gllm-inference-binary 0.5.28__cp313-cp313-manylinux_2_31_x86_64.whl → 0.5.29__cp313-cp313-manylinux_2_31_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of gllm-inference-binary might be problematic. Click here for more details.

@@ -5,13 +5,14 @@ from gllm_core.utils.retry import RetryConfig as RetryConfig
5
5
  from gllm_inference.constants import INVOKER_PROPAGATED_MAX_RETRIES as INVOKER_PROPAGATED_MAX_RETRIES
6
6
  from gllm_inference.lm_invoker.lm_invoker import BaseLMInvoker as BaseLMInvoker
7
7
  from gllm_inference.lm_invoker.schema.anthropic import InputType as InputType, Key as Key, OutputType as OutputType
8
- from gllm_inference.schema import Attachment as Attachment, AttachmentType as AttachmentType, EmitDataType as EmitDataType, LMOutput as LMOutput, Message as Message, ModelId as ModelId, ModelProvider as ModelProvider, Reasoning as Reasoning, ResponseSchema as ResponseSchema, TokenUsage as TokenUsage, ToolCall as ToolCall, ToolResult as ToolResult
8
+ from gllm_inference.schema import Attachment as Attachment, AttachmentType as AttachmentType, BatchStatus as BatchStatus, EmitDataType as EmitDataType, LMOutput as LMOutput, Message as Message, MessageContent as MessageContent, ModelId as ModelId, ModelProvider as ModelProvider, Reasoning as Reasoning, ResponseSchema as ResponseSchema, TokenUsage as TokenUsage, ToolCall as ToolCall, ToolResult as ToolResult
9
9
  from langchain_core.tools import Tool as LangChainTool
10
10
  from typing import Any
11
11
 
12
12
  SUPPORTED_ATTACHMENTS: Incomplete
13
13
  DEFAULT_MAX_TOKENS: int
14
14
  DEFAULT_THINKING_BUDGET: int
15
+ BATCH_STATUS_MAP: Incomplete
15
16
 
16
17
  class AnthropicLMInvoker(BaseLMInvoker):
17
18
  '''A language model invoker to interact with Anthropic language models.
@@ -199,6 +200,41 @@ class AnthropicLMInvoker(BaseLMInvoker):
199
200
  {"type": "response", "value": "is a good dog breed.", ...}
200
201
  ```
201
202
 
203
+ Batch processing:
204
+ The `AnthropicLMInvoker` supports batch processing, which allows the language model to process multiple
205
+ requests in a single call. The batch processing operations include:
206
+
207
+ 1. Create a batch job:
208
+ >>> requests = {"request_1": "What color is the sky?", "request_2": "What color is the grass?"}
209
+ >>> batch_id = await lm_invoker.batch.create(requests)
210
+ >>> print(batch_id)
211
+ "batch_123"
212
+
213
+ 2. Get the status of a batch job:
214
+ >>> status = await lm_invoker.batch.status(batch_id)
215
+ >>> print(status)
216
+ "finished"
217
+
218
+ 3. Retrieve the results of a batch job:
219
+ >>> results = await lm_invoker.batch.retrieve(batch_id)
220
+ >>> print(results)
221
+ {
222
+ "request_1": LMOutput(response="The sky is blue."),
223
+ "request_2": LMOutput(finish_details={"type": "error", "error": {"message": "...", ...}, ...}),
224
+ }
225
+
226
+ 4. List the batch jobs:
227
+ >>> batch_jobs = await lm_invoker.batch.list()
228
+ >>> print(batch_jobs)
229
+ [
230
+ {"id": "batch_123", "status": "finished"},
231
+ {"id": "batch_456", "status": "in_progress"},
232
+ {"id": "batch_789", "status": "canceling"},
233
+ ]
234
+
235
+ 5. Cancel a batch job:
236
+ >>> await lm_invoker.batch.cancel(batch_id)
237
+
202
238
  Output types:
203
239
  The output of the `AnthropicLMInvoker` can either be:
204
240
  1. `str`: The text response if no additional output is needed.
@@ -0,0 +1,3 @@
1
+ from gllm_inference.lm_invoker.batch.batch_operations import BatchOperations as BatchOperations
2
+
3
+ __all__ = ['BatchOperations']
@@ -0,0 +1,76 @@
1
+ from gllm_inference.schema import BatchStatus as BatchStatus, LMOutput as LMOutput, Message as Message, MessageContent as MessageContent
2
+ from typing import Any
3
+
4
+ class BatchOperations:
5
+ """Handles batch operations for an LM invoker.
6
+
7
+ This class provides a wrapper around the batch operations of an LM invoker.
8
+ It provides a simple interface for creating, retrieving, and canceling batch jobs.
9
+
10
+ This enables LM invokers to support the following batch operations:
11
+
12
+ Create a batch job:
13
+ >>> batch_id = await lm_invoker.batch.create(...)
14
+
15
+ Get the status of a batch job:
16
+ >>> status = await lm_invoker.batch.status(batch_id)
17
+
18
+ Retrieve the results of a batch job:
19
+ >>> results = await lm_invoker.batch.retrieve(batch_id)
20
+
21
+ List the batch jobs:
22
+ >>> batch_jobs = await lm_invoker.batch.list()
23
+
24
+ Cancel a batch job:
25
+ >>> await lm_invoker.batch.cancel(batch_id)
26
+ """
27
+ def __init__(self, invoker: BaseLMInvoker) -> None:
28
+ """Initializes the batch operations.
29
+
30
+ Args:
31
+ invoker (BaseLMInvoker): The LM invoker to use for the batch operations.
32
+ """
33
+ async def create(self, requests: dict[str, list[Message] | list[MessageContent] | str], hyperparameters: dict[str, Any] | None = None) -> str:
34
+ """Creates a new batch job.
35
+
36
+ Args:
37
+ requests (dict[str, list[Message] | list[MessageContent] | str]): The dictionary of requests that maps
38
+ request ID to the request. Each request must be a valid input for the language model.
39
+ 1. If the request is a list of Message objects, it is used as is.
40
+ 2. If the request is a list of MessageContent or a string, it is converted into a user message.
41
+ hyperparameters (dict[str, Any] | None, optional): A dictionary of hyperparameters for the language model.
42
+ Defaults to None, in which case the default hyperparameters are used.
43
+
44
+ Returns:
45
+ str: The ID of the batch job.
46
+ """
47
+ async def status(self, batch_id: str) -> BatchStatus:
48
+ """Gets the status of a batch job.
49
+
50
+ Args:
51
+ batch_id (str): The ID of the batch job to get the status of.
52
+
53
+ Returns:
54
+ BatchStatus: The status of the batch job.
55
+ """
56
+ async def retrieve(self, batch_id: str) -> dict[str, LMOutput]:
57
+ """Retrieves the results of a batch job.
58
+
59
+ Args:
60
+ batch_id (str): The ID of the batch job to get the results of.
61
+
62
+ Returns:
63
+ dict[str, LMOutput]: The results of the batch job.
64
+ """
65
+ async def list(self) -> list[dict[str, Any]]:
66
+ """Lists the batch jobs.
67
+
68
+ Returns:
69
+ list[dict[str, Any]]: The list of batch jobs.
70
+ """
71
+ async def cancel(self, batch_id: str) -> None:
72
+ """Cancels a batch job.
73
+
74
+ Args:
75
+ batch_id (str): The ID of the batch job to cancel.
76
+ """
@@ -6,7 +6,8 @@ from gllm_core.schema.tool import Tool
6
6
  from gllm_core.utils import RetryConfig
7
7
  from gllm_inference.constants import DOCUMENT_MIME_TYPES as DOCUMENT_MIME_TYPES, INVOKER_DEFAULT_TIMEOUT as INVOKER_DEFAULT_TIMEOUT
8
8
  from gllm_inference.exceptions import BaseInvokerError as BaseInvokerError, convert_to_base_invoker_error as convert_to_base_invoker_error
9
- from gllm_inference.schema import Attachment as Attachment, AttachmentType as AttachmentType, EmitDataType as EmitDataType, LMOutput as LMOutput, Message as Message, MessageContent as MessageContent, MessageRole as MessageRole, ModelId as ModelId, Reasoning as Reasoning, ResponseSchema as ResponseSchema, ToolCall as ToolCall, ToolResult as ToolResult
9
+ from gllm_inference.lm_invoker.batch import BatchOperations as BatchOperations
10
+ from gllm_inference.schema import Attachment as Attachment, AttachmentType as AttachmentType, BatchStatus as BatchStatus, EmitDataType as EmitDataType, LMOutput as LMOutput, Message as Message, MessageContent as MessageContent, MessageRole as MessageRole, ModelId as ModelId, Reasoning as Reasoning, ResponseSchema as ResponseSchema, ToolCall as ToolCall, ToolResult as ToolResult
10
11
  from langchain_core.tools import Tool as LangChainTool
11
12
  from typing import Any
12
13
 
@@ -93,6 +94,13 @@ class BaseLMInvoker(ABC, metaclass=abc.ABCMeta):
93
94
  Returns:
94
95
  str: The name of the language model.
95
96
  """
97
+ @property
98
+ def batch(self) -> BatchOperations:
99
+ """The batch operations for the language model.
100
+
101
+ Returns:
102
+ BatchOperations: The batch operations for the language model.
103
+ """
96
104
  def set_tools(self, tools: list[Tool | LangChainTool]) -> None:
97
105
  """Sets the tools for the language model.
98
106
 
@@ -15,6 +15,7 @@ class Key:
15
15
  ROLE: str
16
16
  SIGNATURE: str
17
17
  SOURCE: str
18
+ STATUS: str
18
19
  STOP_REASON: str
19
20
  SYSTEM: str
20
21
  TIMEOUT: str
@@ -38,11 +39,16 @@ class InputType:
38
39
 
39
40
  class OutputType:
40
41
  """Defines valid output types in Anthropic."""
42
+ CANCELING: str
41
43
  CONTENT_BLOCK_DELTA: str
42
44
  CONTENT_BLOCK_START: str
43
45
  CONTENT_BLOCK_STOP: str
46
+ ENDED: str
47
+ ERRORED: str
48
+ IN_PROGRESS: str
44
49
  MESSAGE_STOP: str
45
50
  REDACTED_THINKING: str
51
+ SUCCEEDED: str
46
52
  TEXT: str
47
53
  TEXT_DELTA: str
48
54
  THINKING: str
@@ -1,7 +1,7 @@
1
1
  from gllm_inference.schema.attachment import Attachment as Attachment
2
2
  from gllm_inference.schema.code_exec_result import CodeExecResult as CodeExecResult
3
3
  from gllm_inference.schema.config import TruncationConfig as TruncationConfig
4
- from gllm_inference.schema.enums import AttachmentType as AttachmentType, EmitDataType as EmitDataType, MessageRole as MessageRole, TruncateSide as TruncateSide
4
+ from gllm_inference.schema.enums import AttachmentType as AttachmentType, BatchStatus as BatchStatus, EmitDataType as EmitDataType, MessageRole as MessageRole, TruncateSide as TruncateSide
5
5
  from gllm_inference.schema.lm_output import LMOutput as LMOutput
6
6
  from gllm_inference.schema.message import Message as Message
7
7
  from gllm_inference.schema.model_id import ModelId as ModelId, ModelProvider as ModelProvider
@@ -11,4 +11,4 @@ from gllm_inference.schema.tool_call import ToolCall as ToolCall
11
11
  from gllm_inference.schema.tool_result import ToolResult as ToolResult
12
12
  from gllm_inference.schema.type_alias import EMContent as EMContent, MessageContent as MessageContent, ResponseSchema as ResponseSchema, Vector as Vector
13
13
 
14
- __all__ = ['Attachment', 'AttachmentType', 'CodeExecResult', 'EMContent', 'EmitDataType', 'InputTokenDetails', 'MessageContent', 'LMOutput', 'ModelId', 'ModelProvider', 'Message', 'MessageRole', 'OutputTokenDetails', 'Reasoning', 'ResponseSchema', 'TokenUsage', 'ToolCall', 'ToolResult', 'TruncateSide', 'TruncationConfig', 'Vector']
14
+ __all__ = ['Attachment', 'AttachmentType', 'BatchStatus', 'CodeExecResult', 'EMContent', 'EmitDataType', 'InputTokenDetails', 'MessageContent', 'LMOutput', 'ModelId', 'ModelProvider', 'Message', 'MessageRole', 'OutputTokenDetails', 'Reasoning', 'ResponseSchema', 'TokenUsage', 'ToolCall', 'ToolResult', 'TruncateSide', 'TruncationConfig', 'Vector']
@@ -7,6 +7,13 @@ class AttachmentType(StrEnum):
7
7
  IMAGE = 'image'
8
8
  VIDEO = 'video'
9
9
 
10
+ class BatchStatus(StrEnum):
11
+ """Defines the status of a batch job."""
12
+ CANCELING = 'canceling'
13
+ IN_PROGRESS = 'in_progress'
14
+ FINISHED = 'finished'
15
+ UNKNOWN = 'unknown'
16
+
10
17
  class EmitDataType(StrEnum):
11
18
  """Defines valid data types for emitting events."""
12
19
  ACTIVITY = 'activity'
gllm_inference.pyi CHANGED
@@ -83,15 +83,21 @@ import gllm_core.event
83
83
  import gllm_core.schema
84
84
  import gllm_core.schema.tool
85
85
  import langchain_core.tools
86
+ import gllm_inference.schema.BatchStatus
86
87
  import gllm_inference.schema.EmitDataType
87
88
  import gllm_inference.schema.LMOutput
88
89
  import gllm_inference.schema.Message
90
+ import gllm_inference.schema.MessageContent
89
91
  import gllm_inference.schema.Reasoning
90
92
  import gllm_inference.schema.ResponseSchema
91
93
  import gllm_inference.schema.TokenUsage
92
94
  import gllm_inference.schema.ToolCall
93
95
  import gllm_inference.schema.ToolResult
94
96
  import anthropic
97
+ import anthropic.types
98
+ import anthropic.types.message_create_params
99
+ import anthropic.types.messages
100
+ import anthropic.types.messages.batch_create_params
95
101
  import gllm_inference.schema.MessageRole
96
102
  import langchain_core.language_models
97
103
  import langchain_core.messages
@@ -100,7 +106,7 @@ import litellm
100
106
  import inspect
101
107
  import time
102
108
  import jsonschema
103
- import gllm_inference.schema.MessageContent
109
+ import gllm_inference.lm_invoker.batch.BatchOperations
104
110
  import gllm_inference.utils.validate_string_enum
105
111
  import gllm_inference.schema.CodeExecResult
106
112
  import xai_sdk
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: gllm-inference-binary
3
- Version: 0.5.28
3
+ Version: 0.5.29
4
4
  Summary: A library containing components related to model inferences in Gen AI applications.
5
5
  Author-email: Henry Wicaksono <henry.wicaksono@gdplabs.id>, Resti Febrina <resti.febrina@gdplabs.id>
6
6
  Requires-Python: <3.14,>=3.11
@@ -23,9 +23,9 @@ Requires-Dist: coverage<8.0.0,>=7.4.4; extra == "dev"
23
23
  Requires-Dist: mypy<2.0.0,>=1.15.0; extra == "dev"
24
24
  Requires-Dist: pre-commit<4.0.0,>=3.7.0; extra == "dev"
25
25
  Requires-Dist: pytest<9.0.0,>=8.1.1; extra == "dev"
26
- Requires-Dist: pytest-asyncio<1.0.0,>=0.23.6; extra == "dev"
26
+ Requires-Dist: pytest-asyncio<0.24.0,>=0.23.6; extra == "dev"
27
27
  Requires-Dist: pytest-cov<6.0.0,>=5.0.0; extra == "dev"
28
- Requires-Dist: ruff<1.0.0,>=0.6.7; extra == "dev"
28
+ Requires-Dist: ruff<0.7.0,>=0.6.7; extra == "dev"
29
29
  Provides-Extra: anthropic
30
30
  Requires-Dist: anthropic<0.61.0,>=0.60.0; extra == "anthropic"
31
31
  Provides-Extra: bedrock
@@ -1,5 +1,5 @@
1
- gllm_inference.cpython-313-x86_64-linux-gnu.so,sha256=ZftWp_qdo_pqWDS7OvnauwCPajL-yYmH7ABRlfOYs7A,4494664
2
- gllm_inference.pyi,sha256=W7k7p1By5jjscodmiwqLPfHv3s7Snw55VbRRqNyNgb0,3840
1
+ gllm_inference.cpython-313-x86_64-linux-gnu.so,sha256=UGo9F8Q5_w9bylhfndlMuMml_aat5ynGtZ41uI9RbyA,4613544
2
+ gllm_inference.pyi,sha256=Sq4V7euYsYCTkL7t_C79lI01dUIC8q3nBwMol-Ft8ug,4088
3
3
  gllm_inference/__init__.pyi,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
4
4
  gllm_inference/constants.pyi,sha256=EFVMtK3xDK2yjGoHp8EL3LeRZWhIefVKClI9jvbfQQ0,267
5
5
  gllm_inference/builder/__init__.pyi,sha256=usz2lvfwO4Yk-ZGKXbCWG1cEr3nlQXxMNDNC-2yc1NM,500
@@ -36,19 +36,21 @@ gllm_inference/exceptions/error_parser.pyi,sha256=IOfa--NpLUW5E9Qq0mwWi6ZpTAbUyy
36
36
  gllm_inference/exceptions/exceptions.pyi,sha256=Bv996qLa_vju0Qjf4GewMxdkq8CV9LRZb0S6289DldA,5725
37
37
  gllm_inference/exceptions/provider_error_map.pyi,sha256=P1WnhWkM103FW6hqMfNZBOmYSWOmsJtll3VQV8DGb8E,1210
38
38
  gllm_inference/lm_invoker/__init__.pyi,sha256=NmQSqObPjevEP1KbbrNnaz4GMh175EVPERZ19vK5Emc,1202
39
- gllm_inference/lm_invoker/anthropic_lm_invoker.pyi,sha256=MsF3OmDo0L9aEHuTJYTgsoDILi2B_IgKtPpDcDMduWc,14925
39
+ gllm_inference/lm_invoker/anthropic_lm_invoker.pyi,sha256=1uCgSpc2da3JHuk3oZ8nqXX0m0ATUleA81nNn8b3b98,16430
40
40
  gllm_inference/lm_invoker/azure_openai_lm_invoker.pyi,sha256=9gzto0yuZySR_8FII0PzbKLN_bCCdDP2vXQlVwnK9V8,14580
41
41
  gllm_inference/lm_invoker/bedrock_lm_invoker.pyi,sha256=fAJCLdOMcR4OJpNFj3vN0TiNBOR8PzC1xPvqJDEwlJc,12690
42
42
  gllm_inference/lm_invoker/datasaur_lm_invoker.pyi,sha256=QS84w3WpD3Oyl5HdxrucsadCmsHE8gn6Ewl3l01DCgI,9203
43
43
  gllm_inference/lm_invoker/google_lm_invoker.pyi,sha256=LG9lE8IXnObl2Uq9VPLeBT4WRqE5zUV_2gojSHiSqwQ,17052
44
44
  gllm_inference/lm_invoker/langchain_lm_invoker.pyi,sha256=NjlxGHZZ-GTZTwz4XviU6a0eKMlwcTXy4wUiCrmnxPQ,13599
45
45
  gllm_inference/lm_invoker/litellm_lm_invoker.pyi,sha256=_c56ewpEQ-Ywj5ofFzRYBvQgefR7Q_WkcQt97lnIFgg,13128
46
- gllm_inference/lm_invoker/lm_invoker.pyi,sha256=dQwYtVMCOmqvx68Znr3-pFkeA8upvk5wtRnkbKWyqY4,7881
46
+ gllm_inference/lm_invoker/lm_invoker.pyi,sha256=zlhvzAs2oWX3vv_HcYpl-0qSRqLZ4Tb020CmI4Oixto,8202
47
47
  gllm_inference/lm_invoker/openai_compatible_lm_invoker.pyi,sha256=_hOAde_Faph3JoGYh7zLch6BRc2Lam8PXZvi5-PkL-E,14938
48
48
  gllm_inference/lm_invoker/openai_lm_invoker.pyi,sha256=wPTJr5DkXpoXpxw3MoaqEnzAOUanBRGUu954KdKDaVU,19649
49
49
  gllm_inference/lm_invoker/xai_lm_invoker.pyi,sha256=rV8D3E730OUmwK7jELKSziMUl7MnpbfxMAvMuq8-Aew,15687
50
+ gllm_inference/lm_invoker/batch/__init__.pyi,sha256=W4W-_yfk7lL20alREJai6GnwuQvdlKRfwQCX4mQK4XI,127
51
+ gllm_inference/lm_invoker/batch/batch_operations.pyi,sha256=Pf_gORe6Oh6cDT_sJhF0h8I7rEsTbwQZMG85NOQw3xQ,2965
50
52
  gllm_inference/lm_invoker/schema/__init__.pyi,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
51
- gllm_inference/lm_invoker/schema/anthropic.pyi,sha256=zNbm4RV454dBEEUUN-Vyl_4cO628wUMPZyrO27O_DfM,991
53
+ gllm_inference/lm_invoker/schema/anthropic.pyi,sha256=6lreMyHKRfZzX5NBYKnQf1Z6RzXBjTvqZj2VbMeaTLQ,1098
52
54
  gllm_inference/lm_invoker/schema/bedrock.pyi,sha256=FJLY-ZkkLUYDV48pfsLatnot4ev_xxz9xAayLK28CpU,1027
53
55
  gllm_inference/lm_invoker/schema/datasaur.pyi,sha256=aA4DhTXIezwLvFzphR24a5ueVln2FCBIloP9Hbt3iz4,230
54
56
  gllm_inference/lm_invoker/schema/google.pyi,sha256=AIsNgq0ZZuicHmx4bL7z6q-946T05nWts3HUeA8hhHQ,505
@@ -81,11 +83,11 @@ gllm_inference/prompt_formatter/prompt_formatter.pyi,sha256=UkcPi5ao98OGJyNRsqfh
81
83
  gllm_inference/request_processor/__init__.pyi,sha256=hVnfdNZnkTBJHnmLtN3Na4ANP0yK6AstWdIizVr2Apo,227
82
84
  gllm_inference/request_processor/lm_request_processor.pyi,sha256=VnYc8E3Iayyhw-rPnGPfTKuO3ohgFsS8HPrZJeyES5I,5889
83
85
  gllm_inference/request_processor/uses_lm_mixin.pyi,sha256=Yu0XPNuHxq1tWBviHTPw1oThojneFwGHepvGjBXxKQA,6382
84
- gllm_inference/schema/__init__.pyi,sha256=hsU0GRL6bUdNdix5WDM5Ca-RfmZLu2BdVngSotup-II,1458
86
+ gllm_inference/schema/__init__.pyi,sha256=6QFARJnD3u8Z9Z3jbmJlH_aFRHYWMmA9naPyhKugOOI,1501
85
87
  gllm_inference/schema/attachment.pyi,sha256=jApuzjOHJDCz4lr4MlHzBgIndh559nbWu2Xp1fk3hso,3297
86
88
  gllm_inference/schema/code_exec_result.pyi,sha256=ZTHh6JtRrPIdQ059P1UAiD2L-tAO1_S5YcMsAXfJ5A0,559
87
89
  gllm_inference/schema/config.pyi,sha256=rAL_UeXyQeXVk1P2kqd8vFWOMwmKenfpQLtvMP74t9s,674
88
- gllm_inference/schema/enums.pyi,sha256=w5Bq3m-Ixl4yAd4801APhw9fjCiuqttWuUXWvSWSEEs,717
90
+ gllm_inference/schema/enums.pyi,sha256=XQpohUC7_9nFdEmSZHj_4YmOAwM_C5jvTWw_RN-JiFk,901
89
91
  gllm_inference/schema/lm_output.pyi,sha256=GafJV0KeD-VSwWkwG1oz-uruXrQ7KDZTuoojPCBRpg8,1956
90
92
  gllm_inference/schema/message.pyi,sha256=VP9YppKj2mo1esl9cy6qQO9m2mMHUjTmfGDdyUor880,2220
91
93
  gllm_inference/schema/model_id.pyi,sha256=qrr0x4qkd6cGIbc4XATWJb0uckKhd1sAdR_xT7vGIXI,5491
@@ -99,7 +101,7 @@ gllm_inference/utils/io_utils.pyi,sha256=7kUTacHAVRYoemFUOjCH7-Qmw-YsQGd6rGYxjf_
99
101
  gllm_inference/utils/langchain.pyi,sha256=VluQiHkGigDdqLUbhB6vnXiISCP5hHqV0qokYY6dC1A,1164
100
102
  gllm_inference/utils/validation.pyi,sha256=toxBtRp-VItC_X7sNi-GDd7sjibBdWMrR0q01OI2D7k,385
101
103
  gllm_inference.build/.gitignore,sha256=aEiIwOuxfzdCmLZe4oB1JsBmCUxwG8x-u-HBCV9JT8E,1
102
- gllm_inference_binary-0.5.28.dist-info/METADATA,sha256=geMzdHIq24oeCxAUWrc-VaNsXHXJlN1Fys5JlzDqI8M,4856
103
- gllm_inference_binary-0.5.28.dist-info/WHEEL,sha256=GrvfTP3j0ebqecWD3AHlLRzmSrTVGeL6T8Btq6Eg9eI,108
104
- gllm_inference_binary-0.5.28.dist-info/top_level.txt,sha256=FpOjtN80F-qVNgbScXSEyqa0w09FYn6301iq6qt69IQ,15
105
- gllm_inference_binary-0.5.28.dist-info/RECORD,,
104
+ gllm_inference_binary-0.5.29.dist-info/METADATA,sha256=Nik4n41nB3IXYTE-OrbmBQRyWBbhiBpciBazCzsy7ts,4857
105
+ gllm_inference_binary-0.5.29.dist-info/WHEEL,sha256=GrvfTP3j0ebqecWD3AHlLRzmSrTVGeL6T8Btq6Eg9eI,108
106
+ gllm_inference_binary-0.5.29.dist-info/top_level.txt,sha256=FpOjtN80F-qVNgbScXSEyqa0w09FYn6301iq6qt69IQ,15
107
+ gllm_inference_binary-0.5.29.dist-info/RECORD,,