YI-RnREiNg7r8fvQrmGBscQlu0,13711
45
45
  gllm_inference/lm_invoker/litellm_lm_invoker.pyi,sha256=eEPvDOCj55f9wJ0neNl4O9XQWvSI6YWJgHZMHOaYGRk,13240
46
- gllm_inference/lm_invoker/lm_invoker.pyi,sha256=zlhvzAs2oWX3vv_HcYpl-0qSRqLZ4Tb020CmI4Oixto,8202
46
+ gllm_inference/lm_invoker/lm_invoker.pyi,sha256=hjolpN8BzUrhgy8MSpnYxhrlWPJO1LXeCFGlBhQ-eBw,8152
47
47
  gllm_inference/lm_invoker/openai_compatible_lm_invoker.pyi,sha256=XV-KjulVYAhU0e2giqOdHUGCSCrybXRWsrtzZByqOXI,15050
48
- gllm_inference/lm_invoker/openai_lm_invoker.pyi,sha256=PNlhhb_lVk91dNSuha9ZuK6YaRDYVnc94Tbnj3z9wds,21769
48
+ gllm_inference/lm_invoker/openai_lm_invoker.pyi,sha256=xrNdXmsy8i4XZRUTddaRdNbgtZtgal7l6zOogNAEa4M,21854
49
49
  gllm_inference/lm_invoker/xai_lm_invoker.pyi,sha256=rV8D3E730OUmwK7jELKSziMUl7MnpbfxMAvMuq8-Aew,15687
50
50
  gllm_inference/lm_invoker/batch/__init__.pyi,sha256=W4W-_yfk7lL20alREJai6GnwuQvdlKRfwQCX4mQK4XI,127
51
- gllm_inference/lm_invoker/batch/batch_operations.pyi,sha256=Pf_gORe6Oh6cDT_sJhF0h8I7rEsTbwQZMG85NOQw3xQ,2965
51
+ gllm_inference/lm_invoker/batch/batch_operations.pyi,sha256=Oo7hoyPSfPZdy1mXvSdvtRndvq-XTIbPIjEoGvJj5C0,5372
52
52
  gllm_inference/lm_invoker/schema/__init__.pyi,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
53
53
  gllm_inference/lm_invoker/schema/anthropic.pyi,sha256=6lreMyHKRfZzX5NBYKnQf1Z6RzXBjTvqZj2VbMeaTLQ,1098
54
54
  gllm_inference/lm_invoker/schema/bedrock.pyi,sha256=FJLY-ZkkLUYDV48pfsLatnot4ev_xxz9xAayLK28CpU,1027
@@ -83,11 +83,12 @@ gllm_inference/prompt_formatter/prompt_formatter.pyi,sha256=UkcPi5ao98OGJyNRsqfh
83
83
  gllm_inference/request_processor/__init__.pyi,sha256=hVnfdNZnkTBJHnmLtN3Na4ANP0yK6AstWdIizVr2Apo,227
84
84
  gllm_inference/request_processor/lm_request_processor.pyi,sha256=VnYc8E3Iayyhw-rPnGPfTKuO3ohgFsS8HPrZJeyES5I,5889
85
85
  gllm_inference/request_processor/uses_lm_mixin.pyi,sha256=Yu0XPNuHxq1tWBviHTPw1oThojneFwGHepvGjBXxKQA,6382
86
- gllm_inference/schema/__init__.pyi,sha256=xKwbHrU4AGN-iSnNoAoHd2SsqnVqmhq7sGv8k61nU5k,1606
86
+ gllm_inference/schema/__init__.pyi,sha256=Kc0N_kISRf8wkw07tY5ka9wG_0qdZAvrFMej0zxvIZE,1679
87
87
  gllm_inference/schema/attachment.pyi,sha256=jApuzjOHJDCz4lr4MlHzBgIndh559nbWu2Xp1fk3hso,3297
88
88
  gllm_inference/schema/code_exec_result.pyi,sha256=ZTHh6JtRrPIdQ059P1UAiD2L-tAO1_S5YcMsAXfJ5A0,559
89
89
  gllm_inference/schema/config.pyi,sha256=rAL_UeXyQeXVk1P2kqd8vFWOMwmKenfpQLtvMP74t9s,674
90
90
  gllm_inference/schema/enums.pyi,sha256=XQpohUC7_9nFdEmSZHj_4YmOAwM_C5jvTWw_RN-JiFk,901
91
+ gllm_inference/schema/lm_input.pyi,sha256=A5pjz1id6tP9XRNhzQrbmzd66C_q3gzo0UP8rCemz6Q,193
91
92
  gllm_inference/schema/lm_output.pyi,sha256=15y-M0lpqM_fSlErPKiN1Pj-ikl5NtFBcWLMYsRidt8,2182
92
93
  gllm_inference/schema/mcp.pyi,sha256=Vwu8E2BDl6FvvnI42gIyY3Oki1BdwRE3Uh3aV0rmhQU,1014
93
94
  gllm_inference/schema/message.pyi,sha256=VP9YppKj2mo1esl9cy6qQO9m2mMHUjTmfGDdyUor880,2220
@@ -102,7 +103,7 @@ gllm_inference/utils/io_utils.pyi,sha256=7kUTacHAVRYoemFUOjCH7-Qmw-YsQGd6rGYxjf_
102
103
  gllm_inference/utils/langchain.pyi,sha256=VluQiHkGigDdqLUbhB6vnXiISCP5hHqV0qokYY6dC1A,1164
103
104
  gllm_inference/utils/validation.pyi,sha256=toxBtRp-VItC_X7sNi-GDd7sjibBdWMrR0q01OI2D7k,385
104
105
  gllm_inference.build/.gitignore,sha256=aEiIwOuxfzdCmLZe4oB1JsBmCUxwG8x-u-HBCV9JT8E,1
105
- gllm_inference_binary-0.5.30.dist-info/METADATA,sha256=NX8jJe_24A18KRxeJuRZFQuH_JfgUbENb4SRm2jB2B0,4857
106
- gllm_inference_binary-0.5.30.dist-info/WHEEL,sha256=ar3KUKk5QtasLek_3_fVX4zgPzX-lxtBGErPgJ515rA,105
107
- gllm_inference_binary-0.5.30.dist-info/top_level.txt,sha256=FpOjtN80F-qVNgbScXSEyqa0w09FYn6301iq6qt69IQ,15
108
- gllm_inference_binary-0.5.30.dist-info/RECORD,,
106
+ gllm_inference_binary-0.5.32.dist-info/METADATA,sha256=eHKWNImRDT-QYSDtyPiRRTTSC7O6_VjEpuC2OQ7N2Q4,4857
107
+ gllm_inference_binary-0.5.32.dist-info/WHEEL,sha256=ar3KUKk5QtasLek_3_fVX4zgPzX-lxtBGErPgJ515rA,105
108
+ gllm_inference_binary-0.5.32.dist-info/top_level.txt,sha256=FpOjtN80F-qVNgbScXSEyqa0w09FYn6301iq6qt69IQ,15
109
+ gllm_inference_binary-0.5.32.dist-info/RECORD,,